The Role of LPA in Kidney Pathologies Koryun Mirzoyan

Total Page:16

File Type:pdf, Size:1020Kb

The Role of LPA in Kidney Pathologies Koryun Mirzoyan The role of LPA in kidney pathologies Koryun Mirzoyan To cite this version: Koryun Mirzoyan. The role of LPA in kidney pathologies. Human health and pathology. Université Paul Sabatier - Toulouse III, 2017. English. NNT : 2017TOU30073. tel-01825826 HAL Id: tel-01825826 https://tel.archives-ouvertes.fr/tel-01825826 Submitted on 28 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5)µ4& &OWVFEFMPCUFOUJPOEV %0$503"5%&-6/*7&34*5²%&506-064& %ÏMJWSÏQBS Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) 1SÏTFOUÏFFUTPVUFOVFQBS Koryun MIRZOYAN le mercredi 20 septembre 2017 5JUSF The role of LPA in kidney pathologies ²DPMFEPDUPSBMF et discipline ou spécialité ED BSB : Physiopathologie 6OJUÏEFSFDIFSDIF INSERM U1048/I2MC - équipe 12 %JSFDUFVSUSJDF T EFʾÒTF Dr Jean-Sébastien Saulnier-Blache Jury: Pr Isabelle Castan-Laurell (Présidente du Jury) Dr Alberto Ortiz (Rapporteur) Dr Olivier Peyruchaud (Rapporteur) Dr Jean-Sébastien Saulnier-Blache (Directeur de thèse) Aknowledgements First of all I would like to thank all the members of the jury and reporters for generously accepting to evaluate my work and participating in my thesis defense. Thank you for your valuable advices and comments that highly improved the quality of the thesis. I would like to thank all organizers of the Erasmus Mundus MEDEA project and especially to Elodie Balonas and Oxana Kunduzova who made big efforts to realize this project and to give me the possibility for this wonderful journey full of with new knowledge, experience and adventures. Thanks to all members of team 12 who made the 3 years of lab-life filled with lot of work but also with fun and emotions: thanks to Julie, Colette, Bénédicte, Ben, Guylène, Eric, Marion, Dimitri, Stan for sharing the experience and knowledge, for the company, help and advices. Special thanks to Audrey, who discovered for me all the loveliness of biological experiments and taught me to work in the lab. Big thanks to Jean-Loup and Joost for accepting me in the team 12 and giving the opportunity to work within this nice team during 3 years. To PhD students after me, Valerie and Franck, thank you for your company, for belote, pétanque and beer evenings. Look always forward and work hard. The end of the PhD is not so far. To my mentor Jean-Sébastien: you are the kindest supervisor I have ever met. Thank you for everything, for your supervision, for the advices and the support you gave me. I hope we will meet in the future and continue to collaborate and work together. Big thanks to my family and all my friends in Armenia, in France and in other pieces all over the world. Without your support and encouragement it wouldn’t be possible to finish this work. 1 This thesis is dedicated to my parents Samvel Mirzoyan and Janna Sargsyan. 2 Index Abstract ..................................................................................................................................6 Résumé ..................................................................................................................................8 Figures and tables legends .................................................................................................... 10 Abbreviations ....................................................................................................................... 11 1. Introduction ...................................................................................................................... 13 1.1 The kidneys ................................................................................................................. 13 1.2 Kidney pathologies...................................................................................................... 14 1.2.1 Acute kidney injury .............................................................................................. 14 1.2.1.1 Definition and classification ........................................................................... 14 1.2.1.2 Epidemiology of AKI ..................................................................................... 17 1.2.1.3 Sepsis-induced AKI ........................................................................................ 17 1.2.1.3.1 Pathogenesis of sepsis-induced AKI ......................................................... 17 1.2.1.3.1.1 Hemodynamic changes ...................................................................... 17 1.2.1.3.1.2 Inflammation in sepsis-induced AKI .................................................. 19 1.2.1.3.1.3 Adaptive responses in tubular epithelial cells ..................................... 21 1.2.1.3.2 Treatment strategies ................................................................................. 21 1.2.2 Chronic kidney disease ......................................................................................... 22 1.2.2.1 Definition and classification ........................................................................... 22 1.2.2.2 Epidemiology of CKD .................................................................................... 23 1.2.2.3 CKD pathogenesis .......................................................................................... 24 1.2.2.3.1 Glomerulosclerosis .................................................................................. 