Innovation for a Strong Defense from the Leader in Object Database Technology

Total Page:16

File Type:pdf, Size:1020Kb

Innovation for a Strong Defense from the Leader in Object Database Technology THE DATABASE FOR DEVELOPERS InnovatIon for a Strong DefenSe from the LeaDer In object DatabaSe technoLogy Intelligence and defense agencies are DefenSe InDuStry DatabaSe challenged with supporting, processing, DeveLoperS turn to verSant and enabling accurate decision-making Versant, the leader in object databases, based on rapidly growing and complex gives developers the agility to rapidly data systems. Military forces demand develop and deploy powerful intelligent systems for command and applications capable of managing control, battlefield simulation, weapons complex defense and intelligence guidance, and wireless communications. information in mission-critical Intelligence agencies rely on rapid environments where traditional database assimilation of relationships between technologies often fail. disjointed data points and objects so that Not surprisingly, database developers analysts can make informed decisions. are faced with creating defense and intelligence systems of increasing complexity. These systems require verSant provideS SuperIor deeper hierarchical data models, Data management SoLutIonS parallel architecture, higher scalability to more than 25 cLasseS of and real-time performance, and military programS the inclusion of stringent and often complicated business rules. • Intelligence Gathering and Analysis Systems • Joint War Fighting Initiatives • Land Command Systems • Weapon Guidance • Battlefield Simulations • Missile Guidance Systems • Satellite Reconnaissance • Battlefield Command and Control Systems • Geospatial Imaging • Cyber Command • Fraud Detection • Defense Training Systems • Weapons Information Systems • Knowledge Management • War Games Applications • Secure Directory Services • Weather Forecasting • Aircraft Simulation Training • Wiretapping Applications • Integrated Warfare Systems 1 verSant tranSactIonaL Data management SoLutIon The AgiliTy, Speed, And ScAlAbiliTy To MAnAge coMplex perSistenT objecT ModelS SImpLy SuperIor Developer Agility: Versant eliminates Versant Object Database speeds and mapping, significantly increasing simplifies the work of defense industry developer agility when implementing developers by combining caching, complex, object-oriented data models. mapping, and database technology into Performance-Oriented Scalability: a single superior online transaction Versant object-oriented, balanced processing (OLTP) solution. Just as client-server architecture effectively data warehousing has proved superior Versant supports multi-user, mission- handles required persistence services, to relational database structures for critical applications in distributed providing scalability, while managing arge-scale online analytical processing computing environments. Database availability and performance (OLAP) requirements, the Versant 3-in-1 administrators are able to store, manage, requirements created by increasing OLTP solution fully supports real-time and distribute information in real time concurrency and growing data volume. transactional applications and provides that often cannot be administered As a result, Versant significantly reduces unmatched performance when effectively through traditional relational development time and improves compared with relational database database technologies: system performance. management systems coupled with no ORM mapping, for optimal Cloud Ready: Versant breaks down the transparency – Reduces application cache acceleration technologies. barrier to data locality management in code by up to 40% cloud-based auto-scaling architectures, C++, JAVA, .NET higher concurrent throughput with providing seamless map reduce CLIENT fewer CPUs – Reduces cloud server CACHE for cloud deployments via parallel- costs by up to 50% distributed queries with auto MONITORING OBJECT INSPECTOR ADMINISTRATION XML TOOLKIT Leverages parallel processing— aggregation. Developers can now use querying, object creation, updating, cloud deployment topologies sup- QUERY SERVER CACHE QUERY SERVER CACHE and deleting—of varying model QUERY SERVER CACCACA HE QUERY SERVER CACCACHE ported via parallel query, Create, Read, QUERDISCY SERVER CACHE QUERDISCY SERVER CACHE REPLICATION DISC DISC complexity and concurrency – REPLICATION Update, Delete (CRUD), and distributed DISC DISC V/OD REPLICATION V/OD Increases mission-critical system V/OD V/OD object references, to seamlessly V/OD V/OD performance by 10X to 100X transition from non-scalable