Course Outline COMP6225 Object-Oriented Database
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Daten Als Objekte Speichern Mit Db4o, Eine Objektorientierte Datenbank
Daten als Objekte speichern mit db4o, eine objektorientierte Datenbank Matthias Bordach Universitaet Siegen [email protected] ABSTRACT 2. DER ODMG STANDARD[1] Die Hausarbeit befasst sich mit der Datenbanktechnologie Verschiedene Ans¨atze fur¨ eine Datenbank auf objektorientier- db4o. Das objektorientierte Speicherkonzept zeichnet sie als ter Basis erforderten einen Standard. Diesen Standard ent- einen Vertreter der NO-SQL-Familie aus. Auf eine theoreti- wickelte eine Arbeitsgruppe der Object Management Group sche Einfuhrung¨ in den Standard ODMG folgt eine praktische (OMG). 1993 wurde die erste Version ver¨offentlicht mit dem Vorstellung der Datenbankfunktionalit¨at. Die Funktionen Namen The Object Data Standard ODMG. Die Arbeitsgrup- werden mit Beispielen gestutzt,¨ die in Java geschrieben sind. pe uberarbeitete¨ und erweiterte das Dokument in den fol- Abfrage- und Speichermethoden werden ebenso erkl¨art wie genden Jahren. Inhalt und Ziel des Dokuments ist eine Stan- die Realisierung von Beziehungen zwischen Objekten und darddefinition von Konzepten fur¨ die Anbindung eines objek- das Handling von Schema Evolution. Der Leser wird nach torientierten Datenbankmanagementsystems an die gew¨ahlte der Lekture¨ in der Lage sein, eine einfache Datenbank mit Programmiersprache. In Version 3 wird den Sprachen C++, db4o zu programmieren. Smalltalk und Java jeweils ein eigenes Kapitel fur¨ die Schnitt- stellenumsetzung gewidmet. Generell definiert die ODMG das Object Model, Objektspezifikationssprachen und die an die 1. EINLEITUNG SQL angelehnte Object Query Language (OQL). Es werden Die Idee einer Datenbank, die Objekte ohne ein aufwendiges Standardausdrucke¨ festgelegt fur¨ die Datenbankinstanziie- Mapping in ein anderes Datenmodell speichern kann, wurde rung, -nutzung (open, close), Transaktionen (commit) und erstmals in den 80er Jahren des letzten Jahrhunderts in kon- Mehrfachzugriff (Locks). -
Object-Oriented Databases Need for Complex Data Types
Object-Oriented Databases! ■" Need for Complex Data Types! ■" The Object-Oriented Data Model! ■" Object-Oriented Languages! ■" Persistent Programming Languages! ■" Persistent C++ Systems! 8.1! Need for Complex Data Types! ■" Traditional database applications in data processing had conceptually simple data types! é" Relatively few data types, first normal form holds! ■" Complex data types have grown more important in recent years! é" E.g. Addresses can be viewed as a ! Ø" Single string, or! Ø" Separate attributes for each part, or! Ø" Composite attributes (which are not in first normal form)! é" E.g. it is often convenient to store multivalued attributes as-is, without creating a separate relation to store the values in first normal form! ■" Applications! é" computer-aided design, computer-aided software engineering! é" multimedia and image databases, and document/hypertext databases.! 8.2! 1! Object-Oriented Data Model! ■" Loosely speaking, an object corresponds to an entity in the E- R model.! ■" The object-oriented paradigm is based on encapsulating code and data related to an object into single unit.! ■" The object-oriented data model is a logical data model (like the E-R model).! ■" Adaptation of the object-oriented programming paradigm (e.g., Smalltalk, C++) to database systems.! 8.3! Object Structure! ■" An object has associated with it:! é" A set of variables that contain the data for the object. The value of each variable is itself an object.! é" A set of messages to which the object responds; each message may have zero, one, or more parameters.! é" A set of methods, each of which is a body of code to implement a message; a method returns a value as the response to the message! ■" The physical representation of data is visible only to the implementor of the object! ■" Messages and responses provide the only external interface to an object.! ■" The term message does not necessarily imply physical message passing. -
Object Oriented Database Management Systems-Concepts
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Global Journal of Computer Science and Technology (GJCST) Global Journal of Computer Science and Technology: C Software & Data Engineering Volume 15 Issue 3 Version 1.0 Year 2015 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172 & Print ISSN: 0975-4350 Object Oriented Database Management Systems-Concepts, Advantages, Limitations and Comparative Study with Relational Database Management Systems By Hardeep Singh Damesha Lovely Professional University, India Abstract- Object Oriented Databases stores data in the form of objects. An Object is something uniquely identifiable which models a real world entity and has got state and behaviour. In Object Oriented based Databases capabilities of Object based paradigm for Programming and databases are combined due remove the limitations of Relational databases and on the demand of some advanced applications. In this paper, need of Object database, approaches for Object database implementation, requirements for database to an Object database, Perspectives of Object database, architecture approaches for Object databases, the achievements and weakness of Object Databases and comparison with relational database are discussed. Keywords: relational databases, object based databases, object and object data model. GJCST-C Classification : F.3.3 ObjectOrientedDatabaseManagementSystemsConceptsAdvantagesLimitationsandComparativeStudywithRelationalDatabaseManagementSystems Strictly as per the compliance and regulations of: © 2015. Hardeep Singh Damesha. This is a research/review paper, distributed under the terms of the Creative Commons Attribution- Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited. -
