On the Mechanism of the Magnetic Dynamo of the Planets

Total Page:16

File Type:pdf, Size:1020Kb

On the Mechanism of the Magnetic Dynamo of the Planets On the Mechanism of the Magnetic Dynamo of the Planets Sh. Sh. Dolginov Academy of Sciences, Moscow, U.S.S.R. Results of testing the effectiveness of the theory of precessional dynamos in the genera- tion of the magnetic fields of the planets are presented. It is shown that the magnetic state of Earth and of the planets Mars, Jupiter, and Venus can be satisfactorily described by the formula 17 — IT v I J 3 "i fli — fl3 -^j- -fff — sin«3 where H, v, T, 0, and a are the dipole fields, volumes of liquid cores, periods of rotation, rates of precession, and angles between precession vector and angular rotation, respec- tively, for the planets and Earth. The v, corresponds to known models of the internal structure. It is shown that the magnetic state of Mercury satisfies this formula if the dynamic flattening of the planet t = 5.7 x 10~3 - 8.3 x 10s. The idea that the magnetic field of the With a model of a purely iron-nickel core, Earth is related to the operation of some the radioactive elements U and Th are forced sort of dynamo mechanism in its highly con- out because of their chemical and physical ductive liquid core has now been largely con- incompatibility with iron at the pressures firmed. present in the core. Thermal sources in the Modern kinematic models of the terrestrial core have been related to processes of con- magnetic dynamo have been found capable tinuing differentiation of matter in the of describing the basic peculiarities of the Earth: the settling of heated iron, melted terrestrial magnetic field (refs. 1 and 2). At from the mantle (ref. 3) and the latent heat the same time, no physical theory of the ter- of melting, liberated upon crystallization of restrial field as yet presented considers the the outer core at the boundary with the inner actual parameters and processes in the core solid core (ref. 4). of the Earth. This is particularly true con- In order for thermal convection to occur in cerning the uncertainty of the mechanism the liquid core of the Earth, the temperature generating the terrestrial dynamo. Three gradient must exceed the adiabatic gradient. mechanisms are known: In a number of publications during 1971- 1973 (ref. 8), concepts of the isothermal 1. Convection in the core under the in- state of the core were discussed. A stable fluence of thermal sources (refs. 3 and thermal state is incompatible with thermal 4). convection in the core, to which the genera- 2. Convection under the influences of tion of the magnetic field is related. Ideas of forces of gravity (ref. 5). the thermal conditions of the Earth's core 3. Convection in the core caused by pre- have changed, on the basis of assumptions of cession of the axis of rotation of the the presence of radioactive potassium K40 in Earth (refs. 6 and 7). the core (ref. 9). 493 494 COSMOCHEMISTRY OF THE MOON AND PLANETS The effectiveness of thermal sources in any liquid in the core, leading to the motion nec- mechanism of generation of the magnetic essary for the operation of the dynamo. In field has been assumed to be low, because of the final analysis, the energy of the magnetic the low efficiency of thermal machines. Ac- dynamo is taken from the kinetic energy in cording to one hypothesis (ref. 5), the pro- the Earth's rotation. cesses of differentiation of material indicated The details of the precessional mechanism by Urey and Verhoogen are actually in- generating the magnetic field have not been volved in the generation of the magnetic field, worked out. There are contradictory opinions but only because of the gravitational energy concerning its effectiveness. Braginskiy (ref. released during these processes. Convection 12) turned his attention to the fact that the in the core is caused by direct upwelling of speed of the liquid under the influence of the impurities of light silicon, accompanying the Poincare force fluctuates with the frequency process of crystallization and sinking of of the main rotation <,> and therefore cannot heavy iron. directly influence slow processes in the dy- The hypothesis of the gravitational nature namo. On the other hand Dolginov (ref. 13) of the "motor" driving the Earth's dynamo notes that the precession of a liquid in a encounters great difficulties in light of cur- nonspherical envelope results in the appear- rent hypotheses of the nonhomogeneous for- ance of flows of a spiral nature that are sim- mation of the planets (refs. 10 and 11). As ilar to tidal flows. Flows of a spiral nature concerns thermal sources, their role is at facilitate