Halomonas Smyrnensis AAD6T Elif Diken1, Tugba Ozer1, Muzaffer Arikan2, Zeliha Emrence2, Ebru Toksoy Oner1, Duran Ustek3 and Kazim Yalcin Arga1*

Total Page:16

File Type:pdf, Size:1020Kb

Halomonas Smyrnensis AAD6T Elif Diken1, Tugba Ozer1, Muzaffer Arikan2, Zeliha Emrence2, Ebru Toksoy Oner1, Duran Ustek3 and Kazim Yalcin Arga1* Diken et al. SpringerPlus (2015) 4:393 DOI 10.1186/s40064-015-1184-3 RESEARCH Open Access Genomic analysis reveals the biotechnological and industrial potential of levan producing halophilic extremophile, Halomonas smyrnensis AAD6T Elif Diken1, Tugba Ozer1, Muzaffer Arikan2, Zeliha Emrence2, Ebru Toksoy Oner1, Duran Ustek3 and Kazim Yalcin Arga1* Abstract Halomonas smyrnensis AAD6T is a gram negative, aerobic, and moderately halophilic bacterium, and is known to pro- duce high levels of levan with many potential uses in foods, feeds, cosmetics, pharmaceutical and chemical industries due to its outstanding properties. Here, the whole-genome analysis was performed to gain more insight about the biological mechanisms, and the whole-genome organization of the bacterium. Industrially crucial genes, including the levansucrase, were detected and the genome-scale metabolic model of H. smyrnensis AAD6T was reconstructed. The bacterium was found to have many potential applications in biotechnology not only being a levan producer, but also because of its capacity to produce Pel exopolysaccharide, polyhydroxyalkanoates, and osmoprotectants. The genomic information presented here will not only provide additional information to enhance our understanding of the genetic and metabolic network of halophilic bacteria, but also accelerate the research on systematical design of engineering strategies for biotechnology applications. Keywords: Halomonas smyrnensis, Halophiles, Genome, Next-generation sequencing, Levan Background of levan, which is a long linear homopolymeric EPS of Halomonas smyrnensis AAD6T is a rod-shaped, Gram- ß(2-6)-linked fructose residues (Poli et al. 2009). Levan negative, aerobic, exopolysaccharide (EPS) producing and has been credited as one of the most promising polysac- moderately halophilic bacterium, growing at salt con- charides for foods, feeds, cosmetics, pharmaceutical and centration in the range of 3–25% (w/v) NaCl (optimum, chemical industries (Donot et al. 2012) and, potential 10%), at temperatures between 5 and 40°C (optimum, uses of levan produced by AAD6T, as a bioactive poly- 37°C), and pH values between 5.5 and 8.5 (optimum, mer, were reported (Costa et al. 2013; Kucukasik et al. 7.0) (Poli et al. 2012). The strain utilizes glucose, sucrose, 2011; Sam et al. 2011; Sezer et al. 2011; Sima et al. 2011, maltose, arabinose, raffinose, fructose, galactose, and 2012). mannose as a sole carbon and energy source, and alanine When compared to the other groups of extremophilic and serine as a sole carbon, nitrogen and energy source microorganisms such as the thermophiles, the halophiles (Poli et al. 2009, 2012). The EPS production by H. smyrn- have been relatively little exploited in biotechnological ensis AAD6T is growth-associated, and when sucrose processes with a few exceptions (Pastor et al. 2010; Philip was used as carbon source the bacteria excrete high levels et al. 2007; Rodriguez-Valera and Lillo 1992; Sam et al. 2011). On the other hand, due to their osmoadaptation abilities and metabolic capabilities for the production *Correspondence: [email protected] 1 Department of Bioengineering, Marmara University, Goztepe, of compatible solutes, bioplastics, nutritional products, 34722 Istanbul, Turkey biopolymers, and halophilic enzymes, they represent Full list of author information is available at the end of the article considerable potential in various industries including © 2015 Diken