Object-Relational DBMS
Session-7: Object-Relational DBMS Cyrus Shahabi 1 Motivation Relational databases (2 nd generation) were designed for traditional banking-type applications with well-structured, homogenous data elements (vertical & horizontal homogeneity) and a minimal fixed set of limited operations (e.g., set & tuple- oriented operations). New applications (e.g., CAD, CAM, CASE, OA, and CAP), however, require concurrent modeling of both data and processes acting upon the data. Hence, a combination of database and software-engineering disciplines lead to the 3 rd generation of database management systems: Object Database Management Systems, ODBMS. Note that a classic debate in database community is that do we need a new model or relational model is sufficient and can be extended to support new applications. 2 Motivation … People in favor of relational model argue that: New versions of SQL (e.g., SQL-92 and SQL3) are designed to incorporate functionality required by new applications (UDT, UDF, …). Embedded SQL can address almost all the requirements of the new applications. “Object people”, however, counter-argue that in the above- mentioned solutions, it is the application rather than the inherent capabilities of the model that provides the required functionality. Object people say there is an impedance mismatch between programming languages (handling one row of data at a time) and SQL (multiple row handling) which makes conversions inefficient. Relational people say, instead of defining new models, let’s introduce set-level functionality into -
Relational and Object-Oriented Databases
Relational and Object-Oriented Databases by Willi-Hans Steeb International School for Scientific Computing Contents 1 What is a table? 1 1.1 Introduction . 1 1.2 Examples . 5 1.3 Tables in Programs . 8 1.4 Table and Relation . 33 2 Structured Query Language 35 2.1 Introduction . 35 2.2 Integrity Rules . 38 2.3 SQL Commands . 39 2.3.1 Introduction . 39 2.3.2 Aggregate Function . 40 2.3.3 Arithmetic Operators . 40 2.3.4 Logical Operators . 40 2.3.5 SELECT Statement . 41 2.3.6 INSERT Command . 45 2.3.7 DELETE Command . 46 2.3.8 UPDATE Command . 47 2.3.9 CREATE TABLE Command . 48 2.3.10 DROP TABLE Command . 51 2.3.11 ALTER TABLE Command . 52 2.4 Set Operators . 53 2.5 Views . 60 2.6 Primary and Foreign Keys . 62 2.7 Datatypes in SQL . 63 2.8 Joins . 66 2.9 Stored Procedure . 71 2.10 MySQL Commands . 72 2.11 Cursors . 73 2.12 PL and SQL . 75 2.13 ABAP/4 and SQL . 76 2.14 Query Processing and Optimization . 77 i 3 Normal Forms 83 3.1 Introduction . 83 3.2 Anomalies . 87 3.3 Example . 89 3.4 Fourth and Fifth Normal Forms . 93 4 Transaction 101 4.1 Introduction . 101 4.2 Data Replication . 107 4.3 Locks . 108 4.4 Deadlocking . 111 4.5 Threads . 117 4.5.1 Introduction . 117 4.5.2 Thread Class . 119 4.5.3 Example . 121 4.5.4 Priorities . 123 4.5.5 Synchronization and Locks . -
Object Database Benchmarks
Object Database Benchmarks Jérôme Darmont ERIC, Université Lumière Lyon 2, France INTRODUCTION The need for performance measurement tools appeared soon after the emergence of the first Object-Oriented Database Management Systems (OODBMSs), and proved important for both designers and users (Atkinson & Maier, 1990). Performance evaluation is useful to designers to determine elements of architecture and more generally to validate or refute hypotheses regar ding the actual behavior of an OODBMS. Thus, performance evaluation is an essential component in the development process of well-designed and efficient systems. Users may also employ performance evaluation, either to compare the efficiency of different technologies before selecting an OODBMS or to tune a system. Performance evaluation by experimentation on a real system is generally referred to as benchmarking. It consists in performing a series of tests on a given OODBMS to estimate its performance in a given setting. Benchmarks are generally used to compare the global performance of OODBMSs, but they can also be exploited to illustrate the advantages of one system or another in a given situation, or to determine an optimal hardware configuration. Typically, a benchmark is constituted of two main elements: a workload model constituted of a database and a set of read and write operations to apply on this database, and a set of performance metrics. BACKGROUND OBJECT DATABASE BENCHMARKS EVOLUTION In the sphere of relational DBMSs, the Transaction Performance Processing Council (TPC) issues standard benchmarks, verifies their correct application and regularly publishes performance tests results. In contrast, there is no standard benchmark for OODBMSs, even if the more popular of them: OO1, HyperModel, and OO7, can be considered as de facto standards. -
Multi-Model Databases: a New Journey to Handle the Variety of Data
