Object Database Management Systems: Concepts and Features
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Java® Language Specification Java SE 8 Edition
The Java® Language Specification Java SE 8 Edition James Gosling Bill Joy Guy Steele Gilad Bracha Alex Buckley 2015-02-13 Specification: JSR-337 Java® SE 8 Release Contents ("Specification") Version: 8 Status: Maintenance Release Release: March 2015 Copyright © 1997, 2015, Oracle America, Inc. and/or its affiliates. 500 Oracle Parkway, Redwood City, California 94065, U.S.A. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. The Specification provided herein is provided to you only under the Limited License Grant included herein as Appendix A. Please see Appendix A, Limited License Grant. To Maurizio, with deepest thanks. Table of Contents Preface to the Java SE 8 Edition xix 1 Introduction 1 1.1 Organization of the Specification 2 1.2 Example Programs 6 1.3 Notation 6 1.4 Relationship to Predefined Classes and Interfaces 7 1.5 Feedback 7 1.6 References 7 2 Grammars 9 2.1 Context-Free Grammars 9 2.2 The Lexical Grammar 9 2.3 The Syntactic Grammar 10 2.4 Grammar Notation 10 3 Lexical Structure 15 3.1 Unicode 15 3.2 Lexical Translations 16 3.3 Unicode Escapes 17 3.4 Line Terminators 19 3.5 Input Elements and Tokens 19 3.6 White Space 20 3.7 Comments 21 3.8 Identifiers 22 3.9 Keywords 24 3.10 Literals 24 3.10.1 Integer Literals 25 3.10.2 Floating-Point Literals 31 3.10.3 Boolean Literals 34 3.10.4 Character Literals 34 3.10.5 String Literals 35 3.10.6 Escape Sequences for Character and String Literals 37 3.10.7 The Null Literal 38 3.11 Separators -
CS145 Lecture Notes #15 Introduction to OQL
CS145 Lecture Notes #15 Introduction to OQL History Object-oriented DBMS (OODBMS) vendors hoped to take market share from traditional relational DBMS (RDBMS) vendors by offer- ing object-based data management Extend OO languages (C++, SmallTalk) with support for persis- tent objects RDBMS vendors responded by adding object support to relational systems (i.e., ORDBMS) and largely kept their customers OODBMS vendors have survived in another market niche: software systems that need some of their data to be persistent (e.g., CAD) Recall: ODMG: Object Database Management Group ODL: Object De®nition Language OQL: Object Query Language Query-Related Features of ODL Example: a student can take many courses but may TA at most one interface Student (extent Students, key SID) { attribute integer SID; attribute string name; attribute integer age; attribute float GPA; relationship Set<Course> takeCourses inverse Course::students; relationship Course assistCourse inverse Course::TAs; }; interface Course (extent Courses, key CID) { attribute string CID; attribute string title; relationship Set<Student> students inverse Student::takeCourses; relationship Set<Student> TAs inverse Student::assistCourse; }; Jun Yang 1 CS145 Spring 1999 For every class we can declare an extent, which is used to refer to the current collection of all objects of that class We can also declare methods written in the host language Basic SELECT Statement in OQL Example: ®nd CID and title of the course assisted by Lisa SELECT s.assistCourse.CID, s.assistCourse.title FROM Students -
EYEDB Object Query Language
EYEDB Object Query Language Version 2.8.8 December 2007 Copyright c 1994-2008 SYSRA Published by SYSRA 30, avenue G´en´eral Leclerc 91330 Yerres - France home page: http://www.eyedb.org Contents 1 Introduction....................................... ............... 5 2 Principles ........................................ ............... 5 3 OQLvs.ODMG3OQL.................................... ........... 5 4 Language Concepts . ........... 7 5 Language Syntax . .......... 8 5.1 TerminalAtomSyntax.................................. .......... 8 5.2 Non Terminal Atom Production . 10 5.3 Keywords.......................................... 11 5.4 Comments.......................................... 11 5.5 Statements ........................................ 12 5.6 ExpressionStatements............................... 12 5.7 AtomicLiteralExpressions ............................ 14 5.8 ArithmeticExpressions ............................. 14 5.9 AssignmentExpressions .............................. 18 5.10 Auto Increment & Decrement Expressions . 19 5.11 Comparison Expressions . 20 5.12 Logical Expressions . 24 5.13 Conditional Expression . 24 5.14 ExpressionSequences ............................... 25 5.15 ArrayDeferencing ................................. 25 5.16 IdentifierExpressions .............................. 28 5.17 PathExpressions.................................... 32 5.18 FunctionCall....................................... 33 5.19 MethodInvocation................................... 34 5.20 Eval/Unval Operators . 37 5.21 SetExpressions................................... -
