World Citrus Rootstock Situation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table S1 Materials and Groups Were Used in This Study. Citrus
Table S1 Materials and groups were used in this study. Citrus germplasms Species name Group Wild or Cultivar Huanongbendizao tangerine LSM Cultivar (C) Guinongbendizao tangerine LSM C Guizhouwuhezhuju tangerine LSM C Red Tangerine LSM Wild (W) Huangyanbendizao tangerine LSM C Nanfengmiju tangerine LSM C Nianju tangerine LSM C Nieduyedonggan LSM W E-gan No.1 Ponkan tangerine LSM C Huapiju tangerine LSM C Wuhe Ponkan tangerine LSM C India sour Tangerine Loose-skin mandarin LSM W Wulong Sour Tangerine (Citrus reticulate) LSM W Cupigoushigan tangerine LSM W Dakengyeju tangerine LSM W Daoxianyeju tangerine LSM W Jiangyongyeju tangerine LSM W Mangshanju tangerine LSM W Xipigoushigan tangerine LSM W Damaliu tangerine LSM W Yaoxianggan tangerine LSM W Miyagawa Wase LSM C Guangmingzao LSM C Guoqing No.4 LSM C Changyang Kamei LSM C Dapu LSM C Inaba Wase LSM C Guoqing No.1 LSM C Nichinan No.1 Wase LSM C Caffion clementine CCL C De nules clementine CCL C Hernadinal clementine CCL C Marisal clementine CCL C Monreal clementine CCL C Nour clementine CCL C Orograde clementine CCL C Oroval clementine Clementine mandarin (C. CCL C Pons clementine reticulate × C. sinensis) CCL C Rrecoce clementine CCL C Rubino clementine CCL C Sidiaissa1 clementine CCL C Spinoso.V,C,R clementine CCL C SRA63 clementine CCL C SRA92 clementine CCL C Tomatera clementine CCL C Anliucheng SW C Qianyang Wuhe Dahong SW C Hamlin Sweet Orange Sweet orange (C. sinensis) SW C Red Anliucheng SW C Meishan Wuhejincheng SW C Taoye sweet orange SW C Xuegan SW C Qingpi SW C Carter Valencia orange SW C Frost Valencia orange SW C Crame Navel Orange SW C Palmer Navel Orange SW C Red grand Navel Orange SW C Roberson Navel Orange SW C Smithearly Navel Orange SW C Fukumoto Navel Orange SW C Red Flesh Navel Orange SW C Washington Naval Orange SW C Dream Navel Orange SW C Nice navel Orange SW C Newhall Navel Orange SW C Seike Navel Orange SW C Xiatian Navel Orange SW C Zaohong Navel Orange SW C Huanonghongyou Pomelo P C Taiyou Pomelo P C Acidless Pomelo P C Fenghuangyou Pomelo Pomelo (C. -
Kettleman City, Kings County Please Read Immediately
CALIFORNIA DEPARTMENT OF FOOD AND AGRICULTURE OFFICIAL NOTICE FOR CITY OF KETTLEMAN CITY, KINGS COUNTY PLEASE READ IMMEDIATELY THE NOTICE OF TREATMENT FOR THE ASIAN CITRUS PSYLLID On September 18, 2020 the California Department of Food and Agriculture (CDFA) confirmed the presence of Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, a harmful exotic pest in the city of Kettleman City, Kings County. This detection indicate that a breeding population exists in the area. The devastating citrus disease Huanglongbing (HLB) is spread by the feeding action of ACP. The ACP infestation is sufficiently isolated and localized to be amenable to the CDFA’s ACP treatment work plan. A Program Environmental Impact Report (PEIR) has been certified which analyzes the ACP treatment program in accordance with Public Resources Code, Sections 21000 et seq. The PEIR is available at http://www.cdfa.ca.gov/plant/peir/. The treatment activities described below are consistent with the PEIR. In accordance with integrated pest management principles, CDFA has evaluated possible treatment methods and determined that there are no physical, cultural, or biological control methods available to eliminate the ACP from this area. Notice of Treatment is valid until September 18, 2021, which is the amount of time necessary to determine that the treatment was successful. The treatment plan for the ACP infestation will be implemented within a 50-meter radius of each detection site, as follows: • Tempo® SC Ultra (cyfluthrin), a contact insecticide for controlling the adults and nymphs of ACP, will be applied from the ground using hydraulic spray equipment to the foliage of host plants; and • Merit® 2F or CoreTect™ (imidacloprid), a systemic insecticide for controlling the immature life stages of ACP, will be applied to the soil underneath host plants. -