the generation of magnetic fields least as great in the creation of the necessaiy (ref. 14). conductivity and viscosity in the core. At the present time, the magnetic fields of Malkus suggested that the precession of the Earth, Venus, Mars, Jupiter, and Mer- the Earth was the motive force of the mag- cury have been studied. For the first four netic dynamo. The precession of the planets planets, certain models of the internal struc- is caused by the action of the gravitational ture are known (refs. 15-20), as well as the fields of the Sun and other celestial bodies on parameters of rotation and dynamic flatten- the equatorial bulge of the rotating planets. ing (refs. 21 and 22), and magnetic fields The presence of precession, at an angular (refs. 23-27). velocity n, results in an additional angular This paper presents a model and results of acceleration n = [0 X «] and an additional a test of the effectiveness of the mechanism inertial force Fr, — — />[n X «] X f. Malkus of the precessional dynamo in the generation called this the Poincare force, after the man of the magnetic fields of the Earth, Mars, and who first solved analytically the problem of Jupiter. Furthermore, conditions are studied the motion of a fluid in a precessing spheroi- under which the magnetic states of Venus dal container. The experiments performed by and Mercury can be explained, on the basis Malkus showed that with certain relation- of the hypothesis of precession as the motive ships of w and n in the precessing liquid, tur- force of the planetary dynamo. bulent flow arises, which is not predicted by The approach is based on the following as- classical theory. sumptions : The rate of precession of the planet is di- rectly proportional to its dynamic flattening, 1. The processes of generation of the field and independent of its radius and mass. Since in the planets are similar in terms of model- the core and mantle of the Earth have some- ing and are determined by a number of di- what differing dynamic flattening, the grav- mensionless parameters. ity fields of the Sun and the Moon create 2. The magnetic fields are proportional to different torques on the core and mantle, the volumes of the liquid cores of the planets causing stress both in the core and in the (ref. 28). mantle, which tend to equalize the rates of 3. The rates of convection of matter are the two precessions. These stresses act on the proportional to the Poincare force Frj MAGNETIC DYNAMO OF THE PLANETS 495 —' [<o X n] X r, where o> is the angular veloc- the metallic state. According to Zharkov et ity of rotation, and n is the angular velocity al. (ref. 19), this occurs at depths of of precession. r/Rj = 0.8. The magnetically active-area ap- 4. Under these conditions, a simple depen- parently begins at a point ranging from dence between the dipole fields of two planets r/Rj = 0.7 to r/Rj = 0.15. The volume of the 1 and 2 is assumed to exist: magnetically active area of Jupiter, with V, T2 a sin these dimensions, exceeds the volume of the Yl-2 sin , (1) liquid core of the Earth by some 1600 times. Now, formula (1) and the data of table 1 where y is the ratio of the dipole fields -~- lead to the following values of calculated and on the surface at the magnetic equator; « is measured field strength ratios between the the angle between vectors <o and n; V is the Earth and Mars (ye-m using the various volume of the liquid core, and T the rotation models), Jupiter and Earth (jj-e) ; ye-m = period. Volume Vi is the liquid core of the 315,180,140,110, and 130, respectively, while Earth, and is assumed known (ref. 19). measured ye-m = 470. Calculated yt-e = 22, while measured •/,-„ = 13. We note the moderately good degree to Earth, Mars, Jupiter which the measured and calculated values of dipole field ratios of the three rapidly rotat- We present below the values of the param- ing planets agree with this tremendous differ- eters T, n, a, and H0 of three rapidly rotating ence in volumes and fields. planets. Formula (1) has one unknown, V->, the volume of the liquid core of the second Venus planet. The dimensions of the core of Mars The planet Venus apparently does not have have been very approximately determined. a magnetic field of its own which exceeds 10 The measured values of radius, mass, and gammas (refs. 24 and 27). It is natural to moment of inertia are satisfied in various expect that formula (1) will take note of models with significantly differing core di- this fact with some accuracy. According to mensions Rc. In the model of Kozlovskaya the data from the trajectory measurements (ref. 15), Rc = 960 km; in the model of Ring- on Mariner 5 and radar studies of the wood (ref.