et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Diken et al. SpringerPlus (2015) 4:393 Page 2 of 11 chemical, environmental, biofuel, medical, pharmaceuti- optimum semi-chemical medium (Poli et al. 2009) was cal and health care. used in growth cultures. To obtain the highest growth In systems biology research, the microbial genome rate without EPS production, glucose was added as sole sequence is the starting point for detailed analysis of carbon source to chemical medium at concentration of identifying gene-protein associations and metabolic 10 g/L. reconstruction. In this context, next generation sequenc- The genome of H. smyrnensis AAD6T was sequenced ing (NGS) technologies play an important role since by the whole genome shotgun approach using a combina- they provide high-throughput genomic data, includ- tion of 454 GS FLX+ (454 Life Sciences, Branford, CT) ing whole genome sequences (WGS), at unprecedented and Ion Torrent (Ion Torrent Systems, Inc., Guilford, CT) speed with relatively low cost (Gov and Arga 2014; Zhang sequencers and the generated shotgun sequence data was et al. 2011). WGS data provide many advantages in com- assembled as described in (Sogutcu et al. 2012). parative genomics and metabolic engineering. In addi- tion to the nucleotide sequence and protein sequences Genome annotation of the encoded proteins, the gene content, the order of Gene prediction and genome annotation were carried out genes and the predicted enzymes on the genome may using the RAST auto-annotation server (Aziz et al. 2008). be informative for phylogenetic analyses and metabolic Protein-encoding and transfer RNA genes were predicted reconstructions. Moreover, WGS information facilitates by RAST server, while the ribosomal RNA genes were the acquirement of functional genomics data. identified with RNAmmer (v1.2) (Lagesen et al. 2007). To design economical production schemes, fermenta- The gene predictions of essential biosystems were manu- tion conditions and effective stimulatory factors for levan ally verified using BLAST searches against protein data- production by H. smyrnensis AAD6T was analyzed sys- bases, the Universal Protein Resource (UniProt) (http:// tematically (Ateş et al. 2013; Ates et al. 2011; Sarilmiser www.uniprot.org/) and National Center for Biotechnol- Kazak et al. 2014). However, towards the design of effi- ogy Information (NCBI) (http://www.ncbi.nlm.nih.gov/). cient microbial cell factories for levan overproduction, The gene functions and classifications were based on the main bottleneck was the lack of information on the the subsystem annotation of the RAST server. Informa- genome of the microorganism. Considering this fact, tion on enzyme-encoding genes was taken from Kyoto we employed two different NGS technologies, namely, Encyclopedia of Genes and Genomes (KEGG) (Kanehisa Roche 454 GS FLX+ System and Ion Torrent Sequencer, et al. 2012) and ExPaSy databases (Artimo et al. 2012). and a hybrid NGS approach to develop a high-quality Transport protein coding genes were annotated using WGS data for H. smyrnensis AAD6T (Sogutcu et al. the similarity searches against the Transfer Classification 2012). Within the context of this study, the genome of Database (TCDB) (Saier et al. 2009). AAD6T was further analyzed to reveal the essential bio- logical mechanisms and the whole genomic organiza- Phylogenetic and phylogenomic analyses tion of levan producing H. smyrnensis AAD6T, and the The phylogenetic analyses were performed using PhyML genome-scale metabolic model of H. smyrnensis AAD6T (v3.0) and phylogenetic trees were reconstructed using was reconstructed. This understanding is crucial for maximum likelihood method (Guindon et al. 2010). The rational design and optimization of engineering strate- phylogenetic classification of bacterial strains was based gies