Observations on Impietratura Disease Symptoms in Four Citrus Species
Observations on Impietratura Disease Symptoms in Four Citrus Species A. Caruso, M. Davino and G. Terranova ABSTRACT. Citrus impietratura disease affects citrus cultivars in the Mediterranean Basin. The indexing of impietratura disease is based on symptoms on indicator plants such as Volkamer lemon or grapefruit or on the inspection of the trees in the field. This requires many years. In this paper the effects of a severe isolate of impietratura on sweet orange, Volkamer lemon, rough lemon and Marsh Seedless grapefruit is reported. Our observations indicate that rough lemon is a better indicator of fruit symptoms than Volkamer lemon, grapefruit and sweet orange. Index words. biological assay, albedo gumming, rough lemon. In Italy cristacortis, concave gum servation for at least three years. Dif- and impietratura are widespread in ficulties in timely indexing of old line commercial orchards. The causal Navelina trees planted in Italy be- agents of these diseases have not been tween 1970 and 1985 resulted in the characterized and their detection is high percentage of infection (>30%) by still by means of biological assays. impietratura, concave gum and Due of its excellent bioagronomic psorosis A (4,6,13). and marketing character, in Italy the Rough lemon was initially consid- cultivation of the Navelina sweet ered to be tolerant to impietratura dis- orange spread rapidly in many citrus- ease (9), but later studies showed it to growing areas by growers, despite the be susceptible (7,8,12) and Catara and fact that the first trees imported pre- Scaramuzzi (5) suggested its use as an sented very mild flecking symptoms on alternative indicator. -
Soluble Solids Accumulation in ʻvalenciaʼ Sweet Orange As Related to Rootstock Selection and Fruit Size
J. AMER. SOC. HORT. SCI. 129(4):594–598. 2004. Soluble Solids Accumulation in ʻValenciaʼ Sweet Orange as Related to Rootstock Selection and Fruit Size Graham H. Barry1 and William S. Castle Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850-2299 Frederick S. Davies Department of Horticultural Sciences, University of Florida, P.O. Box 110690, Gainesville, FL 32611-0690 ADDITIONAL INDEX WORDS. Citrus sinensis, juice quality, soluble solids concentration (SSC) ABSTRACT. Juice quality of ʻValenciaʼ sweet orange [Citrus sinensis (L.) Osb.] trees on Carrizo citrange [C. sinensis x Poncirus trifoliata (L.) Raf.] or rough lemon (C. jambhiri Lush.) rootstocks was determined for fruit harvested by canopy quadrant and separated into size categories to ascertain the direct role of rootstock selection on juice soluble solids concentration (SSC) and soluble solids (SS) production per tree of citrus fruit. SS production per fruit and per tree for each size category was calculated. Juice quality was dependent on rootstock selection and fruit size, but independent of canopy quadrant. Fruit from trees on Carrizo citrange had >20% higher SSCs than fruit from trees on rough lemon, even for fruit of the same size. Large fruit accumulated more SS per fruit than smaller fruit, despite lower juice content and SSC. Within rootstocks, SS content per fruit decreased with decreasing fruit size, even though SSC increased. Rootstock effect on juice quality was a direct rather than an indirect one mediated through differences in fruit size. The conventional interpretation of juice quality data that differences in SSC among treatments, e.g., rootstocks or irrigation levels, or fruit size, are due to “dilution” of SS as a result of differences in fruit size and, hence, juice volume, is only partly supported by these data. -
Reaction of Tangerines Genotypes to Elsinoe Fawcettiiunder