Recommended publications
  • Geodesy Methods Over Time
    Geodesy methods over time GISC3325 - Lecture 4 Astronomic Latitude/Longitude • Given knowledge of the positions of an astronomic body e.g. Sun or Polaris and our time we can determine our location in terms of astronomic latitude and longitude. US Meridian Triangulation This map shows the first project undertaken by the founding Superintendent of the Survey of the Coast Ferdinand Hassler. Triangulation • Method of indirect measurement. • Angles measured at all nodes. • Scaled provided by one or more precisely measured base lines. • First attributed to Gemma Frisius in the 16th century in the Netherlands. Early surveying instruments Left is a Quadrant for angle measurements, below is how baseline lengths were measured. A non-spherical Earth • Willebrod Snell van Royen (Snellius) did the first triangulation project for the purpose of determining the radius of the earth from measurement of a meridian arc. • Snellius was also credited with the law of refraction and incidence in optics. • He also devised the solution of the resection problem. At point P observations are made to known points A, B and C. We solve for P. Jean Picard’s Meridian Arc • Measured meridian arc through Paris between Malvoisine and Amiens using triangulation network. • First to use a telescope with cross hairs as part of the quadrant. • Value obtained used by Newton to verify his law of gravitation. Ellipsoid Earth Model • On an expedition J.D. Cassini discovered that a one-second pendulum regulated at Paris needed to be shortened to regain a one-second oscillation. • Pendulum measurements are effected by gravity! Newton • Newton used measurements of Picard and Halley and the laws of gravitation to postulate a rotational ellipsoid as the equilibrium figure for a homogeneous, fluid, rotating Earth.
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • Models for Earth and Maps
    Earth Models and Maps James R. Clynch, Naval Postgraduate School, 2002 I. Earth Models Maps are just a model of the world, or a small part of it. This is true if the model is a globe of the entire world, a paper chart of a harbor or a digital database of streets in San Francisco. A model of the earth is needed to convert measurements made on the curved earth to maps or databases. Each model has advantages and disadvantages. Each is usually in error at some level of accuracy. Some of these error are due to the nature of the model, not the measurements used to make the model. Three are three common models of the earth, the spherical (or globe) model, the ellipsoidal model, and the real earth model. The spherical model is the form encountered in elementary discussions. It is quite good for some approximations. The world is approximately a sphere. The sphere is the shape that minimizes the potential energy of the gravitational attraction of all the little mass elements for each other. The direction of gravity is toward the center of the earth. This is how we define down. It is the direction that a string takes when a weight is at one end - that is a plumb bob. A spirit level will define the horizontal which is perpendicular to up-down. The ellipsoidal model is a better representation of the earth because the earth rotates. This generates other forces on the mass elements and distorts the shape. The minimum energy form is now an ellipse rotated about the polar axis.
    [Show full text]
  • World Geodetic System 1984
    World Geodetic System 1984 Responsible Organization: National Geospatial-Intelligence Agency Abbreviated Frame Name: WGS 84 Associated TRS: WGS 84 Coverage of Frame: Global Type of Frame: 3-Dimensional Last Version: WGS 84 (G1674) Reference Epoch: 2005.0 Brief Description: WGS 84 is an Earth-centered, Earth-fixed terrestrial reference system and geodetic datum. WGS 84 is based on a consistent set of constants and model parameters that describe the Earth's size, shape, and gravity and geomagnetic fields. WGS 84 is the standard U.S. Department of Defense definition of a global reference system for geospatial information and is the reference system for the Global Positioning System (GPS). It is compatible with the International Terrestrial Reference System (ITRS). Definition of Frame • Origin: Earth’s center of mass being defined for the whole Earth including oceans and atmosphere • Axes: o Z-Axis = The direction of the IERS Reference Pole (IRP). This direction corresponds to the direction of the BIH Conventional Terrestrial Pole (CTP) (epoch 1984.0) with an uncertainty of 0.005″ o X-Axis = Intersection of the IERS Reference Meridian (IRM) and the plane passing through the origin and normal to the Z-axis. The IRM is coincident with the BIH Zero Meridian (epoch 1984.0) with an uncertainty of 0.005″ o Y-Axis = Completes a right-handed, Earth-Centered Earth-Fixed (ECEF) orthogonal coordinate system • Scale: Its scale is that of the local Earth frame, in the meaning of a relativistic theory of gravitation. Aligns with ITRS • Orientation: Given by the Bureau International de l’Heure (BIH) orientation of 1984.0 • Time Evolution: Its time evolution in orientation will create no residual global rotation with regards to the crust Coordinate System: Cartesian Coordinates (X, Y, Z).