relational No data duplication or redundant database structures to distributed ODBMS ApplicAtiOn Architecture indexes – Reduces storage infrastructures, enabling them to fully Objects are managed via logical identity, allowing physical requirements by up to 50% distribution of objects for archiving and partitioning, with no leverage the benefits of secure, flexible, required code changes to the application. easy object graph navigation and and low-cost cloud environments. fast caching APIs – Achieves 10X improvement in system performance, Operational Efficiencies: Versant without complex programming agility, performance, scalability, and cloud-readiness combine to speed Seamless schema evolution for and streamline operational efficiencies shorter development sprint –Shortens across the enterprise. feature development life cycle and improves code refactoring ability Leverages fault tolerant servers and simplified administration – Achieves a factor 5 increase in database administrator productivity enables test-driven development via API-driven database setup and teardown – Increases code quality and improves time to market 2 verSant object DatabaSe IS the SuperIor SoLutIon for aDvancIng next generatIon DefenSe capabilitIeS cLouD DepIctIon anD forecaSt Programming Languages SyStem II • Supports C++, Java, .NET U.S. Air Force And norThrop • XML for data import/export grumman Operating System Support The Cloud Depiction and Forecast Windows • Solaris • Linux • AIX • HP-UX System II (CDFSII) provides near Programming Features real-time global cloud analysis and • Fault tolerant distribution forecasting for U.S. military services. • Transparent object persistence • Cloud-connected data distribution CDFSII, operated by the Air Force across multiple databases Weather Agency, merges visible and • Seamless data distribution across infrared data collected hourly from multiple databases • Enterprise-class high availability options polar-orbiting and geostationary • Dynamic schema evolution satellites to produce virtually seamless • Low to zero administration cloud analyses and forecasts. The • End-to-end object architecture forecasts are critical to the success • Fine-grained concurrency control of a wide variety of military operations, • Multithreading, multisession generaL DynamIcS aDvanceD reconnaissance platforms, and sensors. • International character sets technoLogy SyStemS • High-speed data capture CDFSII uses a highly complex BattleSpAce inFormation • Real-time performance • Support for standards simulation algorithm to develop a MAnAgeMenT Systems forecast for each time slice, spot on the globe, and altitude. Versant Object General Dynamics Advanced Technology The U.S. Marine Corps relies on General Database serves as the repository Systems (ATS) uses Versant Object Dynamics decision support applications for each class of data, which can be Database as the foundation for mission- to create real-time tactical pictures retrieved at high performance speeds, critical decision support applications— for its Operational Maneuver from the and without mapping. CDFSII use of Battlespace Information Management Sea (OMFTS) concept. OMFTS uses simplified code improves developer Systems and DARPA Ship Systems Versant to fuse amphibious ship and agility and, subsequently, the ability Automation (SSA). Versant merges landing force maneuvers to create and to deliver higher resolution forecasts massive amounts of battle management exploit opportunities in time and space more frequently, and with greater decision support data with multiple to seamlessly project amphibious power accuracy. battlefield location data to create unified ashore. The system provides naval defense plan that recommends tactical platforms with a broadband wireless placement of air defense assets from network and situation-appropriate land and sea. Leveraging Versant knowledge to handle mission critical technology, the SSA program was responses. able to reduce U.S. Navy Aegis-Class General Dynamics Area Air Defense cruiser Combat Information Center Commander (AADC) capability solution crews by 90%. uses a similar Versant-based decision “The tailored CDFS II cloud support system for U.S Navy air defense information we provide to operations. In addition to helping create the Intel community help a unified air-sea defense plan, AADC reduce casualties and automation technologies and innovative greatly increase the odds maintenance and support techniques help reduce manpower requirements that a military operation and lower the total cost of ownership. will succeed.” — Major Jeff Cox, Chief, NICWB Air Force Weather Agency 3.
