Snapshot: Adult Hippocampal Neurogenesis Krishna C

Total Page:16

File Type:pdf, Size:1020Kb

Snapshot: Adult Hippocampal Neurogenesis Krishna C 1114 Cell SnapShot: Adult Hippocampal Neurogenesis Krishna C. Vadodaria1 and Fred H. Gage1 156 1Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA , February 27,2014©2014 ElsevierInc. DOI http://dx.doi.org/10.1016/j.cell.2014.02.029 Dentate gyrus circuitry Stages of adult hippocampal neurogenesis Functional hippocampal neurogenesis Mouse Human Nestin GFAP DCX/PSA-NCAM Markers BLBP NeuN SVZ SGZ Sox2 Calretinin Calbindin Tbr2 Prox-1 Olfactory bulb Hippocampus >4 wk 3 wk Cognitive processes Pyramidal neuron Granule cell (newborn) Learning, memory, cognition, 2 wk Granule cell (adult) EC2 pattern separation, emotion Entorhinnal cortex layer 2 neuron CA1 EC3 Entorhinnal cortex 1 wk Computational predictions layer 3 neuron Basket NEUROGENIC NICHE cell Encryption of time in memories SUB 3 days Spatial/temporal pattern separation CA3 EC5 Type 1 Type 2 Memory resolution, orthogonalization Days after birth 0 7 14 21 28 Fate choice ON DG Developmental Migration Synaptic integration stages Proliferation Immature Mature Radial and horizontal Type 2a and Type 3 granule granule The neurogenic niche type 1 NSCs 2b TAPS neuroblasts neuron neuron Sox2 Hes5 Pax6 NeuroD1 Prox1 Prox1 Transcription OFF Ascl1 Neurog2 Tbr2 Sox3 Sox11 CREB REST Brain activity factors FoxO3 REST TLX FoxG1 FoxG1 Glu GABA Age of neurons Birth 1 week 2–3 weeks 4–6 weeks after 8 weeks Separating similar but not identical patterns Endothelial Dopamine Responsiveness Immediate early gene expression cells ACh Apoptosis Rodent disease models with altered AHN 5HT Excitability Glutamate input Epilepsy GABA response Depolarized Hyperpolarized Neurodegenerative diseases: Type 1 Type 2 GABA input Dendritic Alzheimer’s, Parkinson’s, Huntington’s GABA input Somatic Neuropsychiatric disorders: Schizophrenia, major depression, posttraumatic See online version for legend and references. and legend for version online See Differentiation/ stress disorder, autism spectrum disorders Blood vessel Regulators/stage Proliferation survival/maturation Cognitive defects Running, learning, calorie Learning, enriched environment, Behavioral/ restriction, seizure, ischemia activity Mental retardation environment Astrocyte Aging, stress, inammation Stress Tools for studying adult neurogenesis Serotonin, dopamine, GABA, dopamine, glutamate, Transgenic conditional genetic overexpression/deletion acetylcholine, norepinephrine acetylcholine Focal irradiation Niche-specific contributors Neurotransmitters GABA Norepinephrine HSV1-TK+Ganciclovir (knockdown AHN) Vasculature, astrocytes, microglia, granule cells, local interneurons Diphtheria toxin (transgenic expression) IGF-1, FGF-2, Shh, BDNF-TrkB, NT3, Bax knockout mice (increase AHN) Growth factors/ Wnt3, VEGF Wnt3, FGF2 Local secreted factors morphogens Retrovirus-based gene delivery (morphology and Wnt, IGF, VEGF, BDNF, IL4, IFNγ, TGFβ, IL-6, IL1-β, IGFBP-6, TNFα Notch single-cell analysis) Modied rabies virus (mapping connectivity) GADD45b, miR-137, MBD1, MECP2, FMRP, DISC1, Molecular mediators DISC1 Cdk5, Klf9, Akt-mTOR Optogenetic control, channel rhodopsin; tetanus Endocrine regulators (Tx factors; toxin; Allatostatin+receptor (activity modulation) Thyroid, estrogen, endorphins, leptin, testosterone, corticosterone epigenetic regulators) FMRP HDACs Carbon-14 dating (human neurogenesis) SnapShot: Adult Hippocampal Neurogenesis Krishna C. Vadodaria1 and Fred H. Gage1 1Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA Adult neurogenesis, largely described over the last two decades, represents a unique form of structural plasticity. In mammals, life-long neurogenesis occurs in the subventricu- lar zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). In the SGZ, neural