    [Show full text]
  • Geodetic Reference System 1980
    Geodetic Reference System 1980 by H. Moritz 1-!Definition meridian be parallel to the zero meridian of the BIH adopted longitudes". The Geodetic Reference System 1980 has been adopted at the XVII General Assembly of the IUGG in For the background of this resolution see the report of Canberra, December 1979, by means of the following!: IAG Special Study Group 5.39 (Moritz, 1979, sec.2). Also relevant is the following IAG resolution : "RESOLUTION N° 7 "RESOLUTION N° 1 The International Union of Geodesy and Geophysics, The International Association of Geodesy, recognizing that the Geodetic Reference System 1967 recognizing that the IUGG, at its XVII General adopted at the XIV General Assembly of IUGG, Lucerne, Assembly, has introduced a new Geodetic Reference System 1967, no longer represents the size, shape, and gravity field 1980, of the Earth to an accuracy adequate for many geodetic, geophysical, astronomical and hydrographic applications recommends that this system be used as an official and reference for geodetic work, and considering that more appropriate values are now encourages computations of the gravity field both on available, the Earth's surface and in outer space based on this system". recommends 2-!The Equipotential Ellipsoid a)!that the Geodetic Reference System 1967 be replaced According to the first resolution, the Geodetic Reference by a new Geodetic Reference System 1980, also System 1980 is based on the theory of the equipotential based on the theory of the geocentric equipotential ellipsoid. This theory has already been the basis of the ellipsoid, defined by the following conventional constants : Geodetic Reference System 1967; we shall summarize (partly quoting literally) some principal facts from the .!equatorial radius of the Earth : relevant publication (IAG, 1971, Publ.
    [Show full text]
  • The Solar System Questions KEY.Pdf
    THE SOLAR SYSTEM 1. The atmosphere of Venus is composed primarily of A hydrogen and helium B carbon dioxide C methane D ammonia Base your answers to questions 2 through 6 on the diagram below, which shows a portion of the solar system. 2. Which graph best represents the relationship between a planet's average distance from the Sun and the time the planet takes to revolve around the Sun? A B C D 3. Which of the following planets has the lowest average density? A Mercury B Venus C Earth D Mars 4. The actual orbits of the planets are A elliptical, with Earth at one of the foci B elliptical, with the Sun at one of the foci C circular, with Earth at the center D circular, with the Sun at the center 5. Which scale diagram best compares the size of Earth with the size of Venus? A B C D 6. Mercury and Venus are the only planets that show phases when viewed from Earth because both Mercury and Venus A revolve around the Sun inside Earth's orbit B rotate more slowly than Earth does C are eclipsed by Earth's shadow D pass behind the Sun in their orbit 7. Which event takes the most time? A one revolution of Earth around the Sun B one revolution of Venus around the Sun C one rotation of the Moon on its axis D one rotation of Venus on its axis 8. When the distance between the foci of an ellipse is increased, the eccentricity of the ellipse will A decrease B increase C remain the same 9.
    [Show full text]
  • A General Formula for Calculating Meridian Arc Length and Its Application to Coordinate Conversion in the Gauss-Krüger Projection 1
    A General Formula for Calculating Meridian Arc Length and its Application to Coordinate Conversion in the Gauss-Krüger Projection 1 A General Formula for Calculating Meridian Arc Length and its Application to Coordinate Conversion in the Gauss-Krüger Projection Kazushige KAWASE Abstract The meridian arc length from the equator to arbitrary latitude is of utmost importance in map projection, particularly in the Gauss-Krüger projection. In Japan, the previously used formula for the meridian arc length was a power series with respect to the first eccentricity squared of the earth ellipsoid, despite the fact that a more concise expansion using the third flattening of the earth ellipsoid has been derived. One of the reasons that this more concise formula has rarely been recognized in Japan is that its derivation is difficult to understand. This paper shows an explicit derivation of a general formula in the form of a power series with respect to the third flattening of the earth ellipsoid. Since the derived formula is suitable for implementation as a computer program, it has been applied to the calculation of coordinate conversion in the Gauss-Krüger projection for trial. 1. Introduction cannot be expressed explicitly using a combination of As is well known in geodesy, the meridian arc elementary functions. As a rule, we evaluate this elliptic length S on the earth ellipsoid from the equator to integral as an approximate expression by first expanding the geographic latitude is given by the integrand in a binomial series with respect to e2 , regarding e as a small quantity, then readjusting with a a1 e2 trigonometric function, and finally carrying out termwise S d , (1) 2 2 3 2 0 1 e sin integration.