for levan overproduction. Furthermore, the infor- on complete 16S rRNA sequences. The phylogenetic clas- mation provided here will facilitate future studies on the sification of a set of bacterial levansucrase enzymes was genetic and metabolic diversity of halophilic bacteria and based on nucleotide sequences taken from NCBI data- contribute to the employment of H. smyrnensis AAD6 in base. The phylogenomic comparison within the Halo- biotechnological processes. monadaceae family was based on the encoded proteins with putative functions assigned by the RAST server. Methods Encoded proteins were sorted out for all genomes and Bacterial strain comparatively analyzed based on the presence/absence of Halophilic bacterial strain H. smyrnensis AAD6T (JCM proteins. 15723, DSM 21644) used in this study was isolated from Çamaltı Saltern Area in Turkey (Poli et al. 2012). Reconstruction of the genome‑scale metabolic model The entire reconstruction procedure consists of an auto- Sequencing and assembly mated procedure followed by manual curation at the gap The genomic DNA was isolated from exponential-phase filing step. The preliminary model was built automatically cultures using the quick protocol of Wizard® Genomic via the Model SEED (Henry et al. 2010). The refinement DNA Purification Kit (Promega, Madison, WI). The of the model (for stand-alone reactions or metabolites, Diken et al. SpringerPlus (2015) 4:393 Page 3 of 11 and missing connections in essential metabolic pro- respectively). Most of the osmotic stress genes of H. cesses) was achieved via a non-automated but iterative smyrnensis AAD6T (47 coding sequences) encode pro- decision-making process, as described in (Ates et al. teins associated with choline and glycine betaine uptake, 2011). and glycine betaine biosynthesis pathways, which are involved in osmoprotection. Results and discussion At a large-scale comparison, the size of the genome, Sequencing
Recommended publications
  • Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
    ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions.
    [Show full text]
  • Halomonas Almeriensis Sp. Nov., a Moderately Halophilic, 1 Exopolysaccharide-Producing Bacterium from Cabo De Gata
    1 Halomonas almeriensis sp. nov., a moderately halophilic, 2 exopolysaccharide-producing bacterium from Cabo de Gata (Almería, 3 south-east Spain). 4 5 Fernando Martínez-Checa, Victoria Béjar, M. José Martínez-Cánovas, 6 Inmaculada Llamas and Emilia Quesada. 7 8 Microbial Exopolysaccharide Research Group, Department of Microbiology, 9 Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja 10 s/n, 18071 Granada, Spain. 11 12 Running title: Halomonas almeriensis sp. nov. 13 14 Keywords: Halomonas; exopolysaccharides; halophilic bacteria; hypersaline 15 habitats. 16 17 Subject category: taxonomic note; new taxa; γ-Proteobacteria 18 19 Author for correspondence: 20 E. Quesada: 21 Tel: +34 958 243871 22 Fax: +34 958 246235 23 E-mail: [email protected] 24 25 26 The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene 27 sequence of strain M8T is AY858696. 28 29 30 31 32 33 34 1 Summary 2 3 Halomonas almeriensis sp. nov. is a Gram-negative non-motile rod isolated 4 from a saltern in the Cabo de Gata-Níjar wild-life reserve in Almería, south-east 5 Spain. It is moderately halophilic, capable of growing at concentrations of 5% to 6 25% w/v of sea-salt mixture, the optimum being 7.5% w/v. It is chemo- 7 organotrophic and strictly aerobic, produces catalase but not oxidase, does not 8 produce acid from any sugar and does not synthesize hydrolytic enzymes. The 9 most notable difference between this microorganism and other Halomonas 10 species is that it is very fastidious in its use of carbon source. It forms mucoid 11 colonies due to the production of an exopolysaccharide (EPS).