stem/precursor cells (NSPCs) go through a distinct developmental timeline, giving rise to dividing neuroblasts, which generate immature neurons that must then survive and integrate into the existing DG circuitry. This pro- cess is dynamically regulated by extrinsic and intrinsic factors. Recent evidence indicates a role for adult-born neurons in cognitive and emotion-related hippocampal functions, notably pattern separation and anxiety-like behavior. In this SnapShot, we highlight key features of adult hippocampal neurogenesis (AHN), providing an overview of the adult neurogenic niche, developmental stages in AHN, intrinsic and extrinsic regulators, functional roles of adult-born hippocampal neurons, and AHN in humans (Gage et al., 2008). The Neurogenic Niche of the DG Although NSPCs have been isolated from nonneurogenic brain regions, only NSPCs in the SVZ and SGZ generate neurons in vivo, suggesting a key role of the microenviron- ment. Important contributors within the neurogenic niche include local astrocytes that secrete growth factors, microglia that phagocytose apopototic cells and have neuropro- tective effects via the secretion of chemokines and cytokines, as well as the vasculature that enables new neuron production. Panel 1 illustrates the DG cytoarchitechture, with important contributors to the neurogenic niche: vasculature, microglia, and astrocytes, along with the secreted factors. Developmental Stages of Adult Hippocampal Neurogenesis Radial glia-like neural stem/precursor cells residing in the SGZ are considered relatively quiescent. This self-renewing pool of cells asymmetrically divides, giving rise to the transit-amplifying and proliferative pool of neuroblasts. A small percentage of these proliferating cells survive, differentiating into immature neurons. Within 7–10 days postdivi- sion (dpd), cells begin to adopt a neuronal fate and morphology, sending out axons to the hippocampal CA3 region via the mossy fiber tract and extending dendrites into the DG molecular layer, receiving input from the entorhinnal cortex via the perforant path. Dendritic spines appear around 14 dpd and increase up to and beyond 28 dpd, correspond- ing to a critical maturation period. Early on, GABAergic input promotes excitation and is important for early aspects of neuronal maturation. As neurons mature, they receive synaptic glutamatergic input (3 weeks) and shift to GABA-induced inhibitory responses. During this time, newborn neurons are hyperexcitable, but within 8 weeks, they become indistinguishable from developmentally born DG neurons. Panel 2 illustrates the developmental stages of neurogenesis with the key features highlighted, along with widely used stage-specific markers (Duan et al., 2008). Key Regulators Extrinsic and intrinsic factors regulate AHN. Table 2 in Panel 2 shows notable extrinsic regulators such as running, environmental enrichment, and dietary components (Kem- permann, 2011). In contrast, stress, aging, and inflammation negatively impact the process. Intrinsic neuromodulators such as neurotransmitters, growth factors or morphogens, and cell-intrinsic molecular mediators, play a part in modulating adult neurogenesis at basal levels, as well as downstream of extrinsic regulators. Functional Role of Adult-Born Hippocampal Neurons Collective evidence suggests a prominent role in cognitive processes, including learning, memory, and emotion. Experimental data ascribed a specific role for newborn neu- rons in the orthogonalization functions of the DG (Panel 3) (Aimone et al., 2010). As compared to relatively silenced (hyperpolarized) mature granule cells, the hyperexcitability of newborn neurons during the critical maturational period is thought to enable encoding of a nuanced spatial/temporal context to memory (pattern separation), allowing greater separation of patterns that are closely