Climate Change Impacts on Water Resources in the Mekong-Lancang River Basin: the Role of Hydropower Projects in Minimizing Associated Uncertainty and Risks

Total Page:16

File Type:pdf, Size:1020Kb

Climate Change Impacts on Water Resources in the Mekong-Lancang River Basin: the Role of Hydropower Projects in Minimizing Associated Uncertainty and Risks Climate change impacts on water resources in the Mekong-Lancang River Basin: The role of hydropower projects in minimizing associated uncertainty and risks Project Working Paper No.1 i Table of Contents EXECUTIVE SUMMARY .................................................................................................................................. 1 PART I: INTRODUCTION ................................................................................................................................ 4 1. Background ....................................................................................................................................... 4 2. Types and functions of hydropower projects ................................................................................... 7 3. Goal and outcomes ........................................................................................................................... 8 PART II: ASSESSMENT OF CLIMATE CHANGE AND WATER LEVEL FLUCTUATIONS ON WATER RESOURCES IN MEKONG-LANCANG RIVER ....................................................................................................................... 9 1. Observed climate change .................................................................................................................. 9 1.1. Long-term climate variability and change ................................................................................ 9 1.1. Temperature ............................................................................................................................. 9 1.2. Rainfall .................................................................................................................................... 11 1.3. Tropical storm ......................................................................................................................... 13 1.4. El Niño – Southern Oscillation ................................................................................................ 15 2. Projected climate change................................................................................................................ 15 2.1. Temperature ........................................................................................................................... 15 2.2. Rainfall .................................................................................................................................... 16 2.3. Tropical storms........................................................................................................................ 18 2.4. El Niño – Southern Oscillation ................................................................................................ 19 3. Climate change impact on water resources ................................................................................... 19 3.1. River flows ............................................................................................................................... 19 3.2. Extreme floods and droughts .................................................................................................. 21 3.3. Key water users ....................................................................................................................... 22 3.4. Sea level rise ............................................................................................................................ 24 4. Water level fluctuations .................................................................................................................. 26 PART III: ASSESSMENT ON THE ROLES OF HYDROPOWER DAMS IN MINIMIZING RISK AND UNCERTAINTY ASSOCIATED WITH CLIMATE CHANGE AND WATER LEVEL FLUCTUTATIONS ............................................. 29 1. Key risks of climate change and uncertainties ................................................................................ 29 2. Key risks of water level and flow fluctuations ................................................................................ 32 ii 3. Roles of hydropower dams in minimizing the risks and uncertainties ........................................... 33 3.1. Roles in minimizing extreme floods ............................................................................................ 33 3.1.1. Broader flood management context ....................................................................................... 33 3.1.2. Managing extreme floods with dams and reservoirs ............................................................. 34 3.1.3. Flood management challenges in the Mekong-Lancang River region .................................... 36 3.1.4. Case studies............................................................................................................................. 37 3.2. Roles in minimizing extreme droughts ....................................................................................... 45 3.2.1. Broader drought management context .................................................................................. 45 3.2.2. Managing extreme droughts with dams and reservoirs ......................................................... 45 3.2.3. Drought management challenges in the Mekong River region .............................................. 46 3.2.4. Case studies............................................................................................................................. 47 3.3. Roles in minimizing water level and flow fluctuations ............................................................... 49 3.3.1. Managing water level and flow fluctuations with dams and reservoirs ................................. 49 3.3.2. Water level fluctuation management challenges in the Mekong-Lancang River Basin ......... 50 3.3.3. Case studies............................................................................................................................. 50 PART V: RECOMMENDATIONS .................................................................................................................... 53 LIST OF KEY AGENCIES CONSULTED .......................................................................................................... 588 REFERENCES .............................................................................................................................................. 