Reaction of tangerines genotypes to Elsinoe fawcettii under natural infection conditions Crop Breeding and Applied Biotechnology 11: 77-81, 2011 Brazilian Society of Plant Breeding. Printed in Brazil Reaction of tangerines genotypes to Elsinoe fawcettii under natural infection conditions Marcelo Claro de Souza1*, Eduardo Sanches Stuchi2 and Antonio de Goes3 Received 11 February 2010 Accepted 30 September 2010 ABSTRACT - A citrus scab disease, caused by Elsinoe fawcettii, is currently found in all citrus areas throughout Brazil. That being, given the importance of this casual agent, the behavior of tangerines and hybrids influenced by this pathogen was evaluated under natural infection conditions. This study was performed with plants around 15 years old without irrigation; 100 fruits of three plants were collected during harvest season, using a grade scale varying from 0 (absence of symptoms) to 6 (severe symptoms) the level of disease severity was determined. Among the cultivars, citrus scab resistance was observed in Citrus deliciosa, C. tangerina, C. nobilis; a mandarin hybrid (C. nobilis x C. deliciosa) and a satsuma hybrid (C. unshiu x C. sinensis). Among the other genotypes, symptoms were observed with levels of severity ranging from 1 to 3, indicating moderate resistance. Key words: Citrus scab, citrus crop, resistant varieties. INTRODUCTION In Brazil, E. fawcettii is responsible for citrus scab. The disease is widespread in many humid, citrus-cultivating In many citrus production areas around the world, areas around the world and decreases fruit values on the Elsinoe fawcettii is one of the main fungi diseases found. fresh-fruit market (Feichtenberger et al. 1986). In young It attacks a wide variety of citrus species and cultivars, plants or under severe infection, it may cause significant resulting in scab disease on leaves, twigs, and fruits (Timmer fruit drop. -
Canker and Greening – Lessons from South America by Bob Rouse and Fritz Roka
Citrus Expo follow-up Canker and greening – lessons from South America By Bob Rouse and Fritz Roka he 2006 Citrus Expo featured citrus managers from Cecil Taylor described citrus production in the northeast Brazil and Argentina who spoke about their manage - region of Argentina where producers grow common oranges, ment programs to control citrus canker and citrus mandarins and grapefruit. Tgreening diseases. The strategies they described Argentina was devastated by tristeza in the 1940s and in have been successful and hopefully transferable to citrus the 1960s began to see canker. Initial control efforts included production in Florida. eradication, tree defoliation and spraying enough copper that The Florida canker eradication program was abandoned in trees turned blue. These efforts proved fruitless, and growers the spring of 2006 after the USDA predicted that canker demanded an end to any eradication policy. would spread by 100,000 acres before the end of the year. During these early years, windbreaks were not part of any Currently, most of the canker is south of Polk County’s State perceived solution. By the end of the 1980s, they began to re - Road 60. Since the eradication program ended, there have alize, however, that the key to canker control lies in slowing been about 100 new finds monthly. down the wind, even though they did not experience strong Grower self-inspections have accounted for 40 percent of winds. They started with low-growing plants like sugarcane, the new finds. DPI inspectors have identified the remaining maze and sunflower. By the 1990s, they saw the need for 60 percent of new canker finds. -
Literature Research
Literature Search 20. Literature Search Growing Lemons in Australia - a production manual© 20 — 1 Literature Search Abu-Awwad, A.M. 2001. Influence of Different Water Quantities and Qualities on Lemon trees and Soil Salt Distribution at the Jordan Valley. Agricultural Water Management 52: 53-71. Young lemon trees (Eureka) were studied for five years (1996-2000). Five water levels and three water qualities were imposed via trickle irrigation system on clay loam soil. In saline substrates Na+ and C1- are usually the dominant ions. The lemon tree is a salt-sensitive crop to salinity, and even low salt concentrations may affect its growth and productivity. A field experiment was conducted to investigate the influence of different water and salinity levels on the development of young lemon (Eureka) trees. Materials and Methods A field experiment was conducted for 5 years. One dripper per tree for the first year, two drippers 1.0 m apart per tree for the second year, and thereafter four drippers 1.0 m apart. 