    [Show full text]
  • Halomonas Maura Sp. Nov., a Novel Moderately Halophilic, Exopolysaccharide-Producing Bacterium
    International Journal of Systematic and Evolutionary Microbiology (2001), 51, 1625–1632 Printed in Great Britain Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium Microbial Samir Bouchotroch, Emilia Quesada, Ana del Moral, Inmaculada Llamas Exopolysaccharides Research Group, Department of and Victoria Be! jar Microbiology, Faculty of Pharmacy, Campus Universitario de Cartuja, Author for correspondence: Emilia Quesada. Tel: j34 958 243871. Fax: j34 958 246235. University of Granada, e-mail: equesada!platon.ugr.es 18071 Granada, Spain Four moderately halophilic, exopolysaccharide-producing bacterial strains isolated from soil samples collected from a saltern at Asilah (Morocco) are reported. These four strains were initially considered to belong to the genus Halomonas. Their DNA GMC contents varied between 622 and 641 mol%. DNA–DNA hybridization revealed a considerable degree of DNA–DNA similarity amongst all four strains (755–808%). Nevertheless, similarity with the reference strains of phylogenetically close relatives was lower than 40%. 16S rRNA gene sequences were compared with those of other species of Halomonas and other Gram-negative bacteria and they were sufficiently distinct phylogenetically from other recognized Halomonas species to warrant their designation as a novel species. The name Halomonas maura sp. nov. is therefore proposed, with strain S-31T (l CECT 5298T l DSM 13445T) as the type strain. The fatty acid composition of strain S-31T revealed the presence of 18:1ω7c,16:1ω7c/2-OH i15:0 and 16:0 as the major components. Growth rate analysis showed that strain S-31T had specific cationic requirements for NaM and Mg2M. Keywords: exopolysaccharides, moderately halophilic bacteria, Halomonas INTRODUCTION In the course of our studies into hypersaline environ- ments, a group of Halomonas eurihalina strains were The family Halomonadaceae includes the genera isolated that synthesized large quantities of exopoly- Halomonas, Chromohalobacter and Zymobacter.
    [Show full text]
  • Étude Du Potentiel Biotechnologique De Halomonas Sp. SF2003 : Application À La Production De Polyhydroxyalcanoates (PHA)
    THESE DE DOCTORAT DE L’UNIVERSITE BRETAGNE SUD COMUE UNIVERSITE BRETAGNE LOIRE ECOLE DOCTORALE N° 602 Sciences pour l'Ingénieur Spécialité : Génie des procédés et Bioprocédés Par Tatiana THOMAS Étude du potentiel biotechnologique de Halomonas sp. SF2003 : Application à la production de PolyHydroxyAlcanoates (PHA). Thèse présentée et soutenue à Lorient, le 17 Décembre 2019 Unité de recherche : Institut de Recherche Dupuy de Lôme Thèse N° : 542 Rapporteurs avant soutenance : Sandra DOMENEK Maître de Conférences HDR, AgroParisTech Etienne PAUL Professeur des Universités, Institut National des Sciences Appliquées de Toulouse Composition du Jury : Président : Mohamed JEBBAR Professeur des Universités, Université de Bretagne Occidentale Examinateur : Jean-François GHIGLIONE Directeur de Recherche, CNRS Dir. de thèse : Stéphane BRUZAUD Professeur des Universités, Université de Bretagne Sud Co-dir. de thèse : Alexis BAZIRE Maître de Conférences HDR, Université de Bretagne Sud Co-dir. de thèse : Anne ELAIN Maître de Conférences, Université de Bretagne Sud Étude du potentiel biotechnologique de Halomonas sp. SF2003 : application à la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019 « Failure is only the opportunity to begin again more intelligently. » Henry Ford « I dettagli fanno la perfezione e la perfezione non è un dettaglio. » Leonardo Da Vinci Étude du potentiel biotechnologique de Halomonas sp. SF2003 : application à la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019 Étude du potentiel biotechnologique de Halomonas sp. SF2003 : application à la production de polyhydroxyalcanoates (PHA) Tatiana Thomas 2019 Remerciements Pour commencer, mes remerciements s’adressent à l’Université de Bretagne Sud et Pontivy Communauté qui ont permi le financement et la réalisation de cette thèse entre l’Institut de Recherche Dupuy de Lôme et le Laboratoire de Biotechnologies et Chimie Marines.