600 ANNEX A: Additional information on climate change studies in the Mekong-Lancang River Basin ............ 1 References .................................................................................................................................................... 6 ANNEX B: Analysis of trends in annual river flows of the Mekong River at Chiang Saen in 1960-2017 ....... 1 1. Introduction ...................................................................................................................................... 1 2. Data and methods ............................................................................................................................. 1 3. Trend analysis ................................................................................................................................... 2 4. Limitations......................................................................................................................................... 4 References ................................................................................................................................................ 4 ANNEX C: Analysis of water level fluctuations in the middle reach of the Mekong River in 2014-2017 Chiang Saen, Luang Prabang, Chiang Khan and Khong Chiam ...................................................................... 1 1. Introduction ...................................................................................................................................... 2 2. Methodology ..................................................................................................................................... 3 3. Results ............................................................................................................................................... 4 3.1. Daily, monthly and seasonal water levels ................................................................................. 4 3.2. Daily water level rise and fall rates ........................................................................................... 9 3.3. Large dry season water level fluctuations .............................................................................. 11 iii 4. Limitations....................................................................................................................................... 14 References .............................................................................................................................................. 14 NOTE: This document contains copyrighted material from published literature, mainly figures and tables, and should not be published without removing those materials. All material is cited and referenced in the bibliography. iv EXECUTIVE SUMMARY The objective of this working paper is to support transboundary cooperation towards minimizing uncertainties and risks from climate change in the Mekong Region. This is to be undertaken through management of hydropower projects on the Mekong-Lancang River and the main tributaries, with a key focus on extreme droughts and floods, and rapid water level fluctuations. This project contributes to the goals of the 2018 Phnom Penh
Recommended publications
  • Testimony Before the U.S.-China Economic and Security Review Commission
    “China’s Global Quest for Resources and Implications for the United States” January 26, 2012 Testimony before the U.S.-China Economic and Security Review Commission Elizabeth Economy C.V. Starr Senior Fellow and Director, Asia Studies Council on Foreign Relations Introduction China’s quest for resources to fuel its continued rapid economic growth has brought thousands of Chinese enterprises and millions of Chinese workers to every corner of the world. Already China accounts for approximately one-fourth of world demand for zinc, iron and steel, lead, copper, and aluminum. It is also the world’s second largest importer of oil after the United States. And as hundreds of millions of Chinese continue to move from rural to urban areas, the need for energy and other commodities will only continue to increase. No resource, however, is more essential to continued Chinese economic growth than water. It is critical for meeting basic human needs, as well as demands for food and energy. As China’s leaders survey their water landscape, the view is not reassuring. More than 40 mid to large sized cities in northern China, such as Beijing and Tianjin, boast crisis- level water shortages.1 As a result, northern and western cities have been drawing down their groundwater reserves and causing subsidence, which now affects a 60 thousand kilometer area of the North China Plain. 2 According to the director of the Water Research Centre at Peking University Zheng Chunmiao, the water table under the North China Plain is falling at a rate of about a meter per year.3
    [Show full text]
  • ABSTRACT LU, CHI. Natural and Human Impacts on Recent
    ABSTRACT LU, CHI. Natural and Human Impacts on Recent Development of Yangtze River and Mekong River Deltas. (Under the direction of Dr. Paul Liu). The Yangtze River Delta is the largest delta in China and is also a highly populated delta where metropolitan cities such as Shanghai are located. The evolution of Yangtze River Delta will directly influence the economics and environment in this area. The sediment flux from Yangtze into the delta decreased during the past three decades and the operation of world’s largest hydropower project, Three Gorges Dam, made this situation much more severe. In the delta area, another large project called Deep Water Navigation Channel was also completed in recent years. Mekong River Delta is another major delta in Asia and also has a lot of dams in the river basin. To document the relationship between human impacts on the large river basin and coastal evolution, in this study, we used Jiuduan Island of Yangtze River Delta and two islands of Mekong River Delta as examples and utilized Landsat data to show how these island’s shoreline changed with the trend of decreased sediment discharge. In Mekong River Delta, the shoreline change agreed well with the sediment flux, eroding from 1989 to 1996 and prograding from 1996 to 2002. In Yangtze River Delta, shoreline kept growing before Three Gorges Dams was operating, eroded from 2003 to 2009 and then prograded again from 2011 to 2013. The main reason for the shoreline progradation from 2011 to 2013 was the impact of the Deep Water Navigation Channel project which totally changed the sediment transport process around Jiuduan Island.