8L/hr of five water levels and three water qualities. Conclusion Increasing irrigation water salinity increased salt concentration and osmotic potential in the root zone, and consequently reduced lemon annual water use, stem diameter and fruit yield. Regardless of irrigation water salinity, the significantly highest fruit yield was at irrigation water depth equal to evaporation depth from class A pan when corrected for tree canopy percentage shaded area. Adriaensens, S.Z., Past and Present Situation of the Spanish Citrus Industry, 1993. Lemon group The Verna is a typically Spanish variety of unknown origin. -
Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid
Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid Diaphorina Liberibacter citri Plant Name asiaticus Citrus Huanglongbing Psyllid Aegle marmelos (L.) Corr. Serr.: bael, Bengal quince, golden apple, bela, milva X Aeglopsis chevalieri Swingle: Chevalier’s aeglopsis X X Afraegle gabonensis (Swingle) Engl.: Gabon powder-flask X Afraegle paniculata (Schum.) Engl.: Nigerian powder- flask X Atalantia missionis (Wall. ex Wight) Oliv.: see Pamburus missionis X X Atalantia monophylla (L.) Corr.: Indian atalantia X Balsamocitrus dawei Stapf: Uganda powder- flask X X Burkillanthus malaccensis (Ridl.) Swingle: Malay ghost-lime X Calodendrum capense Thunb.: Cape chestnut X × Citroncirus webberi J. Ingram & H. E. Moore: citrange X Citropsis gilletiana Swingle & M. Kellerman: Gillet’s cherry-orange X Citropsis schweinfurthii (Engl.) Swingle & Kellerm.: African cherry- orange X Citrus amblycarpa (Hassk.) Ochse: djerook leemo, djeruk-limau X Citrus aurantiifolia (Christm.) Swingle: lime, Key lime, Persian lime, lima, limón agrio, limón ceutí, lima mejicana, limero X X Citrus aurantium L.: sour orange, Seville orange, bigarde, marmalade orange, naranja agria, naranja amarga X Citrus depressa Hayata: shiikuwasha, shekwasha, sequasse X Citrus grandis (L.) Osbeck: see Citrus maxima X Citrus hassaku hort. ex Tanaka: hassaku orange X Citrus hystrix DC.: Mauritius papeda, Kaffir lime X X Citrus ichangensis Swingle: Ichang papeda X Citrus jambhiri Lushington: rough lemon, jambhiri-orange, limón rugoso, rugoso X X Citrus junos Sieb. ex Tanaka: xiang -
Tropical Horticulture: Lecture 32 1
Tropical Horticulture: Lecture 32 Lecture 32 Citrus Citrus: Citrus spp., Rutaceae Citrus are subtropical, evergreen plants originating in southeast Asia and the Malay archipelago but the precise origins are obscure. There are about 1600 species in the subfamily Aurantioideae. The tribe Citreae has 13 genera, most of which are graft and cross compatible with the genus Citrus. There are some tropical species (pomelo). All Citrus combined are the most important fruit crop next to grape. 1 Tropical Horticulture: Lecture 32 The common features are a superior ovary on a raised disc, transparent (pellucid) dots on leaves, and the presence of aromatic oils in leaves and fruits. Citrus has increased in importance in the United States with the development of frozen concentrate which is much superior to canned citrus juice. Per-capita consumption in the US is extremely high. Citrus mitis (calamondin), a miniature orange, is widely grown as an ornamental house pot plant. History Citrus is first mentioned in Chinese literature in 2200 BCE. First citrus in Europe seems to have been the citron, a fruit which has religious significance in Jewish festivals. Mentioned in 310 BCE by Theophrastus. Lemons and limes and sour orange may have been mutations of the citron. The Romans grew sour orange and lemons in 50–100 CE; the first mention of sweet orange in Europe was made in 1400. Columbus brought citrus on his second voyage in 1493 and the first plantation started in Haiti. In 1565 the first citrus was brought to the US in Saint Augustine. 2 Tropical Horticulture: Lecture 32 Taxonomy Citrus classification based on morphology of mature fruit (e.g. -
Cuban Tree Frog He's a Bad Boy!!