Recommended publications
  • Daten Als Objekte Speichern Mit Db4o, Eine Objektorientierte Datenbank
    Daten als Objekte speichern mit db4o, eine objektorientierte Datenbank Matthias Bordach Universitaet Siegen [email protected] ABSTRACT 2. DER ODMG STANDARD[1] Die Hausarbeit befasst sich mit der Datenbanktechnologie Verschiedene Ans¨atze fur¨ eine Datenbank auf objektorientier- db4o. Das objektorientierte Speicherkonzept zeichnet sie als ter Basis erforderten einen Standard. Diesen Standard ent- einen Vertreter der NO-SQL-Familie aus. Auf eine theoreti- wickelte eine Arbeitsgruppe der Object Management Group sche Einfuhrung¨ in den Standard ODMG folgt eine praktische (OMG). 1993 wurde die erste Version ver¨offentlicht mit dem Vorstellung der Datenbankfunktionalit¨at. Die Funktionen Namen The Object Data Standard ODMG. Die Arbeitsgrup- werden mit Beispielen gestutzt,¨ die in Java geschrieben sind. pe uberarbeitete¨ und erweiterte das Dokument in den fol- Abfrage- und Speichermethoden werden ebenso erkl¨art wie genden Jahren. Inhalt und Ziel des Dokuments ist eine Stan- die Realisierung von Beziehungen zwischen Objekten und darddefinition von Konzepten fur¨ die Anbindung eines objek- das Handling von Schema Evolution. Der Leser wird nach torientierten Datenbankmanagementsystems an die gew¨ahlte der Lekture¨ in der Lage sein, eine einfache Datenbank mit Programmiersprache. In Version 3 wird den Sprachen C++, db4o zu programmieren. Smalltalk und Java jeweils ein eigenes Kapitel fur¨ die Schnitt- stellenumsetzung gewidmet. Generell definiert die ODMG das Object Model, Objektspezifikationssprachen und die an die 1. EINLEITUNG SQL angelehnte Object Query Language (OQL). Es werden Die Idee einer Datenbank, die Objekte ohne ein aufwendiges Standardausdrucke¨ festgelegt fur¨ die Datenbankinstanziie- Mapping in ein anderes Datenmodell speichern kann, wurde rung, -nutzung (open, close), Transaktionen (commit) und erstmals in den 80er Jahren des letzten Jahrhunderts in kon- Mehrfachzugriff (Locks).
    [Show full text]
  • Relational and Object-Oriented Databases
    Relational and Object-Oriented Databases by Willi-Hans Steeb International School for Scientific Computing Contents 1 What is a table? 1 1.1 Introduction . 1 1.2 Examples . 5 1.3 Tables in Programs . 8 1.4 Table and Relation . 33 2 Structured Query Language 35 2.1 Introduction . 35 2.2 Integrity Rules . 38 2.3 SQL Commands . 39 2.3.1 Introduction . 39 2.3.2 Aggregate Function . 40 2.3.3 Arithmetic Operators . 40 2.3.4 Logical Operators . 40 2.3.5 SELECT Statement . 41 2.3.6 INSERT Command . 45 2.3.7 DELETE Command . 46 2.3.8 UPDATE Command . 47 2.3.9 CREATE TABLE Command . 48 2.3.10 DROP TABLE Command . 51 2.3.11 ALTER TABLE Command . 52 2.4 Set Operators . 53 2.5 Views . 60 2.6 Primary and Foreign Keys . 62 2.7 Datatypes in SQL . 63 2.8 Joins . 66 2.9 Stored Procedure . 71 2.10 MySQL Commands . 72 2.11 Cursors . 73 2.12 PL and SQL . 75 2.13 ABAP/4 and SQL . 76 2.14 Query Processing and Optimization . 77 i 3 Normal Forms 83 3.1 Introduction . 83 3.2 Anomalies . 87 3.3 Example . 89 3.4 Fourth and Fifth Normal Forms . 93 4 Transaction 101 4.1 Introduction . 101 4.2 Data Replication . 107 4.3 Locks . 108 4.4 Deadlocking . 111 4.5 Threads . 117 4.5.1 Introduction . 117 4.5.2 Thread Class . 119 4.5.3 Example . 121 4.5.4 Priorities . 123 4.5.5 Synchronization and Locks .