    [Show full text]
  • Radius of the Earth - Radii Used in Geodesy James R
    Radius of the Earth - Radii Used in Geodesy James R. Clynch Naval Postgraduate School, 2002 I. Three Radii of Earth and Their Use There are three radii that come into use in geodesy. These are a function of latitude in the ellipsoidal model of the earth. The physical radius, the distance from the center of the earth to the ellipsoid is the least used. The other two are the radii of curvature. If you wish to convert a small difference of latitude or longitude into the linear distance on the surface of the earth, then the spherical earth equation would be, dN = R df, dE = R cosf dl where R is the radius of the sphere and the angle differences are in radians. The values dN and dE are distances in the surface of the sphere. For an ellipsoidal earth there is a different radius for each of the directions. The radius used for the longitude is called the Radius of Curvature in the prime vertical. It is denoted by RN, N, or n , or a few other symbols. (Note that in these notes the symbol N is used for the geoid undulation.) It has a nice physical interpretation. At the latitude chosen go down the line perpendicular to the ellipsoid surface until you intersect the polar axis. This distance is RN. The radius used for the latitude change to North distance is called the Radius of Curvature in the meridian. It is denoted by RM, or M, or several other symbols. It has no good physical interpretation on a figure.
    [Show full text]
  • Article Is Part of the Spe- Senschaft, Kunst Und Technik, 7, 397–424, 1913
    IUGG: from different spheres to a common globe Hist. Geo Space Sci., 10, 151–161, 2019 https://doi.org/10.5194/hgss-10-151-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. The International Association of Geodesy: from an ideal sphere to an irregular body subjected to global change Hermann Drewes1 and József Ádám2 1Technische Universität München, Munich 80333, Germany 2Budapest University of Technology and Economics, Budapest, P.O. Box 91, 1521, Hungary Correspondence: Hermann Drewes ([email protected]) Received: 11 November 2018 – Revised: 21 December 2018 – Accepted: 4 January 2019 – Published: 16 April 2019 Abstract. The history of geodesy can be traced back to Thales of Miletus ( ∼ 600 BC), who developed the concept of geometry, i.e. the measurement of the Earth. Eratosthenes (276–195 BC) recognized the Earth as a sphere and determined its radius. In the 18th century, Isaac Newton postulated an ellipsoidal figure due to the Earth’s rotation, and the French Academy of Sciences organized two expeditions to Lapland and the Viceroyalty of Peru to determine the different curvatures of the Earth at the pole and the Equator. The Prussian General Johann Jacob Baeyer (1794–1885) initiated the international arc measurement to observe the irregular figure of the Earth given by an equipotential surface of the gravity field. This led to the foundation of the International Geodetic Association, which was transferred in 1919 to the Section of Geodesy of the International Union of Geodesy and Geophysics. This paper presents the activities from 1919 to 2019, characterized by a continuous broadening from geometric to gravimetric observations, from exclusive solid Earth parameters to atmospheric and hydrospheric effects, and from static to dynamic models.
    [Show full text]
  • Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009
    Celest Mech Dyn Astr DOI 10.1007/s10569-010-9320-4 SPECIAL REPORT Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009 B. A. Archinal · M. F. A’Hearn · E. Bowell · A. Conrad · G. J. Consolmagno · R. Courtin · T. Fukushima · D. Hestroffer · J. L. Hilton · G. A. Krasinsky · G. Neumann · J. Oberst · P. K. Seidelmann · P. Stooke · D. J. Tholen · P. C. Thomas · I. P. Williams Received: 19 October 2010 / Accepted: 23 October 2010 © Springer Science+Business Media B.V. (outside the USA) 2010 Abstract Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter B. A. Archinal (B) U.S. Geological Survey, Flagstaff, AZ, USA e-mail: [email protected] M. F. A’Hearn University of Maryland, College Park, MD, USA E. Bowell Lowell Observatory, Flagstaff, AZ, USA A. Conrad W.M. Keck Observatory, Kamuela, HI, USA G. J. Consolmagno Vatican Observatory, Vatican City, Vatican City State R. Courtin LESIA, Observatoire de Paris, CNRS, Paris, France T. Fukushima National Astronomical Observatory of Japan, Tokyo, Japan D. Hestroffer IMCCE, Observatoire de Paris, CNRS, Paris, France J. L. Hilton U.S. Naval Observatory, Washington, DC, USA G. A.