24 1.2.2.3.2 Tubulo-interstitial fibrosis (TIF) .............................................................. 25 1.2.2.3.2.1 Inflammation ..................................................................................... 25 1.2.2.3.2.2 Appearance of ECM producing cells.................................................. 26 1.2.2.3.2.3 Pro-fibrotic cytokines ........................................................................ 27 1.2.2.3.2.4 Accumulation of ECM ....................................................................... 27 1.2.2.4 Progression of CKD ....................................................................................... 29 1.2.2.5 Therapeutic strategies ..................................................................................... 29 1.2.3 AKI and CKD are interconnected ......................................................................... 30 1.2.3.1 AKI is a risk factor for CKD .......................................................................... 30 1.2.3.1.1 The mechanisms of AKI progression to CKD ............................................ 30 1.2.4 Conclusions .......................................................................................................... 31 3 2. Lysophosphatidic acid ...................................................................................................... 32 2.1-Structure ..................................................................................................................... 32 2.2 Synthesis of LPA ........................................................................................................ 32 2.2.1 Intracellular synthesis ........................................................................................... 33 2.2.2 Extracellular synthesis .......................................................................................... 33 2.3 Degradation of LPA .................................................................................................... 34 2.4 Transport of LPA ........................................................................................................ 36 2.5 LPA in biologic fluids ................................................................................................. 36 2.5.1 LPA in blood ........................................................................................................ 36 2.5.2 LPA in other biological fluids. .............................................................................. 36 2.6 LPA receptors ............................................................................................................. 37 2.6.1 G-protein coupled membrane receptors ................................................................. 37 2.6.1.1. Classification and tissue distribution .............................................................. 37 2.6.1.2 Intracellular signaling pathways ..................................................................... 39 2.6.1.3 Relative specificity of LPA receptors towards different LPA species .............. 40 2.6.1.4 Genetic deletions and associated pathologies .................................................. 41 2.6.2 Intracellular receptors ........................................................................................... 43 2.6.3 Other potential receptors ....................................................................................... 44 2.6.4 LPA receptor antagonists ...................................................................................... 44 2.7 Physiological and pathophysiological effects of LPA .................................................. 45 2.7.1 Cancer .................................................................................................................
Recommended publications
  • Lysophosphatidic Acid and Its Receptors: Pharmacology and Therapeutic Potential in Atherosclerosis and Vascular Disease
    JPT-107404; No of Pages 13 Pharmacology & Therapeutics xxx (2019) xxx Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease Ying Zhou a, Peter J. Little a,b, Hang T. Ta a,c, Suowen Xu d, Danielle Kamato a,b,⁎ a School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia b Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China c Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD 4072, Australia d Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA article info abstract Available online xxxx Lysophosphatidic acid (LPA) is a collective name for a set of bioactive lipid species. Via six widely distributed G protein-coupled receptors (GPCRs), LPA elicits a plethora of biological responses, contributing to inflammation, Keywords: thrombosis and atherosclerosis. There have recently been considerable advances in GPCR signaling especially Lysophosphatidic acid recognition of the extended role for GPCR transactivation of tyrosine and serine/threonine kinase growth factor G-protein coupled receptors receptors. This review covers LPA signaling pathways in the light of new information. The use of transgenic and Atherosclerosis gene knockout animals, gene manipulated cells, pharmacological LPA receptor agonists and antagonists have Gproteins fi β-arrestins provided many insights into the biological signi cance of LPA and individual LPA receptors in the progression Transactivation of atherosclerosis and vascular diseases.