    [Show full text]
  • The O/R Problem: Mapping Between Relational and Object-Oriented
    The O/R Problem: Mapping Between Relational and Object-Oriented Methodologies CIS515 Strategic Planning for Database Systems Ryan Somma StudenID: 9989060874 [email protected] Introduction Relational databases are set of tables defining the columns of the rows they contain, which are also conceptualized as relations defining the attributes of the tuples they store. Relational Database Management Systems (RDBMS) abstract the normalized relational structures underlying the system away from the user, allowing them to focus on the specific data they wish to extract from it. Through queries, they provide users the capability of joining sets in relations into reports, transforming data into information. Through normalization, they eliminate redundancy, ensuring there is only one source for each data element in the system, and improve integrity through relationships based on data keys and validation (Rob and Coronel, 2009). Although there are alternatives to RDBMS‟s, the top five database management systems for 2004 to 2006 were all relational (Olofson, 2007). Object orientation is a “set of design and development principles based on conceptually autonomous computer structures known as objects.” Object-oriented programming (OOP) takes related data elements and functions, known as properties and methods, and encapsulates them into objects that may interact with other objects via messaging or act upon themselves. This strategy reduces complexity in the system, hiding it within objects that are easier to understand as concepts rather than exposing their workings within a morass of procedural code. Additionally, OOP promotes reuse of coding solutions with classes, which are built to model a generalized set of properties and methods that are implemented in object instances, which reuse the class code.
    [Show full text]
  • CS317 File and Database Systems
    CS317 File and Database Systems http://dilbert.com/strips/comic/1995-10-11/ Lecture 14 – OODBMS and UML Concepts November 9, 2015 Sam Siewert Reminders PLEASE FILL OUT COURSE EVALUATIONS ON CANVAS [5 points bonus on Assignment #6] Assignment #6, DBMS Project of Your Interest – POSTED – Work with your Chosen Team – Self-Directed – Autonomy, Mastery, Purpose and Life-long Learning and Requires Some Research on Your Part Assignment #4 & #5 Grading In Progress Assignment #6 Assessed with Final Grading Sam Siewert 2 Interdisciplinary Nature of DBMS CS332 – C++ & Java Final Lecture – Week 14 SE300/310 – OOA/OOD/OOP File Operating Systems Systems Programming Security Languages DBMS (SQL, OOP) Storage Networking ? (SAN, NAS, DAS) (Clusters, DR, Analytics Data Client/Server) Big MySQL Connectors CS332 – “R” C/C++, Java, … Sam Siewert 3 OODBMS and UML Concepts CHAPTER 27 Sam Siewert 4 Next Generation Database Systems First Generation DBMS: Network and Hierarchical – Required complex programs for even simple queries. – Minimal data independence. – No widely accepted theoretical foundation. Second Generation DBMS: Relational DBMS – Helped overcome these problems. Third Generation DBMS: OODBMS and ORDBMS. [NoSQL] Pearson Education © 2014 5 History of Data Models Pearson Education © 2014 6 Object-Oriented Data Model No one agreed object data model. One definition: Object-Oriented Data Model (OODM) – Data model that captures semantics of objects supported in object-oriented programming. Object-Oriented Database (OODB) – Persistent and sharable collection of objects defined by an ODM. Object-Oriented DBMS (OODBMS) – Manager of an ODB. OMG [Object Management Group], CORBA Pearson Education © 2014 7 Object-Oriented Data Model Zdonik and Maier present a threshold model that an OODBMS must, at a minimum, satisfy: – It must provide database functionality.