The Evolution of Lisp
1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp. -
Allegro CL User Guide
Allegro CL User Guide Volume 1 (of 2) version 4.3 March, 1996 Copyright and other notices: This is revision 6 of this manual. This manual has Franz Inc. document number D-U-00-000-01-60320-1-6. Copyright 1985-1996 by Franz Inc. All rights reserved. No part of this pub- lication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical, by photocopying or recording, or otherwise, without the prior and explicit written permission of Franz incorpo- rated. Restricted rights legend: Use, duplication, and disclosure by the United States Government are subject to Restricted Rights for Commercial Software devel- oped at private expense as specified in DOD FAR 52.227-7013 (c) (1) (ii). Allegro CL and Allegro Composer are registered trademarks of Franz Inc. Allegro Common Windows, Allegro Presto, Allegro Runtime, and Allegro Matrix are trademarks of Franz inc. Unix is a trademark of AT&T. The Allegro CL software as provided may contain material copyright Xerox Corp. and the Open Systems Foundation. All such material is used and distrib- uted with permission. Other, uncopyrighted material originally developed at MIT and at CMU is also included. Appendix B is a reproduction of chapters 5 and 6 of The Art of the Metaobject Protocol by G. Kiczales, J. des Rivieres, and D. Bobrow. All this material is used with permission and we thank the authors and their publishers for letting us reproduce their material. Contents Volume 1 Preface 1 Introduction 1.1 The language 1-1 1.2 History 1-1 1.3 Format -
Common Lisp - Viel Mehr Als Nur D¨Amliche Klammern
Einf¨uhrung Geschichtliches Die Programmiersprache Abschluß Common Lisp - viel mehr als nur d¨amliche Klammern Alexander Schreiber <[email protected]> http://www.thangorodrim.de Chemnitzer Linux-Tage 2005 Greenspun’s Tenth Rule of Programming: “Any sufficiently-complicated C or Fortran program contains an ad-hoc, informally-specified bug-ridden slow implementation of half of Common Lisp.” Alexander Schreiber <[email protected]> Common Lisp - viel mehr als nur d¨amliche Klammern 1 / 30 Einf¨uhrung Geschichtliches Die Programmiersprache Abschluß Ubersicht¨ 1 Einf¨uhrung 2 Geschichtliches 3 Die Programmiersprache 4 Abschluß Alexander Schreiber <[email protected]> Common Lisp - viel mehr als nur d¨amliche Klammern 2 / 30 Einf¨uhrung Geschichtliches Die Programmiersprache Abschluß Lisp? Wof¨ur? NASA: Remote Agent (Deep Space 1), Planner (Mars Pathfinder), Viaweb, gekauft von Yahoo f¨ur50 Millionen $, ITA Software: Orbitz engine (Flugticket Planung), Square USA: Production tracking f¨ur“Final Fantasy”, Naughty Dog Software: Crash Bandicoot auf Sony Playstation, AMD & AMI: Chip-Design & Verifizierung, typischerweise komplexe Probleme: Wissensverarbeitung, Expertensysteme, Planungssysteme Alexander Schreiber <[email protected]> Common Lisp - viel mehr als nur d¨amliche Klammern 3 / 30 Einf¨uhrung Geschichtliches Die Programmiersprache Abschluß Lisp? Wof¨ur? NASA: Remote Agent (Deep Space 1), Planner (Mars Pathfinder), Viaweb, gekauft von Yahoo f¨ur50 Millionen $, ITA Software: Orbitz engine (Flugticket Planung), Square USA: Production tracking -
Object-Oriented Databases Need for Complex Data Types
Object-Oriented Databases! ■" Need for Complex Data Types! ■" The Object-Oriented Data Model! ■" Object-Oriented Languages! ■" Persistent Programming Languages! ■" Persistent C++ Systems! 8.1! Need for Complex Data Types! ■" Traditional database applications in data processing had conceptually simple data types! é" Relatively few data types, first normal form holds! ■" Complex data types have grown more important in recent years! é" E.g. Addresses can be viewed as a ! Ø" Single string, or! Ø" Separate attributes for each part, or! Ø" Composite attributes (which are not in first normal form)! é" E.g. it is often convenient to store multivalued attributes as-is, without creating a separate relation to store the values in first normal form! ■" Applications! é" computer-aided design, computer-aided software engineering! é" multimedia and image databases, and document/hypertext databases.! 8.2! 1! Object-Oriented Data Model! ■" Loosely speaking, an object corresponds to an entity in the E- R model.! ■" The object-oriented paradigm is based on encapsulating code and data related to an object into single unit.! ■" The object-oriented data model is a logical data model (like the E-R model).! ■" Adaptation of the object-oriented programming paradigm (e.g., Smalltalk, C++) to database systems.! 