    [Show full text]
  • Complete Genome Sequence of Halomonas Sp. R5-57 Adele Williamson1* , Concetta De Santi1, Bjørn Altermark1, Christian Karlsen1,2 and Erik Hjerde1
    Williamson et al. Standards in Genomic Sciences (2016) 11:62 DOI 10.1186/s40793-016-0192-4 EXTENDED GENOME REPORT Open Access Complete genome sequence of Halomonas sp. R5-57 Adele Williamson1* , Concetta De Santi1, Bjørn Altermark1, Christian Karlsen1,2 and Erik Hjerde1 Abstract The marine Arctic isolate Halomonas sp. R5-57 was sequenced as part of a bioprospecting project which aims to discover novel enzymes and organisms from low-temperature environments, with potential uses in biotechnological applications. Phenotypically, Halomonas sp. R5-57 exhibits high salt tolerance over a wide range of temperatures and has extra-cellular hydrolytic activities with several substrates, indicating it secretes enzymes which may function in high salinity conditions. Genome sequencing identified the genes involved in the biosynthesis of the osmoprotectant ectoine, which has applications in food processing and pharmacy, as well as those involved in production of polyhydroxyalkanoates, which can serve as precursors to bioplastics. The percentage identity of these biosynthetic genes from Halomonas sp. R5-57 and current production strains varies between 99 % for some to 69 % for others, thus it is plausible that R5-57 may have a different production capacity to currently used strains, or that in the case of PHAs, the properties of the final product may vary. Here we present the finished genome sequence (LN813019) of Halomonas sp. R5-57 which will facilitate exploitation of this bacterium; either as a whole-cell production host, or by recombinant expression of its individual enzymes. Keywords: Halomonas, Growth temperature, Salt tolerance, Secreted enzymes, Osmolyte, Polyhydroxyalkanoates Abbreviations: COG, Cluster of orthologous groups; PHAs, Polyhydroxyalkanoates; RDP, Ribosomal database project; SMRT, Single molecule real-time Introduction H.
    [Show full text]
  • Arsenic Metabolism in High Altitude Modern Stromatolites Revealed by Metagenomic Analysis Received: 25 November 2016 Daniel Kurth 1, Ariel Amadio2, Omar F
    www.nature.com/scientificreports OPEN Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis Received: 25 November 2016 Daniel Kurth 1, Ariel Amadio2, Omar F. Ordoñez1, Virginia H. Albarracín1,3, Wolfgang Accepted: 16 March 2017 Gärtner4 & María E. Farías1 Published: xx xx xxxx Modern stromatolites thrive only in selected locations in the world. Socompa Lake, located in the Andean plateau at 3570 masl, is one of the numerous extreme Andean microbial ecosystems described over recent years. Extreme environmental conditions include hypersalinity, high UV incidence, and high arsenic content, among others. After Socompa’s stromatolite microbial communities were analysed by metagenomic DNA sequencing, taxonomic classification showed dominance of Proteobacteria, Bacteroidetes and Firmicutes, and a remarkably high number of unclassified sequences. A functional analysis indicated that carbon fixation might occur not only by the Calvin-Benson cycle, but also through alternative pathways such as the reverse TCA cycle, and the reductive acetyl-CoA pathway. Deltaproteobacteria were involved both in sulfate reduction and nitrogen fixation. Significant differences were found when comparing the Socompa stromatolite metagenome to the Shark Bay (Australia) smooth mat metagenome: namely, those involving stress related processes, particularly, arsenic resistance. An in-depth analysis revealed a surprisingly diverse metabolism comprising all known types of As resistance and energy generating pathways. While the ars operon was the main mechanism, an important abundance of arsM genes was observed in selected phyla. The data resulting from this work will prove a cornerstone for further studies on this rare microbial community. Arsenic is not only a natural component in the Earth crust and in various minerals, but it is also a major con- taminant of aquatic ecosystems worldwide1.