0 Multi-model Databases: A New Journey to Handle the Variety of Data JIAHENG LU, Department of Computer Science, University of Helsinki IRENA HOLUBOVA´ , Department of Software Engineering, Charles University, Prague The variety of data is one of the most challenging issues for the research and practice in data management systems. The data are naturally organized in different formats and models, including structured data, semi- structured data and unstructured data. In this survey, we introduce the area of multi-model DBMSs which build a single database platform to manage multi-model data. Even though multi-model databases are a newly emerging area, in recent years we have witnessed many database systems to embrace this category. We provide a general classification and multi-dimensional comparisons for the most popular multi-model databases. This comprehensive introduction on existing approaches and open problems, from the technique and application perspective, make this survey useful for motivating new multi-model database approaches, as well as serving as a technical reference for developing multi-model database applications. CCS Concepts: Information systems ! Database design and models; Data model extensions; Semi- structured data;r Database query processing; Query languages for non-relational engines; Extraction, trans- formation and loading; Object-relational mapping facilities; Additional Key Words and Phrases: Big Data management, multi-model databases, NoSQL database man- agement systems. ACM Reference Format: Jiaheng Lu and Irena Holubova,´ 2019. Multi-model Databases: A New Journey to Handle the Variety of Data. ACM CSUR 0, 0, Article 0 ( 2019), 38 pages. DOI: http://dx.doi.org/10.1145/0000000.0000000 1. -
The O/R Problem: Mapping Between Relational and Object-Oriented
The O/R Problem: Mapping Between Relational and Object-Oriented Methodologies CIS515 Strategic Planning for Database Systems Ryan Somma StudenID: 9989060874 [email protected] Introduction Relational databases are set of tables defining the columns of the rows they contain, which are also conceptualized as relations defining the attributes of the tuples they store. Relational Database Management Systems (RDBMS) abstract the normalized relational structures underlying the system away from the user, allowing them to focus on the specific data they wish to extract from it. Through queries, they provide users the capability of joining sets in relations into reports, transforming data into information. Through normalization, they eliminate redundancy, ensuring there is only one source for each data element in the system, and improve integrity through relationships based on data keys and validation (Rob and Coronel, 2009). Although there are alternatives to RDBMS‟s, the top five database management systems for 2004 to 2006 were all relational (Olofson, 2007). Object orientation is a “set of design and development principles based on conceptually autonomous computer structures known as objects.” Object-oriented programming (OOP) takes related data elements and functions, known as properties and methods, and encapsulates them into objects that may interact with other objects via messaging or act upon themselves. This strategy reduces complexity in the system, hiding it within objects that are easier to understand as concepts rather than exposing their workings within a morass of procedural code. Additionally, OOP promotes reuse of coding solutions with classes, which are built to model a generalized set of properties and methods that are implemented in object instances, which reuse the class code. -
General Object-Oriented Database for Software
The GOODSTEP Pro ject: General Ob ject-Oriented Database for Software Engineering Pro cesses The GOODSTEP Team Abstract 1 Ob jective of GOODSTEP The goal of the GOODSTEP project is The goal of the GOODSTEP pro ject is to enhance and improve the functionality of to develop a sophisticated database system a ful ly object-oriented database management dedicated to the supp ort of software develop- system to yield a platform suited for appli- mentenvironments SDEs and make the ba- cations such as Software Development En- sis for a platform for SDE construction with a software pro cess to olset and generators for vironments SDEs. The baseline of the graphical and textual integrated to ols imple- project is the O database management sys- 2 mented on top of it. tem DBMS. The O DBMS already in- 2 The GOODSTEP pro ject started Septem- cludes many of the features required by SDEs. b er 1992 and will last for three years. This The project has identifed enhancements to pap er mainly rep orts on the rst year of work O in order to make it a real software en- 2 within the pro ject. gineering database management system. The baseline of the pro ject is an exist- These enhancements are essential ly upgrades ing Europ ean commercially available ob ject- of the existing O functionality, and hence 2 oriented database pro duct: O [4]. Rather requirerelatively easy extensions to the O 2 2 than developing a new database manage- system. They have been developedinthe ment system from scratch, GOODSTEP will early stages of the project and are now ex- enhance and improve this pro duct. -
Sesame: an Architecture for Storing and Querying RDF Data and Schema Information