related in space or time and possibly greater resolution in memories (Panel 3) (Deng et al., 2010). Additional studies suggest that AHN may play a role in modulating anxiety-like behavior via the HPA axis, possibly downstream of stimuli such as stress or antidepressant treatment (Sahay et al., 2011). AHN is widespread in mammalian species and has been shown to occur in humans even into the fifth decade of life (Eriksson et al., 1998; Spalding et al., 2013), raising the possibility that it may play an even greater role in cognition, memory, and emotion-related behaviors in humans. ACKNOWLEDGMENTS This work is supported by The Mathers Foundation, JPB Foundation, and MH090258. KCV is currently supported by a Swiss National Science Foundation (SNSF) postdoctoral fellowship. REFERENCES Aimone, J.B., Deng, W., and Gage, F.H. (2010). Adult neurogenesis: integrating theories and separating functions. Trends Cogn. Sci. 14, 325–337. Deng, W., Aimone, J.B., and Gage, F.H. (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci. 11, 339–350. Duan, X., Kang, E., Liu, C.Y., Ming, G.L., and Song, H. (2008). Development of neural stem cell in the adult brain. Curr. Opin. Neurobiol. 18, 108–115. Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., and Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317. Gage, F.H., Kempermann, G., and Song, H. (2008). Adult Neurogenesis (Cold Spring Harbor Monograph Series 52). Kempermann, G. (2011). Seven principles in the regulation of adult neurogenesis. Eur. J. Neurosci. 33, 1018–1024. Sahay, A., Wilson, D.A., and Hen, R. (2011). Pattern separation: a common function for new neurons in hippocampus and olfactory bulb. Neuron 70, 582–588. Spalding, K.L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H.B., Boström, E., Westerlund, I., Vial, C., Buchholz, B.A., et al. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227. 1114.e1 Cell 156, February 27, 2014 ©2014 Elsevier Inc. DOI http://dx.doi.org/10.1016/j.cell.2014.02.029.
Recommended publications
  • Abstracts from the 9Th Biennial Scientific Meeting of The
    International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):15 DOI 10.1186/s13633-017-0054-x MEETING ABSTRACTS Open Access Abstracts from the 9th Biennial Scientific Meeting of the Asia Pacific Paediatric Endocrine Society (APPES) and the 50th Annual Meeting of the Japanese Society for Pediatric Endocrinology (JSPE) Tokyo, Japan. 17-20 November 2016 Published: 28 Dec 2017 PS1 Heritable forms of primary bone fragility in children typically lead to Fat fate and disease - from science to global policy a clinical diagnosis of either osteogenesis imperfecta (OI) or juvenile Peter Gluckman osteoporosis (JO). OI is usually caused by dominant mutations affect- Office of Chief Science Advsor to the Prime Minister ing one of the two genes that code for two collagen type I, but a re- International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):PS1 cessive form of OI is present in 5-10% of individuals with a clinical diagnosis of OI. Most of the involved genes code for proteins that Attempts to deal with the obesity epidemic based solely on adult be- play a role in the processing of collagen type I protein (BMP1, havioural change have been rather disappointing. Indeed the evidence CREB3L1, CRTAP, LEPRE1, P4HB, PPIB, FKBP10, PLOD2, SERPINF1, that biological, developmental and contextual factors are operating SERPINH1, SEC24D, SPARC, from the earliest stages in development and indeed across generations TMEM38B), or interfere with osteoblast function (SP7, WNT1). Specific is compelling. The marked individual differences in the sensitivity to the phenotypes are caused by mutations in SERPINF1 (recessive OI type obesogenic environment need to be understood at both the individual VI), P4HB (Cole-Carpenter syndrome) and SEC24D (‘Cole-Carpenter and population level.