    [Show full text]
  • Versant Bro Final.Indd
    Innovation that Inspires from the Leader in Object Database Technology THE DATABASE FOR DEVELOPERS • TelecommunicaTions • Defense • f i nancial s e rvice s • li f e sci e nce s • • Tran s p orTaTion • man u facTu r i ng • on li n e gam i ng • versanT Delivering 20 Years of Performance-orienteD software innovation Versant Corporation is the industry leader Improves Versant Developer/Customer Improves Improves Operational in object database management software. Feature Benefit Agility Scalability Efficiencies Versant object database technology enables No ORM mapping, for optimal Reduces application code by software developers to create unique, transparency up to 40% ✔ extreme performance applications to manage Easy object graph navigation Achieves 10X improvement in and fast caching APIs system performance without complex information in environments that complex programming ✔ ✔ ✔ demand the highest performance and high Seamless schema evolution Shortens feature development availability. These applications do far more for shorter development sprints life cycle and improves code ✔ refactoring ability than run day-to-day business operations; they Enables test-driven development Increases code quality and define businesses and deliver competitive C++, JAVA, .NET via API-driven database setup improves time to market ✔ advantage. Versant object database solutions and teardown are deployed in more than 100,000 sites CLIENT Higher concurrent throughput Reduces cloud server costs by CACHE with fewer CPUs up to 50% ✔ ✔ across a wide range of industries, including No data duplication or Reduces storage requirements telecommunications, defense, financial redundant indexes by up to 50% ✔ ✔ MONITORING OBJECT INSPECTOR services, life sciences, transportation, oDBMS Leverages parallel processing— Increases mission-critical system manufacturing, and online gaming.
    [Show full text]
  • Nosql - Notonly Sql
    International Journal of Enterprise Computing and Business Systems ISSN (Online) : 2230-8849 Volume 2 Issue 2 July 2013 International Manuscript ID : ISSN22308849-V2I2M3-072013 NOSQL - NOTONLY SQL Dr. S. George University of New Zealand Abstract A NoSQL database provides a mechanism for storage and retrieval of data that uses looser consistency models than traditional relational databases. Motivations for this approach include simplicity of design, horizontal scaling and finer control over availability. NoSQL databases are often highly optimized key–value stores intended for simple retrieval and appending operations, with the goal being significant performance benefits in terms of latency and throughput. NoSQL databases are finding significant and growing industry use in big data and real-time web applications. NoSQL systems are also referred to as "Not only SQL" to emphasize that they do in fact allow SQL-like query languages to be used. ACID vs BASE NoSQL cannot necessarily give full ACID guarantees. Usually eventual consistency is guaranteed or transactions limited to single data items. This means that given a sufficiently long period of time over which no changes are sent, all updates can be expected to propagate eventually through the system. [citation needed ]. Contents History Carlo Strozzi used the term NoSQL in 1998 to name his lightweight, open-source relational database that did not expose the standard SQL interface. Strozzi suggests that, as the International Journal of Enterprise Computing and Business Systems ISSN (Online) : 2230-8849 Volume 2 Issue 2 July 2013 International Manuscript ID : ISSN22308849-V2I2M3-072013 current NoSQL movement "departs from the relational model altogether; it should therefore have been called more appropriately 'NoREL'.
    [Show full text]
  • Quantitative Analysis of Scalable Nosql Databases
    QUANTITATIVE ANALYSIS OF SCALABLE NOSQL DATABASES by SURYA NARAYANAN SWAMINATHAN Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN COMPUTER SCIENCE THE UNIVERSITY OF TEXAS AT ARLINGTON December 2015 Copyright c by SURYA NARAYANAN SWAMINATHAN 2015 All Rights Reserved To my professor Dr. Ramez Elmasri ACKNOWLEDGEMENTS I express my sincere gratitude to my advisor Dr. Ramez Elmasri. I would also like to thank Dr. Leonidas Fegaras for his support. Special thanks to Professor David Levine for taking a special interest in my research beyond the call of duty. I am grateful to Professor Ronald Cross for his support, motivation and guid- ance. I would also like to thank my research mates Mr. Mohammadhani Fouladgar, Mr. Upa Gupta, Mr. Neelabh Pant and Mr. Vivek Sharma for their support and camaraderie. Finally, I extend my gratitude towards everyone in Computer Science depart- ment for the memorable experiences I had during my masters November 20, 2015 iv ABSTRACT QUANTITATIVE ANALYSIS OF SCALABLE NOSQL DATABASES SURYA NARAYANAN SWAMINATHAN, M.S. The University of Texas at Arlington, 2015 Supervising Professor: Ramez Elmasri NoSQL databases are rapidly becoming the customary data platform for big data applications. These databases are emerging as a gateway for more alternative approaches outside traditional relational databases and are characterized by efficient horizontal scalability, schema-less approach to data modeling, high performance data access, and limited querying capabilities. The lack of transactional semantics among NoSQL databases has made the application determine the choice of a particular con- sistency model.