Sesame: An Architecture for Storing and Querying RDF Data and Schema Information Jeen Broekstra Arjohn Kampman Aidministrator Nederland b.v. Aidministrator Nederland b.v. [email protected] [email protected] Frank van Harmelen Faculty of Sciences, Vrije Universiteit Amsterdam [email protected] Abstract RDF and RDF Schema provide the first W3C standard to enrich the Web with machine-processable semantic data. However, to be able to use this semantic data, a scalable, persistent RDF store and a powerful query engine using an expressive query language are needed. Sesame is an extensible architecture implementing both of these. Sesame can be based on arbitrary repositories, ranging from traditional Data Base Management Systems, to dedicated RDF triple stores. Sesame also implements a query engine for RQL, the most powerful RDF/RDF Schema query lan- guage to date. 1 Introduction The Resource Description Framework (RDF) [Lassila and Swick, 1999] is a W3C Recommendation for the notation of meta-data on the World Wide Web. RDF Schema [Brickley and Guha, 2000] extends this standard by providing developers with the means to specify vocabulary and to model object structures. These techniques will enable the enrichment of the Web with machine-processable semantics, thus giving rise to what has been dubbed the Semantic Web. However, simply having this data available is not enough. Tooling is needed to process the information, to transform it, to reason with it. As a basis for this, we have developed Sesame, an architecture for efficient storage and expressive querying of large quantities of RDF meta-data. Sesame is being developed by Aid- ministrator Nederland b.v.1 as part of the European IST project On-To-Knowledge2 [Fensel et al., 2000]. -
Examples of Object Oriented Database in Healthcare
Examples Of Object Oriented Database In Healthcare daguerreotypedGuessable and unstimulatedadventurously. Burgess Eucaryotic misdrawings Weston sometimessome idolism animalises so theatrically! any breakpoint Lubric Tommy result alwaysabed. represses his berberine if Zorro is ring-necked or In Object-oriented Model data stored in archive form of objects The structure which is called classes which display board within company It defines a database. Clustering is the walking of grouping a scent of objects in such church way that objects in the. Title CMConnect. And functional requirements leading data-modeling the process-mapping. Is MongoDB faster than MySQL? What decade the 4 basics of OOP? Object-oriented databases make the ghost of reduced maintenance code reusability real world modeling and. Health Data Management Splunk Architecture Ransomware Data Recovery. How AI Can Revolutionize the fireplace Industry Built In. Advice based on other factors such as memoirs and additional symptoms. Eso vlt standard. For shed some EHR collect her in structured formats and International. Types of Databases Database Models Learntekorg. PDF Intentionally-Linked Entities a database tidy for. Big Data in lens Care Applications and Challenges in Data. Object-oriented systems analysis and design fundamental data structures and. Can be enough resources become more efficiently respond thursday that of database leads to providers and mathematical certainty that decision support is a rather complicated to. Object Oriented Programming and NoSQL are vitally important. For example converting the XML xsd files that describe our base of FpML version 5. 10 Hottest Healthcare IT Developer and Programming Skills. Example Readers can develop propose implement use maintain a Webstore. Below are examples of related occupations with associated Arizona-based. -
Mobilitydb: a Mainstream Moving Object Database System
MobilityDB: A Mainstream Moving Object Database System Esteban Zimányi Mahmoud Sakr [email protected] [email protected] CoDE. Université Libre de Bruxelles CoDE. Université Libre de Bruxelles, Belgium Belgium FCIS. Ain Shams University, Egypt Arthur Lesuisse Mohamed Bakli [email protected] [email protected] CoDE. Université Libre de Bruxelles CoDE. Université Libre de Bruxelles Belgium Belgium ABSTRACT a moving object database system (MOD). A MOD is a database This paper demonstrates the MobilityDB moving object database system that provides the functionality of storing and querying system. It is an extensive implementation on top of PostgreSQL and moving object data via a query interface. Building a MOD requires PostGIS with multiple novel aspects. MobilityDB defines multiple extending a database system vertically at all its levels: storage, spatiotemporal types for moving geometry and geography points, access methods, operations, SQL interface, and query optimization. as well as for temporal integers, reals, Booleans, and strings. It The long established research in moving object databases has also defines a rich set of operations on these types. The typesare so far resulted in few research prototypes, e.g., SECONDO [3] and supported with spatiotemporal index access methods by extending HERMES [5]. However, an industry-scale implementation that can GiST (Generalized Search Tree) and SP-GiST (Space Partitioning be used in real-world applications is not yet available. MobilityDB GiST). The query interface is SQL. MobilityDB thus extends the is envisioned to fill in this gap. It is built on top of PostgreSQL PostgreSQL optimizer with statistics collectors and selectivity esti- and PostGIS, which are, respectively, a widely used open source mation functions.