    [Show full text]
  • SOX3 Is Required During the Formation of the Hypothalamo-Pituitary Axis
    ARTICLES SOX3 is required during the formation of the hypothalamo-pituitary axis Karine Rizzoti1,5, Silvia Brunelli1,4,5, Danielle Carmignac2, Paul Q Thomas3, Iain C Robinson2 & Robin Lovell-Badge1 The pituitary develops from the interaction of the infundibulum, a region of the ventral diencephalon, and Rathke’s pouch, a derivative of oral ectoderm. Postnatally, its secretory functions are controlled by hypothalamic neurons, which also derive from the ventral diencephalon. In humans, mutations affecting the X-linked transcription factor SOX3 are associated with hypopituitarism and mental retardation, but nothing is known of their etiology. We find that deletion of Sox3 in mice leads to defects of pituitary function and of specific central nervous system (CNS) midline structures. Cells in the ventral diencephalon, where Sox3 is usually http://www.nature.com/naturegenetics highly expressed, have altered properties in mutant embryos, leading to abnormal development of Rathke’s pouch, which does not express the gene. Pituitary and hypothalamic defects persist postnatally, and SOX3 may also function in a subset of hypothalamic neurons. This study shows how sensitive the pituitary is to subtle developmental defects and how one gene can act at several levels in the hypothalamic-pituitary axis. The development of complex organs composed of different cell types review see ref. 5), is implicated in a syndrome of X-linked hypopitu- frequently depends on reciprocal induction events occurring between itarism and mental retardation6. In a single family whose males were distinct tissue layers that lie adjacent to one another in the embryo. deficient in growth hormone, a mutation in SOX3 was identified.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Neuregulin 1–Erbb2 Signaling Is Required for the Establishment of Radial Glia and Their Transformation Into Astrocytes in Cerebral Cortex
    Neuregulin 1–erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex Ralf S. Schmid*, Barbara McGrath*, Bridget E. Berechid†, Becky Boyles*, Mark Marchionni‡, Nenad Sˇ estan†, and Eva S. Anton*§ *University of North Carolina Neuroscience Center and Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599; †Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510; and ‡CeNes Pharamceuticals, Inc., Norwood, MA 02062 Communicated by Pasko Rakic, Yale University School of Medicine, New Haven, CT, January 27, 2003 (received for review December 12, 2002) Radial glial cells and astrocytes function to support the construction mine whether NRG-1-mediated signaling is involved in radial and maintenance, respectively, of the cerebral cortex. However, the glial cell development and differentiation in the cerebral cortex. mechanisms that determine how radial glial cells are established, We show that NRG-1 signaling, involving erbB2, may act in maintained, and transformed into astrocytes in the cerebral cortex are concert with Notch signaling to exert a critical influence in the not well understood. Here, we show that neuregulin-1 (NRG-1) exerts establishment, maintenance, and appropriate transformation of a critical role in the establishment of radial glial cells. Radial glial cell radial glial cells in cerebral cortex. generation is significantly impaired in NRG mutants, and this defect can be rescued by exogenous NRG-1. Down-regulation of expression Materials and Methods and activity of erbB2, a member of the NRG-1 receptor complex, leads Clonal Analysis to Study NRG’s Role in the Initial Establishment of to the transformation of radial glial cells into astrocytes.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE Combinatorial Regulation By
    UNIVERSITY OF CALIFORNIA, IRVINE Combinatorial regulation by maternal transcription factors during activation of the endoderm gene regulatory network DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences by Kitt D. Paraiso Dissertation Committee: Professor Ken W.Y. Cho, Chair Associate Professor Olivier Cinquin Professor Thomas Schilling 2018 Chapter 4 © 2017 Elsevier Ltd. © 2018 Kitt D. Paraiso DEDICATION To the incredibly intelligent and talented people, who in one way or another, helped complete this thesis. ii TABLE OF CONTENTS Page LIST OF FIGURES vii LIST OF TABLES ix LIST OF ABBREVIATIONS X ACKNOWLEDGEMENTS xi CURRICULUM VITAE xii ABSTRACT OF THE DISSERTATION xiv CHAPTER 1: Maternal transcription factors during early endoderm formation in 1 Xenopus