    [Show full text]
  • Database Management Systems Ebooks for All Edition (
    Database Management Systems eBooks For All Edition (www.ebooks-for-all.com) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 20 Oct 2013 01:48:50 UTC Contents Articles Database 1 Database model 16 Database normalization 23 Database storage structures 31 Distributed database 33 Federated database system 36 Referential integrity 40 Relational algebra 41 Relational calculus 53 Relational database 53 Relational database management system 57 Relational model 59 Object-relational database 69 Transaction processing 72 Concepts 76 ACID 76 Create, read, update and delete 79 Null (SQL) 80 Candidate key 96 Foreign key 98 Unique key 102 Superkey 105 Surrogate key 107 Armstrong's axioms 111 Objects 113 Relation (database) 113 Table (database) 115 Column (database) 116 Row (database) 117 View (SQL) 118 Database transaction 120 Transaction log 123 Database trigger 124 Database index 130 Stored procedure 135 Cursor (databases) 138 Partition (database) 143 Components 145 Concurrency control 145 Data dictionary 152 Java Database Connectivity 154 XQuery API for Java 157 ODBC 163 Query language 169 Query optimization 170 Query plan 173 Functions 175 Database administration and automation 175 Replication (computing) 177 Database Products 183 Comparison of object database management systems 183 Comparison of object-relational database management systems 185 List of relational database management systems 187 Comparison of relational database management systems 190 Document-oriented database 213 Graph database 217 NoSQL 226 NewSQL 232 References Article Sources and Contributors 234 Image Sources, Licenses and Contributors 240 Article Licenses License 241 Database 1 Database A database is an organized collection of data.
    [Show full text]
  • Object and Graph Databases
    Portland State University - November 3, 2011 Object and Graph Databases Leon Guzenda - Objectivity, Inc. 1 © Objectivity, Inc. 2011 AGENDA 2 © Objectivity, Inc. 2011 OBJECT DATABASE INDUSTRY 3 © Objectivity, Inc. 2011 The ODBMS Players The Object-Oriented Database System Manifesto 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2009 2010 Matisse VBase (Ontologic) Ontos GemStone (Servio Logic Servio GemStone) Objectivity/DB InfiniteGraph ObjectStore (Object Design Excelon Progress) GBase (Graphael) Versant Object Database (Versant) O2 ( Ardent Ascential) UniSQL Poet FastObjects db4objects Note that many of these companies were founded earlier, e.g. Objectivity, Inc. Berkeley DB (Sleepycat Oracle) was founded in June 1988. 4 Leon Guzenda at ICOODB 2010 © Objectivity, Inc. 2010 Objectivity, Inc. • A privately held, profitable company founded in 1988 to provide object database software for engineering, scientific and defense applications. • Defence and Intelligence Community customers include: US DoD/DoE/DHS, BaE, Boeing, General Dynamics, L-3, Lockheed Martin, NGC, Raytheon, Titan... • Equipment manufacturing customers include: Alcatel, Ciena, Emerson, Ericsson, Iridium, NEC, Qualcomm, Siemens... • “Big Science” customers include Berkeley NL, Brookhaven NL, CERN, Lawrence Livermore NL, FermiLab, JHU Sloan Digital Sky Survey, Los Alamos NL, Max Planck... 5 © Objectivity, Inc. 2011 Technology Partnerships Are Key • High Performance Communications – Brocade, Arista Networks, Bivio Networks.. • High Performance Processing 64 Processors – Appro, Bull, Cray, Convey Computer, HP, IBM, Inspur, Tilera... on a single chip • High Capacity Memory Systems – Violin Memory, ioFusion, TMS... 8TB of RAM in 1U • Massively Scaleable File and Storage Systems – DDN, EMC, Hyperion, Kaminario, Panasas, whamcloud, Xyratex... • Visualization – Activu, Tom Sawyer, SL Graphics, 2 Petabytes 6 © Objectivity, Inc.