    [Show full text]
  • The Autotaxin–Lysophosphatidic Acid Axis Modulates Histone Acetylation and Gene Expression During Oligodendrocyte Differentiation
    The Journal of Neuroscience, August 12, 2015 • 35(32):11399–11414 • 11399 Cellular/Molecular The Autotaxin–Lysophosphatidic Acid Axis Modulates Histone Acetylation and Gene Expression during Oligodendrocyte Differentiation Natalie A. Wheeler,1 James A. Lister,2 and Babette Fuss1 Departments of 1Anatomy and Neurobiology and 2Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298 During development, oligodendrocytes (OLGs), the myelinating cells of the CNS, undergo a stepwise progression during which OLG progenitors, specified from neural stem/progenitor cells, differentiate into fully mature myelinating OLGs. This progression along the OLG lineage is characterized by well synchronized changes in morphology and gene expression patterns. The latter have been found to be particularly critical during the early stages of the lineage, and they have been well described to be regulated by epigenetic mechanisms, especially by the activity of the histone deacetylases HDAC1 and HDAC2. The data presented here identify the extracellular factor autotaxin (ATX) as a novel upstream signal modulating HDAC1/2 activity and gene expression in cells of the OLG lineage. Using the zebrafish as an in vivo model system as well as rodent primary OLG cultures, this functional property of ATX was found to be mediated by its lysophospholipase D (lysoPLD) activity, which has been well characterized to generate the lipid signaling molecule lysophosphatidic acid (LPA). More specifically, the lysoPLD activity of ATX was found to modulate HDAC1/2 regulated gene expression during a time window coinciding with the transition from OLG progenitor to early differentiating OLG. In contrast, HDAC1/2 regulated gene expression during the transition from neural stem/progenitor to OLG progenitor appeared unaffected by ATX and its lysoPLD activity.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • Antibody Response Cell Antigen Receptor Signaling And
    Lysophosphatidic Acid Receptor 5 Inhibits B Cell Antigen Receptor Signaling and Antibody Response This information is current as Jiancheng Hu, Shannon K. Oda, Kristin Shotts, Erin E. of September 24, 2021. Donovan, Pamela Strauch, Lindsey M. Pujanauski, Francisco Victorino, Amin Al-Shami, Yuko Fujiwara, Gabor Tigyi, Tamas Oravecz, Roberta Pelanda and Raul M. Torres J Immunol 2014; 193:85-95; Prepublished online 2 June 2014; Downloaded from doi: 10.4049/jimmunol.1300429 http://www.jimmunol.org/content/193/1/85 Supplementary http://www.jimmunol.org/content/suppl/2014/05/31/jimmunol.130042 http://www.jimmunol.org/ Material 9.DCSupplemental References This article cites 63 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/193/1/85.full#ref-list-1 Why The JI? Submit online. by guest on September 24, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Lysophosphatidic Acid Receptor 5 Inhibits B Cell Antigen Receptor Signaling and Antibody Response Jiancheng Hu,*,1,2 Shannon K.
    [Show full text]
  • Survival-Associated Metabolic Genes in Colon and Rectal Cancers
    Survival-associated Metabolic Genes in Colon and Rectal Cancers Yanfen Cui ( [email protected] ) Tianjin Cancer Institute: Tianjin Tumor Hospital https://orcid.org/0000-0001-7760-7503 Baoai Han tianjin tumor hospital He Zhang tianjin tumor hospital Zhiyong Wang tianjin tumor hospital Hui Liu tianjin tumor hospital Fei Zhang tianjin tumor hospital Ruifang Niu tianjin tumor hospital Research Keywords: colon cancer, rectal cancer, prognosis, metabolism Posted Date: December 4th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-117478/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/42 Abstract Background Uncontrolled proliferation is the most prominent biological feature of tumors. To rapidly proliferate and maximize the use of available nutrients, tumor cells regulate their metabolic behavior and the expression of metabolism-related genes (MRGs). In this study, we aimed to construct prognosis models for colon and rectal cancers, using MRGs to indicate the prognoses of patients. Methods We rst acquired the gene expression proles of colon and rectal cancers from the TCGA and GEO database, and utilized univariate Cox analysis, lasso regression, and multivariable cox analysis to identify MRGs for risk models. Then GSEA and KEGG functional enrichment analysis were utilized to identify the metabolism pathway of MRGs in the risk models and analyzed these genes comprehensively using GSCALite. Results Eight genes (CPT1C, PLCB2, PLA2G2D, GAMT, ENPP2, PIP4K2B, GPX3, and GSR) in the colon cancer risk model and six genes (TDO2, PKLR, GAMT, EARS2, ACO1, and WAS) in the rectal cancer risk model were identied successfully. Multivariate Cox analysis indicated that the models predicted overall survival accurately and independently for patients with colon or rectal cancer.