8.3! Object Structure! ■" An object has associated with it:! é" A set of variables that contain the data for the object. The value of each variable is itself an object.! é" A set of messages to which the object responds; each message may have zero, one, or more parameters.! é" A set of methods, each of which is a body of code to implement a message; a method returns a value as the response to the message! ■" The physical representation of data is visible only to the implementor of the object! ■" Messages and responses provide the only external interface to an object.! ■" The term message does not necessarily imply physical message passing. -
Object Oriented Database Management Systems-Concepts
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Global Journal of Computer Science and Technology (GJCST) Global Journal of Computer Science and Technology: C Software & Data Engineering Volume 15 Issue 3 Version 1.0 Year 2015 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 0975-4172 & Print ISSN: 0975-4350 Object Oriented Database Management Systems-Concepts, Advantages, Limitations and Comparative Study with Relational Database Management Systems By Hardeep Singh Damesha Lovely Professional University, India Abstract- Object Oriented Databases stores data in the form of objects. An Object is something uniquely identifiable which models a real world entity and has got state and behaviour. In Object Oriented based Databases capabilities of Object based paradigm for Programming and databases are combined due remove the limitations of Relational databases and on the demand of some advanced applications. In this paper, need of Object database, approaches for Object database implementation, requirements for database to an Object database, Perspectives of Object database, architecture approaches for Object databases, the achievements and weakness of Object Databases and comparison with relational database are discussed. Keywords: relational databases, object based databases, object and object data model. GJCST-C Classification : F.3.3 ObjectOrientedDatabaseManagementSystemsConceptsAdvantagesLimitationsandComparativeStudywithRelationalDatabaseManagementSystems Strictly as per the compliance and regulations of: © 2015. Hardeep Singh Damesha. This is a research/review paper, distributed under the terms of the Creative Commons Attribution- Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use, distribution, and reproduction inany medium, provided the original work is properly cited. -
Advanced Use of Lisp's FORMAT Function
Advanced Use of Lisp’s FORMAT Function Gene Michael Stover created 22 January 2004 updated Saturday, 30 October 2004 Copyright c 2004 Gene Michael Stover. All rights reserved. Permission to copy, store, & view this document unmodified & in its entirety is granted. Contents 1 Introduction 1 2 Wanted & To Do 2 3 How to Print a Row 2 4 How to Print a Table 3 5 How to Use Format for Word Wrap 4 6 How to Print a Comma-Separated List 6 7 HowtoUseCommasinEnglishStyle 7 8 Conclusion 7 A Change Log 8 B Other File Formats 8 1 Introduction Lisp’s format function is analogous to C’s printf function, but format can do a whole lot more. format can iterate, use conditionals, process nested format strings, & recurse into format strings embedded into its arguments. The more-or-less official documentation for format is at the Common Lisp Hyperspec[X3J]. There is a complete if terse description of it in Paul Graham’s ANSI Common Lisp[Gra96], but my favorite description of format is in Franz’s Common Lisp The Reference[Inc88]. 1 Knowing the details of how something works isn’t the same as knowing how to use it well. Good applications of format aren’t obvious from its documentation. Thus this article. 2 Wanted & To Do Read the original article about format[Wat89]. Possibly incorporate ideas from it, or refer to them. Definitely refer to it in this article so people know it exists. (I didn’t know it existed at all even though I searched the web for such articles before I wrote this one. -
1960 1970 1980 1990 Japan California………………… UT IL in PA NJ NY Massachusetts………… Europe Lisp 1.5 TX