Transcription factors co-regulate in a cell type-specific manner 2 Otx1 is expressed in a variety of cell lineages 4 Maternal otx1 in the endodermal conteXt 5 Establishment of enhancers by maternal transcription factors 9 Uncovering the endodermal gene regulatory network 12 Zygotic genome activation and temporal control of gene eXpression 14 The role of maternal transcription factors in early development 18 References 19 CHAPTER 2: Assembly of maternal transcription factors initiates the emergence 26 of tissue-specific zygotic cis-regulatory regions Introduction 28 Identification of maternal vegetally-localized transcription factors 31 Vegt and OtX1 combinatorially regulate the endodermal 33 transcriptome iii
    [Show full text]
  • Regulation of Adult Neurogenesis in Mammalian Brain
    International Journal of Molecular Sciences Review Regulation of Adult Neurogenesis in Mammalian Brain 1,2, 3, 3,4 Maria Victoria Niklison-Chirou y, Massimiliano Agostini y, Ivano Amelio and Gerry Melino 3,* 1 Centre for Therapeutic Innovation (CTI-Bath), Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK; [email protected] 2 Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK 3 Department of Experimental Medicine, TOR, University of Rome “Tor Vergata”, 00133 Rome, Italy; [email protected] (M.A.); [email protected] (I.A.) 4 School of Life Sciences, University of Nottingham, Nottingham NG7 2HU, UK * Correspondence: [email protected] These authors contributed equally to this work. y Received: 18 May 2020; Accepted: 7 July 2020; Published: 9 July 2020 Abstract: Adult neurogenesis is a multistage process by which neurons are generated and integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches, the subgranular zone (SGZ) of the dentate gyrus and the subventricular zone (SVZ) adjacent to the lateral ventricles. Neurogenesis plays a fundamental role in postnatal brain, where it is required for neuronal plasticity. Moreover, perturbation of adult neurogenesis contributes to several human diseases, including cognitive impairment and neurodegenerative diseases. The interplay between extrinsic and intrinsic factors is fundamental in regulating neurogenesis. Over the past decades, several studies on intrinsic pathways, including transcription factors, have highlighted their fundamental role in regulating every stage of neurogenesis. However, it is likely that transcriptional regulation is part of a more sophisticated regulatory network, which includes epigenetic modifications, non-coding RNAs and metabolic pathways.
    [Show full text]
  • Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
    www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1.
    [Show full text]
  • Coordination of Hox Identity Between Germ Layers Along the Anterior-To-Posterior Axis of the Vertebrate Embryo
    Coordination of Hox identity between germ layers along the anterior-to-posterior axis of the vertebrate embryo Ferran Lloret Vilaspasa PhD Developmental Biology Department of Anatomy and Developmental Biology University College of London (UCL) London, United Kingdom 2009 1 Coordination of Hox identity between germ layers along the anterior-to- posterior axis of the vertebrate embryo ‘ I, Ferran Lloret Vilaspasa confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. ' Thesis for the obtainment of a PhD in Development Biology at the University College of London under the supervision of Prof. dr. Claudio D. Stern and Prof. dr. Antony J. Durston (Leiden University). To be defended by Ferran Lloret Vilaspasa A la meva família… Born in Barcelona, 05-08-1977 2 Abstract During early embryonic development, a relatively undifferentiated mass of cells is shaped into a complex and morphologically differentiated embryo. This is achieved by a series of coordinated cell movements that end up in the formation of the three germ layers of most metazoans and the establishment of the body plan. Hox genes are among the main determinants in this process and they have a prominent role in granting identity to different regions of the embryo. The particular arrangement of their expression domains in early development corresponds to and characterises several future structures of the older embryo and adult animal. Getting to know the molecular and cellular phenomena underlying the correct Hox pattern will help us understand how the complexity of a fully-formed organism can arise from its raw materials, a relatively undifferentiated fertilised egg cell (zygote) and a large but apparently limited repertoire of molecular agents.