    [Show full text]
  • Draft Genome Sequence of Halomonas Lutea Strain YIM 91125T (DSM 23508T) Isolated from the Alkaline Lake Ebinur in Northwest China
    Gao XY, Zhi XY, Li HW, Zhou Y, Lapidus A, Han J, Haynes M, Lobos E, Huntemann M, Pati A, Ivanova NN, Mavromatis K, Tindall BJ, Markowitz T, Klenk HP, Kyrpides NC, Li WJ. Draft genome sequence of Halomonas lutea strain YIM 91125T (DSM 23508T) isolated from the alkaline Lake Ebinur in Northwest China. Standards in Genomic Sciences 2015, 10(1). Copyright: © 2015 Gao et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. DOI link to article: http://dx.doi.org/10.1186/1944-3277-10-1 Date deposited: 17/03/2015 This work is licensed under a Creative Commons Attribution 4.0 International License Newcastle University ePrints - eprint.ncl.ac.uk Gao et al. Standards in Genomic Sciences 2015, 10:1 http://www.standardsingenomics.com/content/10/1/1 SHORT GENOME REPORT Open Access Draft genome sequence of Halomonas lutea strain YIM 91125T (DSM 23508T) isolated from the alkaline Lake Ebinur in Northwest China Xiao-Yang Gao1,11, Xiao-Yang Zhi2, Hong-Wei Li2,9, Yu Zhou10, Alla Lapidus3,4, James Han5, Matthew Haynes5, Elizabeth Lobos5, Marcel Huntemann5, Amrita Pati5, Natalia N Ivanova5, Konstantinos Mavromatis5, Brian J Tindall7, Victor Markowitz6, Tanja Woyke5, Hans-Peter Klenk7,12, Nikos C Kyrpides5,8 and Wen-Jun Li1,2* Abstract Species of the genus Halomonas are halophilic and their flexible adaption to changes of salinity and temperature brings considerable potential biotechnology applications, such as degradation of organic pollutants and enzyme production.
    [Show full text]
  • Evolutionary Patterns of Carbohydrate Transport and Metabolism in Halomonas Boliviensis As Derived from Its Genome Sequence
    Guzmán et al. Aquatic Biosystems 2012, 8:9 http://www.aquaticbiosystems.org/content/8/1/9 AQUATIC BIOSYSTEMS RESEARCH Open Access Evolutionary patterns of carbohydrate transport and metabolism in Halomonas boliviensis as derived from its genome sequence: influences on polyester production Daniel Guzmán1,2, Andrea Balderrama-Subieta1, Carla Cardona-Ortuño1, Mónica Guevara-Martínez1, Nataly Callisaya-Quispe1 and Jorge Quillaguamán1* Abstract Background: Halomonas boliviensis is a halophilic bacterium that is included in the g-Proteobacteria sub-group, and is able to assimilate different types of carbohydrates. H. boliviensis is also able to produce poly(3- hydroxybutyrate) (PHB) in high yields using glucose as the carbon precursor. Accumulation of PHB by microorganisms is induced by excess of intracellular NADH. The genome sequences and organization in microorganisms should be the result of evolution and adaptation influenced by mutation, gene duplication, horizontal gen transfer (HGT) and recombination. Furthermore, the nearly neutral theory of evolution sustains that genetic modification of DNA could be neutral or selected, albeit most mutations should be at the border between neutrality and selection, i.e. slightly deleterious base substitutions in DNA are followed by a slightly advantageous substitutions. Results: This article reports the genome sequence of H. boliviensis. The chromosome size of H. boliviensis was 4 119 979 bp, and contained 3 863 genes. A total of 160 genes of H. boliviensis were related to carbohydrate transport and metabolism, and were organized as: 70 genes for metabolism of carbohydrates; 47 genes for ABC transport systems and 43 genes for TRAP-type C4-dicarboxylate transport systems. Protein sequences of H. boliviensis related to carbohydrate transport and metabolism were selected from clusters of orthologous proteins (COGs).