    [Show full text]
  • EGAT Overview
    BACK FRONT With concern for sustainable power security, EGAT has considered various factors and limitations in all aspects, including power capacity planning, development of innovation and technology, public participation, and social and environmental responsibility. EGAT is determined to innovate power solutions for a better life of Thais both today and in the future. “EGAT Power for Thai Happiness” INCOVER INCOVER Introduction Over a half century, the Electricity Generating Authority of Thailand (EGAT) has existed alongside the Thai Society as a state enterprise responsible for power system security. With advanced and eco-friendly power generation technology and transmission system, EGAT ensures the response to electricity demand, a crucial driver for development of economic growth and the country. To keep itself abreast of rapid changes, EGAT gets ready to be adjusted and has developed innovations on electrical power, including Hydro-Floating Solar Hybrid System, RE Forecast Center, Energy Storage System, coupled with the power generation from EGAT main power plants, to enhance security and stability of the power system. In addition to power generation, EGAT continually promotes the responsibility on society, communities, and environment, through energy-saving and environmental conservation projects, such as EGAT Reforestation Project, Green Learning Room Project, No.5 Energy Saving Labeling Project, along with EGAT Leaning Centers nationwide to share knowledge with the society. All of these are to bring about sustainable happiness of all Thais. Electricity Generating Authority of Thailand March 2020 2 EGAT Overview EGAT Profile The Electricity Generating Authority of Thailand (EGAT) was established by virtue of the EGAT Act B.E. 2511 (1968) on May 1, 1969 which merges assets and operations of the 3 previous state enterprises, namely Yanhee Electricity Authority (YEA), Lignite Authority (LA), and North-East Electricity Authority (NEEA).
    [Show full text]
  • Spatial Distribution of Nematode Communities Along the Salinity Gradient in the Two Estuaries of the Sea of Japan
    Russian Journal of Nematology, 2019, 27 (1), 1 – 12 Spatial distribution of nematode communities along the salinity gradient in the two estuaries of the Sea of Japan Alexandra A. Milovankina and Natalia P. Fadeeva Far Eastern Federal University, Sukhanov Street 8, 690950, Vladivostok, Russia e-mail: [email protected] Accepted for publication 15 May 2019 Summary. Spatial distribution and structure of nematode assemblages in two estuaries (long lowland Razdolnaya and mountain Sukhodol rivers, the Sea of Japan) were investigated. Sampling was conducted from freshwater to marine benthic habitats. The meiobenthic community was strongly dominated by nematodes. In both estuaries, the spatial distribution of nematode density, composition and feeding types related to the salinity gradient. From a total of 57 nematode species, 42 and 40 nematode species were identified in each estuary, respectively. The changes in the taxonomic structure of nematode fauna were found along the salinity gradient. Differences in nematodes community observed along each estuarine gradient were much lower than between the two estuaries. Only four species Anoplostoma cuticularia, Axonolaimus seticaudatus, Cyatholaimus sp. and Parodontophora timmica, were present in all sampling zones of both estuaries. Most of the recorded species were euryhaline, described previously in shallow coastal bays; only five freshwater species have been described previously from the freshwater habitat of Primorsky Krai. Key words: community structure, euryhaline nematodes, free-living nematodes, Razdolnaya River estuary, Sukhodol River estuary. Free-living nematodes are an important are available from several estuaries (Fadeeva, 2005; component of both marine and estuarine ecosystems Shornikov & Zenina, 2014; Milovankina et al., (Giere, 2009; Mokievsky, 2009). It has been shown 2018).
    [Show full text]
  • Transboundary River Basin Overview – Salween
    0 [Type here] Irrigation in Africa in figures - AQUASTAT Survey - 2016 Transboundary River Basin Overview – Salween Version 2011 Recommended citation: FAO. 2011. AQUASTAT Transboundary River Basins – Salween River Basin. Food and Agriculture Organization of the United Nations (FAO). Rome, Italy The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licencerequest or addressed to [email protected].