Dear Extension Friends, August 2014 We hope you are enjoying your summer by taking the proper precau- Inside this issue: tions to prevent sunburn and heat exhaustion. If you find yourself needing a Cuban Treefrog 1 break from the heat, you are welcome to visit Dr. Kyle Brown for gardening information and advice in the comfort of the air-conditioned office (1pm to Citrus Species and 2 5pm, Monday through Friday). Hybrids Best Regards, Join Us On Facebook! Bamboo Control 3 UF IFAS Extension Baker County Garden Spot Fruit Tree 4 Alicia R. Lamborn https://www.facebook.com/ Calendar: August Horticulture Extension Agent UFIFASBakerCountyGardenSpot Baker County Extension Service CUBAN TREE FROG HE’S A BAD BOY!! A Cuban Tree Frog has been found in Baker County recently. Please keep an eye out for this invasive pest as he eats native tree frogs and smaller lizards and snakes. Should you find one, bring to the Extension Office for positive identification. Make a Tree Frog Hangout from a 3 foot length of 1.25 inch diameter PVC pipe, stand upright in ground near house or shrubs. Check it often to see if you have this Bad Boy! For more information on the Cuban tree frog, see the following UF/ IFAS publications: http://edis.ifas.ufl.edu/uw259 http://edis.ifas.ufl.edu/uw346 Photo Credits: Steven Johnson, University of Florida The Institute of Food and Agricultural Sciences (IFAS) is an Equal Opportunity Institution authorized to provide research, educational information, and other services only to individ- uals and institutions that function with non-discrimination with respect to race, creed, color, religion, age, disability, sex, sexual orientation, marital status, national origin, political opinions, or affiliations. -
Cooperatives in the U.S.-Citrus Industry
Agriculture Cooperatives in the Rural Business and Cooperative Development U.S.-Citrus Industry Service RBCDS Research Report 137 Abstract Cooperatives in the U.S. Citrus Industry James A. Jacobs Agricultural Economist U.S. Department of Agriculture Rural Business and Cooperative Development Service Citrus is one of the leading fruit crops produced in the United States. Cooperatives play an important role in the handling and marketing of both fresh and processed citrus products. This report examines the development and posi- tion of cooperatives in the citrus industry, their functions and operating prac- tices, and the impact of changes in production practices and industry structure on cooperatives. Cooperatives range from small, local fresh packinghouse associations to large cooperative federations with comprehensive marketing and sales pro- grams in both fresh and processed markets. Cooperatives are among the lead- ing marketers in all producing areas, and are the dominant marketing organiza- tion in California and Arizona. Citrus cooperatives use the pooling method to market and allocate returns. This cooperative practice of averaging price and sharing risk is commonly used by some private citrus firms as well, reflecting the inherent volatility of citrus production. Keywords: Cooperative, grove, grower-member, fresh citrus, processed citrus, frozen-concentrated orange juice, packinghouse, processor, marketing federa- tion, sales agency, marketing agreement, pooling, grove care, freezes, box, eliminations. RBCDS Research Report 137 December 1994 Preface This report describes the position and functions of cooperatives in the U.S. citrus industry. It is the first known detailed examination of its kind on citrus cooperative activities and operating practices. The report is intended as a reference for cooperative managers and mem- bers, professional advisors, and anyone involved in professional activities or research in the citrus industry. -
Citrus Trifoliata (Rutaceae): Review of Biology and Distribution in the USA
Nesom, G.L. 2014. Citrus trifoliata (Rutaceae): Review of biology and distribution in the USA. Phytoneuron 2014-46: 1–14. Published 1 May 2014. ISSN 2153 733X CITRUS TRIFOLIATA (RUTACEAE): REVIEW OF BIOLOGY AND DISTRIBUTION IN THE USA GUY L. NESOM 2925 Hartwood Drive Fort Worth, Texas 76109 www.guynesom.com ABSTRACT Citrus trifoliata (aka Poncirus trifoliata , trifoliate orange) has become an aggressive colonizer in the southeastern USA, spreading from plantings as a horticultural novelty and use as a hedge. Its currently known naturalized distribution apparently has resulted from many independent introductions from widely dispersed plantings. Seed set is primarily apomictic and the plants are successful in a variety of habitats, in ruderal habits and disturbed communities as well as in intact natural communities from closed canopy bottomlands to open, upland woods. Trifoliate orange is native to southeastern China and Korea. It was introduced into the USA in the early 1800's but apparently was not widely planted until the late 1800's and early 1900's and was not documented as naturalizing until about 1910. Citrus trifoliata L. (trifoliate orange, hardy orange, Chinese bitter orange, mock orange, winter hardy bitter lemon, Japanese bitter lemon) is a deciduous shrub or small tree relatively common in the southeastern USA. The species is native to eastern Asia and has become naturalized in the USA in many habitats, including ruderal sites as well as intact natural commmunities. It has often been grown as a dense hedge and as a horticultural curiosity because of its green stems and stout green thorns (stipular spines), large, white, fragrant flowers, and often prolific production of persistent, golf-ball sized orange fruits that mature in September and October.