Japan UT IL PA NY Massachusetts………… Europe California………………… TX IN NJ Lisp 1.5 1960 1970 1980 1990 Direct Relationships Lisp 1.5 LISP Family Graph Lisp 1.5 LISP 1.5 Family Lisp 1.5 Basic PDP-1 LISP M-460 LISP 7090 LISP 1.5 BBN PDP-1 LISP 7094 LISP 1.5 Stanford PDP-1 LISP SDS-940 LISP Q-32 LISP PDP-6 LISP LISP 2 MLISP MIT PDP-1 LISP Stanford LISP 1.6 Cambridge LISP Standard LISP UCI-LISP MacLisp Family PDP-6 LISP MacLisp Multics MacLisp CMU SAIL MacLisp MacLisp VLISP Franz Lisp Machine Lisp LISP S-1 Lisp NIL Spice Lisp Zetalisp IBM Lisp Family 7090 LISP 1.5 Lisp360 Lisp370 Interlisp Illinois SAIL MacLisp VM LISP Interlisp Family SDS-940 LISP BBN-LISP Interlisp 370 Spaghetti stacks Interlisp LOOPS Common LOOPS Lisp Machines Spice Lisp Machine Lisp Interlisp Lisp (MIT CONS) (Xerox (BBN Jericho) (PERQ) (MIT CADR) Alto, Dorado, (LMI Lambda) Dolphin, Dandelion) Lisp Zetalisp TAO (3600) (ELIS) Machine Lisp (TI Explorer) Common Lisp Family APL APL\360 ECL Interlisp ARPA S-1 Lisp Scheme Meeting Spice at SRI, Lisp April 1991 PSL KCL NIL CLTL1 Zetalisp X3J13 CLTL2 CLOS ISLISP X3J13 Scheme Extended Family COMIT Algol 60 SNOBOL METEOR CONVERT Simula 67 Planner LOGO DAISY, Muddle Scheme 311, Microplanner Scheme 84 Conniver PLASMA (actors) Scheme Revised Scheme T 2 CLTL1 Revised Scheme Revised2 Scheme 3 CScheme Revised Scheme MacScheme PC Scheme Chez Scheme IEEE Revised4 Scheme Scheme Object-Oriented Influence Simula 67 Smalltalk-71 LOGO Smalltalk-72 CLU PLASMA (actors) Flavors Common Objects LOOPS ObjectLisp CommonLOOPS EuLisp New Flavors CLTL2 CLOS Dylan X3J13 ISLISP Lambda Calculus Church, 1941 λ Influence Lisp 1.5 Landin (SECD, ISWIM) Evans (PAL) Reynolds (Definitional Interpreters) Lisp370 Scheme HOPE ML Standard ML Standard ML of New Jersey Haskell FORTRAN Influence FORTRAN FLPL Lisp 1.5 S-1 Lisp Lisp Machine Lisp CLTL1 Revised3 Zetalisp Scheme X3J13 CLTL2 IEEE Scheme X3J13 John McCarthy Lisp 1.5 Danny Bobrow Richard Gabriel Guy Steele Dave Moon Jon L White. -
Release Notes
LispWorks® Release Notes and Installation Guide Version 6.0 Copyright and Trademarks LispWorks Release Notes and Installation Guide Version 6.0 December 2009 Copyright © 2009 by LispWorks Ltd. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of LispWorks Ltd. The information in this publication is provided for information only, is subject to change without notice, and should not be construed as a commitment by LispWorks Ltd. LispWorks Ltd assumes no responsibility or liability for any errors or inaccuracies that may appear in this publication. The software described in this book is furnished under license and may only be used or copied in accordance with the terms of that license. LispWorks and KnowledgeWorks are registered trademarks of LispWorks Ltd. Adobe and PostScript are registered trademarks of Adobe Systems Incorporated. Other brand or product names are the registered trade- marks or trademarks of their respective holders. The code for walker.lisp and compute-combination-points is excerpted with permission from PCL, Copyright © 1985, 1986, 1987, 1988 Xerox Corporation. The XP Pretty Printer bears the following copyright notice, which applies to the parts of LispWorks derived therefrom: Copyright © 1989 by the Massachusetts Institute of Technology, Cambridge, Massachusetts. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, pro- vided that this copyright and permission notice appear in all copies and supporting documentation, and that the name of M.I.T. -
Object-Relational DBMS
Session-7: Object-Relational DBMS Cyrus Shahabi 1 Motivation Relational databases (2 nd generation) were designed for traditional banking-type applications with well-structured, homogenous data elements (vertical & horizontal homogeneity) and a minimal fixed set of limited operations (e.g., set & tuple- oriented operations). New applications (e.g., CAD, CAM, CASE, OA, and CAP), however, require concurrent modeling of both data and processes acting upon the data. Hence, a combination of database and software-engineering disciplines lead to the 3 rd generation of database management systems: Object Database Management Systems, ODBMS. Note that a classic debate in database community is that do we need a new model or relational model is sufficient and can be extended to support new applications. 2 Motivation … People in favor of relational model argue that: New versions of SQL (e.g., SQL-92 and SQL3) are designed to incorporate functionality required by new applications (UDT, UDF, …). Embedded SQL can address almost all the requirements of the new applications. “Object people”, however, counter-argue that in the above- mentioned solutions, it is the application rather than the inherent capabilities of the model that provides the required functionality. Object people say there is an impedance mismatch between programming languages (handling one row of data at a time) and SQL (multiple row handling) which makes conversions inefficient. Relational people say, instead of defining new models, let’s introduce set-level functionality into