The Astrophysical Journal, 872:196 (14pp), 2019 February 20 https://doi.org/10.3847/1538-4357/aaffda © 2019. The American Astronomical Society. All rights reserved. Implications of a Hot Atmosphere/Corino from ALMA Observations toward NGC 1333 IRAS 4A1 Dipen Sahu1,2,3, Sheng-Yuan Liu2 , Yu-Nung Su2, Zhi-Yun Li4, Chin-Fei Lee2 , Naomi Hirano2, and Shigehisa Takakuwa2,5 1 Indian Institute of Astrophysics, Sarjapur Main Road, 2nd Block, Koramangala, Bangalore-560034, India;
[email protected] 2 Academia Sinica Institute of Astronomy and Astrophysics, 11F of AS/NTU Astronomy-Mathematics Building, No.1, Section 4, Roosevelt Rd, Taipei 10617, Taiwan, R.O.C. 3 Physical Research Laboratory, Ahmedabad-380009, India 4 Astronomy Department, University of Virginia, Charlottesville, VA 22904, USA 5 Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan Received 2018 October 24; revised 2019 January 14; accepted 2019 January 16; published 2019 February 25 Abstract We report high angular resolution observations of NGC 1333 IRAS 4A, a protostellar binary including A1 and A2, at 0.84mm with the Atacama Large Millimeter/submillimeter Array. From the continuum observations, we suggest that the dust emission from the A1 core is optically thick, and A2 is predominantly optically thin. The A2 core, exhibiting a forest of spectral lines including complex molecules, is a well-known hot corino, as suggested by previous works. More importantly, we report, for the first time, solid evidence of complex organic molecules 13 (COMs), including CH3OH, CH3OH, CH2DOH, and CH3CHO, associated with the A1 core seen in absorption.