    [Show full text]
  • ENHANCING CAPABILITY of HYDRO POWER in THAILAND Mr
    1 ENHANCING CAPABILITY OF HYDRO POWER IN THAILAND Mr. Chatchai Mawong Director, Hydro and Renewable Energy Power Plant Development Division Electricity Generating Authority of Thailand EGAT Business Generation Transmission Power Purchase Affiliates To generate electricity by To solely operate the To purchase bulk electricity To invest in electricity more than 50 power transmission system. from IPPs and SPPs and generation and energy- plantslocated in different (Main voltage levels 500, from neighboring countries, related businesses in the parts of the country. 230, 132, and 115 kV.) i.e. Lao PDR and Malaysia. following 5 affiliates. Installed Generating Capacity Transmission Line Length Contract Capacity EGAT’s Investment 16,034.83 MW 35,981.449 Circuit-Kilometers 30,167.42 MW 34,290.40 Million Baht Ref: EGAT Annual Report 2019 Thailand System Generating Capacity EGAT’s Power Plant System Installed Other Generating Capacity in 31 July, 2020 (Lamtakong Jolabha Vadhana and Diesel) 6.43 % Combined cycle 1,030.40 MW 45,543.87 MW 51.53 % Thermal 8,262.00 MW 22.98 % 3,687.00 MW Foreign 12.56 % 5,720.60 MW EGAT SPPs 35.21 % 16,034.83 MW Renewable 20.95 % 19.06 % 9,539.94 MW 3,055.43 MW Renewable Capacity (MW) IPPs 31.28 % 1. Hydro Power Plant 3,021.63 14,248.50 MW 2. Wind, Solar, Geothermal 33.8 Total 3,055.43 Ref: EGAT Power System Control and Operation Division Status of Hydro Power Status Currently, EGAT has been developed hydro projects more than 50 years. It started with large hydro power plant and later more developed in small hydro power plants and downstream irrigation dams 3,021.63 MW Projects Capacity (MW) 1.
    [Show full text]
  • The Lancang/Mekong and the Nu/Salween Rivers: Promoting Regional Watershed Governance and Distributive Justice for Downstream Burmese Communities
    UN Symposium on Hydropower & Sustainable Development THE LANCANG/MEKONG AND THE NU/SALWEEN RIVERS: PROMOTING REGIONAL WATERSHED GOVERNANCE AND DISTRIBUTIVE JUSTICE FOR DOWNSTREAM BURMESE COMMUNITIES Ken MacLean Chana Maung Ann Putnam EarthRights International (ERI) EarthRights International (ERI) EarthRights International (ERI) P.O. Box 123 P.O. Box 123 P.O. Box 123 Chiang Mai University Chiang Mai University Chiang Mai University Chiang Mai, 50202 Chiang Mai, 50202 Chiang Mai, 50202 Thailand Thailand Thailand [email protected] [email protected] [email protected] Abstract: This paper examines some of the current obstacles to watershed governance and distributive justice for the diverse ethnic communities in eastern Burma that rely upon the Lancang/Mekong and Nu/Salween Rivers for their economic livelihoods and cultural survival. More than two dozen large- scale dams are planned for these two river systems. Nearly all of them will be built and/or financed by the People’s Republic of China (PRC), although other non-state actors are also centrally involved. The paper outlines some of the key forces driving the PRC to construct new dams in Yunnan despite mounting evidence that such projects will undermine rather than enhance human security and sustainable development in the region. Three projects are discussed: the Lancang/Mekong and Nu/Salween Cascades as well as the proposed Tasang Dam in northeastern Burma, which the state- owned China Export-Import Bank (CEIB) is considering financing. Special attention is focused on the environmental impacts of impoundment and the future political and economic costs of the PRC’s failure to take the interests of downstream countries and their ethnically diverse populations more fully into consideration.