    [Show full text]
  • Databases Theoretical Introduction Contents
    Databases Theoretical Introduction Contents 1 Databases 1 1.1 Database ................................................ 1 1.1.1 Terminology and overview .................................. 1 1.1.2 Applications .......................................... 2 1.1.3 General-purpose and special-purpose DBMSs ........................ 2 1.1.4 History ............................................ 2 1.1.5 Research ........................................... 6 1.1.6 Examples ........................................... 6 1.1.7 Design and modeling ..................................... 7 1.1.8 Languages ........................................... 9 1.1.9 Performance, security, and availability ............................ 10 1.1.10 See also ............................................ 12 1.1.11 References .......................................... 12 1.1.12 Further reading ........................................ 13 1.1.13 External links ......................................... 14 1.2 Schema migration ........................................... 14 1.2.1 Risks and Benefits ...................................... 14 1.2.2 Schema migration in agile software development ...................... 14 1.2.3 Available Tools ........................................ 15 1.2.4 References .......................................... 15 1.3 Star schema .............................................. 16 1.3.1 Model ............................................ 16 1.3.2 Benefits ............................................ 16 1.3.3 Disadvantages .......................................
    [Show full text]
  • Extended Abstract
    Orestes: a REST protocol for horizontally scalable cloud database access Felix Gessert1 Florian Bücklers1 Norbert Ritter1 Master Student Master Student Professor [email protected] [email protected] [email protected] hamburg.de hamburg.de hamburg.de 1Computer Science Department, University of Hamburg Vogt-Kölln Straße 33, 22527 Hamburg, Germany ABSTRACT implementation options. To our best knowledge the In our poster, we are going to describe a REST/HTTP combination of the web caching model with database access database access protocol for object-oriented persistence that has not yet been researched or implemented and hence is a allows read requests to scale horizontally. Scalability is new strategy to make databases profit from web achieved by using Web Proxy Caches to serve database technologies. Web-caching is the scalability model objects, while keeping strong ACID transaction semantics implemented by the HTTP protocol [1]. We intend to show through optimistic verification mechanisms. We call this that the same scalability model that allows web sites to scale protocol Orestes (Objects RESTfully encapsulated in can also scale databases. standard formats) and validate the approach by comparative 3. CONCEPT benchmarks for a cloud computing scenario. With Orestes we aim to achieve four key properties. Table 1 1. INTRODUCTION gives a summary of the mechanisms leveraged to obtain The emergence of cloud computing and NoSQL databases them. In this section we describe how these mechanisms has demonstrated a clear demand for scalable database work, whereas the next sections describe how they are systems with cloud capable, web-based interfaces. With implemented and evaluated. Orestes we try to reconcile the desirable system properties Table 1.
    [Show full text]
  • Sistent Object-Oriented Applications 31
    Research Collection Doctoral Thesis A Seamless Framework for Object-Oriented Persistence in Presence of Class Schema Evolution Author(s): Piccioni, Marco Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-007600524 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 20910 A Seamless Framework for Object-Oriented Persistence in Presence of Class Schema Evolution A dissertation submitted to ETH ZURICH for the degree of Doctor of Sciences presented by MARCO PICCIONI Laurea degree in Mathematics, Universita` degli Studi di Roma La Sapienza, Italia Master in Economics, Universita` Commerciale L. Bocconi, Italia born July 7th, 1965 citizen of Italy accepted on the recommendation of Prof. Dr. Bertrand Meyer, examiner Prof. Dr. Harald Gall, co-examiner Prof. Dr. Martin Robillard, co-examiner 2012 ACKNOWLEDGEMENTS First and foremost I thank Bertrand Meyer, for hiring me as a research assistant and for giving me the opportunity to do a PhD under his super- vision at ETH Zurich. His support and guidance made the work presented in this thesis possible, and had a decisive influence on my formation as a researcher in the past years. I also thank the co-examiners of this thesis, Harald Gall and Martin Robillard, who kindly made time in their busy schedules to co-referee this work. Among the present and past members and visitors of the Chair of Soft- ware
    [Show full text]