    [Show full text]
  • NIH Public Access Author Manuscript Neuron Glia Biol
    NIH Public Access Author Manuscript Neuron Glia Biol. Author manuscript; available in PMC 2006 May 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Neuron Glia Biol. 2006 May ; 2(2): 125±138. Purinergic receptors activating rapid intracellular Ca2+ increases in microglia Alan R. Light1, Ying Wu2, Ronald W. Hughen1, and Peter B. Guthrie3 1 Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA 2 Oral Biology Program, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27510, USA 3 Scientific Review Administrator, Center for Scientific Review, National Institutes of Health, 6701 Rockledge Drive, Room 4142 Msc 7850, Bethesda, MD 20892-7850, USA Abstract We provide both molecular and pharmacological evidence that the metabotropic, purinergic, P2Y6, P2Y12 and P2Y13 receptors and the ionotropic P2X4 receptor contribute strongly to the rapid calcium response caused by ATP and its analogues in mouse microglia. Real-time PCR demonstrates that the most prevalent P2 receptor in microglia is P2Y6 followed, in order, by P2X4, P2Y12, and P2X7 = P2Y13. Only very small quantities of mRNA for P2Y1, P2Y2, P2Y4, P2Y14, P2X3 and P2X5 were found. Dose-response curves of the rapid calcium response gave a potency order of: 2MeSADP>ADP=UDP=IDP=UTP>ATP>BzATP, whereas A2P4 had little effect. Pertussis toxin partially blocked responses to 2MeSADP, ADP and UDP. The P2X4 antagonist suramin, but not PPADS, significantly blocked responses to ATP. These data indicate that P2Y6, P2Y12, P2Y13 and P2X receptors mediate much of the rapid calcium responses and shape changes in microglia to low concentrations of ATP, presumably at least partly because ATP is rapidly hydrolyzed to ADP.
    [Show full text]
  • Phosphodiesterase (PDE)
    Phosphodiesterase (PDE) Phosphodiesterase (PDE) is any enzyme that breaks a phosphodiester bond. Usually, people speaking of phosphodiesterase are referring to cyclic nucleotide phosphodiesterases, which have great clinical significance and are described below. However, there are many other families of phosphodiesterases, including phospholipases C and D, autotaxin, sphingomyelin phosphodiesterase, DNases, RNases, and restriction endonucleases, as well as numerous less-well-characterized small-molecule phosphodiesterases. The cyclic nucleotide phosphodiesterases comprise a group of enzymes that degrade the phosphodiester bond in the second messenger molecules cAMP and cGMP. They regulate the localization, duration, and amplitude of cyclic nucleotide signaling within subcellular domains. PDEs are therefore important regulators ofsignal transduction mediated by these second messenger molecules. www.MedChemExpress.com 1 Phosphodiesterase (PDE) Inhibitors, Activators & Modulators (+)-Medioresinol Di-O-β-D-glucopyranoside (R)-(-)-Rolipram Cat. No.: HY-N8209 ((R)-Rolipram; (-)-Rolipram) Cat. No.: HY-16900A (+)-Medioresinol Di-O-β-D-glucopyranoside is a (R)-(-)-Rolipram is the R-enantiomer of Rolipram. lignan glucoside with strong inhibitory activity Rolipram is a selective inhibitor of of 3', 5'-cyclic monophosphate (cyclic AMP) phosphodiesterases PDE4 with IC50 of 3 nM, 130 nM phosphodiesterase. and 240 nM for PDE4A, PDE4B, and PDE4D, respectively. Purity: >98% Purity: 99.91% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 10 mM × 1 mL, 10 mg, 50 mg (R)-DNMDP (S)-(+)-Rolipram Cat. No.: HY-122751 ((+)-Rolipram; (S)-Rolipram) Cat. No.: HY-B0392 (R)-DNMDP is a potent and selective cancer cell (S)-(+)-Rolipram ((+)-Rolipram) is a cyclic cytotoxic agent. (R)-DNMDP, the R-form of DNMDP, AMP(cAMP)-specific phosphodiesterase (PDE) binds PDE3A directly.