    [Show full text]
  • GEODYN Systems Description Volume 1
    GEODYN Systems Description Volume 1 updated by: Jennifer W. Beall Prepared By: John J. McCarthy, Shelley Rowton, Denise Moore, Despina E. Pavlis, Scott B. Luthcke, Lucia S. Tsaoussi Prepared For: Space Geodesy Branch, Code 926 NASA GSFC, Greenbelt, MD February 23, 2015 from the original December 13, 1993 document 1 Contents 1 THE GEODYN II PROGRAM 6 2 THE ORBIT AND GEODETIC PARAMETER ESTIMATION PROB- LEM 6 2.1 THEORBITPREDICTIONPROBLEM . 7 2.2 THE PARAMETER ESTIMATION PROBLEM . 8 3 THE MOTION OF THE EARTH AND RELATED COORDINATE SYS- TEMS 11 3.1 THE TRUE OF DATE COORDINATE SYSTEM . 12 3.2 THE INERTIAL COORDINATE SYSTEM . 12 3.3 THE EARTH-FIXED COORDINATE SYSTEM . 13 3.4 TRANSFORMATION BETWEEN EARTH-FIXED AND TRUE OF DATE COORDINATES................................. 13 3.5 COMPUTATION OF THE GREENWICH HOUR ANGLE . 14 3.6 PRECESSION AND NUTATION . 15 3.6.1 Precession . 17 3.6.2 Nutation . 19 3.7 THE TRANSFORMATION TO THE EARTH CENTERED FIXED ADOPTED POLE COORDINATE SYSTEM . 20 4 LUNI-SOLAR-PLANETARY EPHEMERIS 22 4.1 EPHEMERIS USED IN GEODYN VERSIONS 7612.0 AND LATER . 22 4.1.1 Chebyshev Interpolation . 23 4.1.2 Coordinate Transformation . 24 5 THE OBSERVER 27 5.1 GEODETICCOORDINATES ......................... 27 5.1.1 Station Constraints . 33 5.1.2 Baseline Sigmas . 38 5.1.3 Station Velocities . 39 5.2 TOPOCENTRIC COORDINATE SYSTEMS . 39 5.3 TIME REFERENCE SYSTEMS . 40 5.3.1 Partial Derivatives . 41 5.4 POLAR MOTION . 43 5.4.1 E↵ect on the Position of a Station . 43 5.4.2 Partial Derivatives .
    [Show full text]
  • Lecture Notes of Ticmi
    IVANE JAVAKHISHVILI TBILISI STATE UNIVERSITY ILIA VEKUA INSTITUTE OF APPLIED MATHEMATICS GEORGIAN ACADEMY OF NATURAL SCIENCES TBILISI INTERNATIONAL CENTRE OF MATHEMATICS AND INFORMATICS L E C T U R E N O T E S of T I C M I Volume 15, 2014 Wolfgang H. Müller & Paul Lofink THE MOVEMENT OF THE EARTH: MODELLING THE FLATTENING PARAMETER Tbilisi LECTURE NOTES OF TICMI Lecture Notes of TICMI publishes peer-reviewed texts of courses given at Advanced Courses and Workshops organized by TICMI (Tbilisi International Center of Mathematics and Informatics). The advanced courses cover the entire field of mathematics (especially of its applications to mechanics and natural sciences) and from informatics which are of interest to postgraduate and PhD students and young scientists. Editor: G. Jaiani I. Vekua Institute of Applied Mathematics Tbilisi State University 2, University St., Tbilisi 0186, Georgia Tel.: (+995 32) 218 90 98 e.mail: [email protected] International Scientific Committee of TICMI: Alice Fialowski, Budapest, Institute of Mathematics, Pazmany Peter setany 1/C Pedro Freitas, Lisbon, University of Lisbon George Jaiani (Chairman), Tbilisi, I.Vekua Institute of Applied Mathematics, Iv. Javakhishvili Tbilisi State University Vaxtang Kvaratskhelia, Tbilisi, N. Muskhelishvili Institute of Computational Mathematics Olga Gil-Medrano, Valencia, Universidad de Valencia Alexander Meskhi, Tbilisi, A. Razmadze Mathematical Institute, Tbilisi State University David Natroshvili, Tbilisi, Georgian Technical University Managing Editor: N. Chinchaladze English Editor: Ts. Gabeskiria Technical editorial board: M. Tevdoradze M. Sharikadze Cover Designer: N. Ebralidze Abstracted/Indexed in: Mathematical Reviews, Zentralblatt Math Websites: http://www.viam.science.tsu.ge/others/ticmi/lnt/lecturen.htm http://www.emis.de/journals/TICMI/lnt/lecturen.htm © TBILISI UNIVERSITY PRESS, 2014 Contents 1 Some historical background and the experimental evidence 5 2 A fluid model for the flattening 9 2.1 Theory .
    [Show full text]