    [Show full text]
  • Forecast Mekong
    Forecast Mekong Forecast Mekong is part of the U.S. Department of hydropower and irrigation dams on the hydrology and ecology State’s Lower Mekong Initiative, which was launched in of the Mekong River and Delta. The GVT is designed to clearly 2009 by Secretary Hillary Clinton and the Foreign Ministers illustrate the results of Mekong River Commission (MRC) of Cambodia, Laos, Thailand, and Vietnam to enhance hydrologic model predictions of river flow, water quality, and partnerships between the U.S. and the Lower Mekong River salinity conditions for different regional development scenarios countries in the areas of environment, health, education, including proposed dams. Along with the MRC, the USGS and infrastructure. The U.S. Geological Survey (USGS) is is sharing information with other organizations working on working in close cooperation with the U.S. Department of related issues, such as the Natural Heritage Institute and the State to use research and data from the Lower Mekong Basin International Crane Foundation. to provide hands-on results that will help decision makers in This project includes the following tasks: Lower Mekong River countries in the planning and design for restoration, conservation, and management efforts in the basin. • construct a computer animation for a tributary of the Forecast Mekong provides a forum for regional partners, Mekong River that is based on a digital elevation model and scientists, and engineers in the Lower Mekong Basin to share associated hydrologic, political, and ecological boundaries data and support local research efforts and elevate knowledge and layers from USGS datasets. about the vital importance of the Mekong River and Delta • produce a temporal simulation of effects of altered in maintaining food security and livelihoods in the region.
    [Show full text]
  • Southeast Asia.Pdf
    Standards SS7G9 The student will locate selected features in Southern and Eastern Asia. a. Locate on a world and regional political-physical map: Ganges River, Huang He (Yellow River), Indus River, Mekong River, Yangtze (Chang Jiang) River, Bay of Bengal, Indian Ocean, Sea of Japan, South China Sea, Yellow Sea, Gobi Desert, Taklimakan Desert, Himalayan Mountains, and Korean Peninsula. b. Locate on a world and regional political-physical map the countries of China, India, Indonesia, Japan, North Korea, South Korea, and Vietnam. Directions: Label the following countries on the political map of Asia. • China • North Korea • India • South Korea • Indonesia • Vietnam • Japan Directions: I. Draw and label the physical features listed below on the map of Asia. • Ganges River • Mekong River • Huang He (Yellow River) • Yangtze River • Indus River • Himalayan Mountains • Taklimakan Desert • Gobi Desert II. Label the following physical features on the map of Asia. • Bay of Bengal • Yellow Sea • Color the rivers DARK BLUE. • Color all other bodies of water LIGHT • Indian Ocean BLUE (or TEAL). • Sea of Japan • Color the deserts BROWN. • Korean Peninsula • Draw triangles for mountains and color • South China Sea them GREEN. • Color the peninsula RED. Directions: I. Draw and label the physical features listed below on the map of Asia. • Ganges River • Mekong River • Huang He (Yellow River) • Yangtze River • Indus River • Himalayan Mountains • Taklimakan Desert • Gobi Desert II. Label the following physical features on the map of Asia. • Bay of Bengal • Yellow Sea • Indian Ocean • Sea of Japan • Korean Peninsula • South China Sea • The Ganges River starts in the Himalayas and flows southeast through India and Bangladesh for more than 1,500 miles to the Indian Ocean.
    [Show full text]
  • Giant Fish of the Mekong the Mekong River © Daniel Cheong / Executive Summary WWF Greater Mekong Programme ©
    Riverof Giants Giant Fish of the Mekong The Mekong River © Daniel Cheong / www.flickr.com Executive Summary WWF Greater Mekong Programme © The worlds biggest freshwater fish and 4 out of the top ten As ambassadors of the Greater Mekong region, vulnerable to giant freshwater fish species can be found in the Mekong River fishing pressure and changes in the river environment, the which flows through Cambodia, China, Lao PDR, Myanmar, status of the giant fish is one indicator of the health and Thailand and Vietnam. More giants inhabit this mighty river ecological integrity of the Mekong. The well-being of these than any other on Earth. species is therefore closely linked to the sustainable management of the region and to limiting the environmental Little is known about these magnificent species of the Greater impacts of increased regional economic activity and Mekong region, some attaining five metres in length and over integration. half a ton in weight. What is known is that their future is uncertain. Any impact on the ecological balance of the river also threatens the sustainability of the aquatic resources that support Populations of the Mekong giant catfish have plummeted 90 millions of people. There are at least 50 migratory species per cent in just two decades, whilst the giant dog-eating catfish which are highly vulnerable to mainstream dam development. is seldom seen now in the wild. Living amongst the new These make up between 40-70 per cent of the catch of fish in emerging economic powers of Asia, a combination of the Mekong. infrastructure development, habitat destruction and overharvesting, is quickly eroding populations of these The 1995 agreement of the Mekong River Commission should extraordinary species.