    [Show full text]
  • Acid Degrading Bacteria from Sulfidic, Low Salinity Salt Springs Michael G
    ISOLATION AND CHARACTERIZATION OF HALOTOLERANT 2,4- DICHLOROPHENOXYACETIC ACID DEGRADING BACTERIA FROM SULFIDIC, LOW SALINITY SALT SPRINGS MICHAEL G. WILLIS, DAVID S. TREVES* DEPARTMENT OF BIOLOGY, INDIANA UNIVERSITY SOUTHEAST, NEW ALBANY, IN MANUSCRIPT RECEIVED 30 APRIL, 2014; ACCEPTED 30 MAY, 2014 Copyright 2014, Fine Focus all rights reserved 40 • FINE FOCUS, VOL. 1 ABSTRACT The bacterial communities at two sulfdic, low salinity springs with no history of herbicide CORRESPONDING contamination were screened for their ability to AUTHOR grow on 2,4-dichlorophenoxyacetic acid (2,4-D). Nineteen isolates, closely matching the genera * David S. Treves Bacillus, Halobacillus, Halomonas, Georgenia and Department of Biology, Kocuria, showed diverse growth strategies on NaCl- Indiana University Southeast supplemented and NaCl-free 2,4-D medium. The 4201 Grant Line Road, New majority of isolates were halotolerant, growing best Albany, IN, 47150 on nutrient rich broth with 0% or 5% NaCl; none [email protected] of the isolates thrived in medium with 20% NaCl. Phone: 812-941-2129. The tfdA gene, which codes for an a – ketoglutarate dioxygenase and catalyzes the frst step in 2,4- D degradation, was detected in nine of the salt KEYWORDS spring isolates. The tfdAa gene, which shows ~60% identity to tfdA, was present in all nineteen • 2,4-D isolates. Many of the bacteria described here were • tfdA not previously associated with 2,4-D degradation • tfdAa suggesting these salt springs may contain microbial • salt springs communities of interest for bioremediation. • halotolerant bacteria INTRODUCTION Bacteria have tremendous potential to (B-Proteobacteria; formerly Ralstonia degrade organic compounds and study of eutropha) has received considerable the metabolic pathways involved is a key attention and serves as a model system for component to more effcient environmental microbial degradation (2, 3, 26).
    [Show full text]
  • Quorum Sensing in Some Representative Species of Halomonadaceae
    Life 2013, 3, 260-275; doi:10.3390/life3010260 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Article Quorum Sensing in Some Representative Species of Halomonadaceae Ali Tahrioui 1, Melanie Schwab 1, Emilia Quesada 1,2 and Inmaculada Llamas 1,2,* 1 Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain; E-Mails: [email protected] (A.T.); [email protected] (M.S.); [email protected] (E.Q.) 2 Biotechnology Research Institute, Polígono Universitario de Fuentenueva, University of Granada, 18071 Granada, Spain * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-958-243871; Fax: +34-958-246235. Received: 7 December 2012; in revised form: 18 January 2013 / Accepted: 22 February 2013 / Published: 5 March 2013 Abstract: Cell-to-cell communication, or quorum-sensing (QS), systems are employed by bacteria for promoting collective behaviour within a population. An analysis to detect QS signal molecules in 43 species of the Halomonadaceae family revealed that they produced N-acyl homoserine lactones (AHLs), which suggests that the QS system is widespread throughout this group of bacteria. Thin-layer chromatography (TLC) analysis of crude AHL extracts, using Agrobacterium tumefaciens NTL4 (pZLR4) as biosensor strain, resulted in different profiles, which were not related to the various habitats of the species in question. To confirm AHL production in the Halomonadaceae species, PCR and DNA sequencing approaches were used to study the distribution of the luxI-type synthase gene. Phylogenetic analysis using sequence data revealed that 29 of the species studied contained a LuxI homolog.