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • Differential Timing and Coordination of Neurogenesis and Astrogenesis
    brain sciences Article Differential Timing and Coordination of Neurogenesis and Astrogenesis in Developing Mouse Hippocampal Subregions Allison M. Bond 1, Daniel A. Berg 1, Stephanie Lee 1, Alan S. Garcia-Epelboim 1, Vijay S. Adusumilli 1, Guo-li Ming 1,2,3,4 and Hongjun Song 1,2,3,5,* 1 Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; [email protected] (A.M.B.); [email protected] (D.A.B.); [email protected] (S.L.); [email protected] (A.S.G.-E.); [email protected] (V.S.A.); [email protected] (G.-l.M.) 2 Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 3 Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 4 Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA 5 The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA * Correspondence: [email protected] Received: 19 October 2020; Accepted: 24 November 2020; Published: 26 November 2020 Abstract: Neocortical development has been extensively studied and therefore is the basis of our understanding of mammalian brain development. One fundamental principle of neocortical development is that neurogenesis and gliogenesis are temporally segregated processes. However, it is unclear how neurogenesis and gliogenesis are coordinated in non-neocortical regions of the cerebral cortex, such as the hippocampus, also known as the archicortex. Here, we show that the timing of neurogenesis and astrogenesis in the Cornu Ammonis (CA) 1 and CA3 regions of mouse hippocampus mirrors that of the neocortex; neurogenesis occurs embryonically, followed by astrogenesis during early postnatal development.
    [Show full text]
  • NEUROGENESIS in the ADULT BRAIN: New Strategies for Central Nervous System Diseases
    7 Jan 2004 14:25 AR AR204-PA44-17.tex AR204-PA44-17.sgm LaTeX2e(2002/01/18) P1: GCE 10.1146/annurev.pharmtox.44.101802.121631 Annu. Rev. Pharmacol. Toxicol. 2004. 44:399–421 doi: 10.1146/annurev.pharmtox.44.101802.121631 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on August 28, 2003 NEUROGENESIS IN THE ADULT BRAIN: New Strategies for Central Nervous System Diseases ,1 ,2 D. Chichung Lie, Hongjun Song, Sophia A. Colamarino,1 Guo-li Ming,2 and Fred H. Gage1 1Laboratory of Genetics, The Salk Institute, La Jolla, California 92037; email: [email protected], [email protected], [email protected] 2Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; email: [email protected], [email protected] Key Words adult neural stem cells, regeneration, recruitment, cell replacement, therapy ■ Abstract New cells are continuously generated from immature proliferating cells throughout adulthood in many organs, thereby contributing to the integrity of the tissue under physiological conditions and to repair following injury. In contrast, repair mechanisms in the adult central nervous system (CNS) have long been thought to be very limited. However, recent findings have clearly demonstrated that in restricted areas of the mammalian brain, new functional neurons are constantly generated from neural stem cells throughout life. Moreover, stem cells with the potential to give rise to new neurons reside in many different regions of the adult CNS. These findings raise the possibility that endogenous neural stem cells can be mobilized to replace dying neurons in neurodegenerative diseases.
    [Show full text]
  • Transcription Factor Gene Expression Profiling and Analysis of SOX Gene Family Transcription Factors in Human Limbal Epithelial
    Transcription factor gene expression profiling and analysis of SOX gene family transcription factors in human limbal epithelial progenitor cells Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Dr. med. Johannes Menzel-Severing aus Bonn Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 7. Februar 2018 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter: Prof. Dr. Andreas Feigenspan Prof. Dr. Ursula Schlötzer-Schrehardt 1 INDEX 1. ABSTRACTS Page 1.1. Abstract in English 4 1.2. Zusammenfassung auf Deutsch 7 2. INTRODUCTION 2.1. Anatomy and histology of the cornea and the corneal surface 11 2.2. Homeostasis of corneal epithelium and the limbal stem cell paradigm 13 2.3. The limbal stem cell niche 15 2.4. Cell therapeutic strategies in ocular surface disease 17 2.5. Alternative cell sources for transplantation to the corneal surface 18 2.6. Transcription factors in cell differentiation and reprogramming 21 2.7. Transcription factors in limbal epithelial cells 22 2.8. Research question 25 3. MATERIALS AND METHODS 3.1. Human donor corneas 27 3.2. Laser Capture Microdissection (LCM) 28 3.3. RNA amplification and RT2 profiler PCR arrays 29 3.4. Real-time PCR analysis 33 3.5. Immunohistochemistry 34 3.6. Limbal epithelial cell culture 38 3.7. Transcription-factor knockdown/overexpression in vitro 39 3.8. Proliferation assay 40 3.9. Western blot 40 3.10. Statistical analysis 41 2 4. RESULTS 4.1. Quality control of LCM-isolated and amplified RNA 42 4.2.
    [Show full text]