    [Show full text]
  • SWAT Model for Sediment and Nutrient Simulation in the Mekong River Basin
    Mekong River Commission Technical Support Division Information and Knowledge Management Program Component 4: Modelling Draft Working Paper The SWAT Model for Sediment and Nutrient Simulation in the Mekong River Basin December 2015 CONTENTS AMENDMENT RECORD This report has been issued and amended as follows: Issue Revision Description Date Signed 1 0 First Version of 10/12/2015 Ornanong, Documentation Rattykone, Vannaphone Key Person who contributed work: Riparian and National Team Ms. Ornanong Vonnarart Regional Modelling Consultant Mr. Rattykone Sayasane Regional Modelling Consultant Ms.Sopheap Lim Modeller – IKMP Mr. Vannaphone Phetpaseuth National Modelling Expert, 2015 Mr. Simarron Chhoeun National Modelling Expert, 2015 Mr.Pory Sakhon Assistant Modeller for CS, 2015 Mr.Bounmy Chayavong Assistant Modeller for CS, 2015 Mr.Direk Kongpae Assistant Modeller for CS, 2015 Mr.Nguyen Thanh Dat Assistant Modeller for CS, 2015 International Expert: Dr.Srinivasan USDA Agricultural Research Service/Texas A&M AgriLife Research Dr.Anthony Green DSF Technical Advisor for CS CONTENTS Page 1. Introduction 1 2. The Data Available and Analysis 2 2.1 The Sediment and Nutrient monitoring station 2 2.2 Approach for the data analysis 3 3. SWAT Sediment and Nutrient Process 6 4. SWAT Sediment Model Set-up and Calibration Process 12 4.1 Model Configuration 12 4.2 Calibration Location 14 4.3 Calibration Criteria 20 5. Calibration Result 21 5.1 Sediment Calibration Result 21 5.2 Total Nitrogen Calibration Result 25 5.3 Total Phosphorus Calibration Result 27 6. The SWAT Model Output 37 7. Conclusion and area for improvement 40 8. Reference 41 Annex A: Sediment and Nutrient Parameter of model Calibration Annex B: Sediment and Nutrient calibration Result on the Mekong Key station Annex C: SWAT Check result from SWAT model A0-A9 1.
    [Show full text]
  • Book Review Essay
    Asia-Pacific Center for Security Studies Occasional Paper STATE WATER RESOURCE COMPETITION AND THE RESULTING CONSEQUENCES OF DIMINISHED WATER SUPPLY By Mitchell L. Gildea Mr. Mitchell Gildea is currently employed as an IT Specialist at U. S. Pacific Command. He retired from the U. S. Coast Guard as a Chief Warrant Officer after twenty-six years of service in 2006. Mr. Gildea recently completed the Master of Arts in Diplomacy and Military Studies program at Hawaii Pacific University and the following thesis was the capstone for that program. He is an alumnus of the Asia-Pacific Orientation Course (APOC 11-2). The views expressed in this study are those of the author and do not reflect the official policy or position of APCSS, the U.S. Pacific Command, the U.S. Department of Defense, or the U.S. government. October 2014 ABSTRACT Water is essential to human survival and, with the passing of time, natural sources of freshwater supply are rapidly diminishing throughout the world. Because this realization is becoming more and more prevalent, the human survival instinct is prompting competition and conflict over water resourcing worldwide especially in regions like that of the Indus River to include India and Pakistan; and the Mekong River system encompassing China, Cambodia, Laos, Thailand, Vietnam, and Burma. The research agenda generated from this topic will strive to answer the following question, “What factors have led to state competition and conflict over diminishing water resources and what are the resulting consequences?” A direct comparison of the Indus and Mekong regions shows the relational challenges and successes of the riparian countries involved and the role of China as an upstream water partner.
    [Show full text]