    [Show full text]
  • Qinghai Lake
    MIAMI UNIVERSITY The Graduate School CERTIFICATE FOR APPROVING THE DISSERTATION We hereby approve the Dissertation of Hongchen Jiang Candidate for the Degree Doctor of Philosophy ________________________________________________________ Dr. Hailiang Dong, Director ________________________________________________________ Dr. Chuanlun Zhang, Reader ________________________________________________________ Dr. Yildirim Dilek, Reader ________________________________________________________ Dr. Jonathan Levy, Reader ________________________________________________________ Dr. Q. Quinn Li, Graduate School Representative ABSTRACT GEOMICROBIOLOGICAL STUDIES OF SALINE LAKES ON THE TIBETAN PLATEAU, NW CHINA: LINKING GEOLOGICAL AND MICROBIAL PROCESSES By Hongchen Jiang Lakes constitute an important part of the global ecosystem as habitats in these environments play an important role in biogeochemical cycles of life-essential elements. The cycles of carbon, nitrogen and sulfur in these ecosystems are intimately linked to global phenomena such as climate change. Microorganisms are at the base of the food chain in these environments and drive the cycling of carbon and nitrogen in water columns and the sediments. Despite many studies on microbial ecology of lake ecosystems, significant gaps exist in our knowledge of how microbial and geological processes interact with each other. In this dissertation, I have studied the ecology and biogeochemistry of lakes on the Tibetan Plateau, NW China. The Tibetan lakes are pristine and stable with multiple environmental gradients (among which are salinity, pH, and ammonia concentration). These characteristics allow an assessment of mutual interactions of microorganisms and geochemical conditions in these lakes. Two lakes were chosen for this project: Lake Chaka and Qinghai Lake. These two lakes have contrasting salinity and pH: slightly saline (12 g/L) and alkaline (9.3) for Qinghai Lake and hypersaline (325 g/L) but neutral pH (7.4) for Chaka Lake.
    [Show full text]
  • Isolation and Characterization of Halophilic Bacteria Producing
    1 Isolation and characterization of halophilic bacteria producing 2 exopolymers with emulsifying and antioxidant activities 3 Nadia Boujida1*, Montserrat Palau2, Saoulajan Charfi1, Naima El Moussaoui1, Angeles 4 Manresa2, David Miñana-Galbis2, Nadia Skali Senhaji1, Jamal Abrini1 5 Author’s affiliation: 6 1 Biotechnology and Applied Microbiology Research Group, Department of Biology, Faculty of 7 Sciences, University Abdelmalek Essaâdi, BP2121, 93002 Tetouan, Morocco 8 2 Department of Biology, Health and Environment, Laboratory of Microbiology, Faculty of 9 Pharmacy, University of Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain 10 *Corresponding author: [email protected] 11 1 12 ABSTRACT 13 Halophilic bacteria are considered a great source of new strains producing novel exopolymers 14 with functional properties. In this work we isolated ten halophilic strains producing exopolymers 15 from different hypersaline environments in Morocco. Phenotypic characterization showed that 16 the strains were moderately halophilic, mesophilic and neutrophilic with the ability to produce 17 some hydrolytic enzymes. Strains identification based on 16S rRNA gene sequences comparison 18 showed that nine strains, designed as N1, N2, N5, N7, N8, N9, N10, N11 and N12 belong to 19 Halomonas genus and one strain, designed as N4, to Marinobacter genus. The majority of the 20 strains showed high levels of exopolymer production. The study of emulsifying and antioxidant 21 activities revealed that all the polymers have an interesting emulsifying and antioxidant activities 22 with the polymer from Marinobacter sp. N4 forming the highest and most stable emulsions and 23 exhibiting the best antioxidant activity in comparison with other exopolymers produced by 24 Halomonas strains.
    [Show full text]