    [Show full text]
  • And LPA 3-Mediated Recruitment of Leukocytes In
    Supplemental Material can be found at: http://www.jlr.org/content/suppl/2011/04/26/jlr.M008045.DC1 .html ␣ TNF- promotes LPA1 - and LPA3 -mediated recruitment of leukocytes in vivo through CXCR2 ligand chemokines Chenqi Zhao , 1, * Anne Sardella , 1, * Jerold Chun , † Patrice E. Poubelle , * Maria J. Fernandes , * and Sylvain G. Bourgoin 2, * Rheumatology and Immunology Research Center,* CHUQ-CHUL Research Center and Faculty of † Medicine, Laval University , Québec City, Québec, Canada ; and Department of Molecular Biology, The Scripps Research Institute , La Jolla, CA Downloaded from Abstract Lysophosphatidic acid (LPA) is a bioactive lyso- Lysophosphatidic acid (LPA) is a simple lipid with a sin- phospholipid present in low concentrations in serum and gle fatty acyl chain, a glycerol backbone, and a free phos- biological fl uids but in high concentrations at sites of infl am- phate group ( 1 ). Despite the simplicity of its structure, www.jlr.org mation. LPA evokes a variety of cellular responses via binding LPA has been implicated in various physiological (cell to and activation of its specifi c G protein-coupled receptors growth, differentiation, migration, and survival) and path- (GPCR), namely LPA1-6 . Even though LPA is a chemoattrac- tant for infl ammatory cells in vitro, such a role for LPA in ological (angiogenesis, cancer, and autoimmunity) situa- at Kresge Library, The Scripps Research Institute, on November 14, 2012 vivo remains largely unexplored. In the present study, we tions. LPA is present in micromolar concentrations in used the murine air pouch model to study LPA-mediated serum and biological fl uids and in higher concentrations leukocyte recruitment in vivo using selective LPA receptor at sites of infl ammation and tumor ( 2 ).
    [Show full text]
  • Macrophages/Microglia in the Glioblastoma Tumor Microenvironment
    International Journal of Molecular Sciences Review Macrophages/Microglia in the Glioblastoma Tumor Microenvironment Jun Ma, Clark C. Chen * and Ming Li * Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA; [email protected] * Correspondence: [email protected] (C.C.C.); [email protected] (M.L.) Abstract: The complex interaction between glioblastoma and its microenvironment has been rec- ognized for decades. Among various immune profiles, the major population is tumor-associated macrophage, with microglia as its localized homolog. The present definition of such myeloid cells is based on a series of cell markers. These good sentinel cells experience significant changes, facilitat- ing glioblastoma development and protecting it from therapeutic treatments. Huge, complicated mechanisms are involved during the overall processes. A lot of effort has been dedicated to crack the mysterious codes in macrophage/microglia recruiting, activating, reprogramming, and functioning. We have made our path. With more and more key factors identified, a lot of new therapeutic methods could be explored to break the ominous loop, to enhance tumor sensitivity to treatments, and to improve the prognosis of glioblastoma patients. However, it might be a synergistic system rather than a series of clear, stepwise events. There are still significant challenges before the light of truth can shine onto the field. Here, we summarize recent advances in this field, reviewing the path we have been on and where we are now. Keywords: glioblastoma; tumor microenvironment; glioblastoma-associated macrophages/microglia; macrophage; microglia Citation: Ma, J.; Chen, C.C.; Li, M. Macrophages/Microglia in the Glioblastoma Tumor Int. J. Mol. Sci. Microenvironment. 1. Glioblastoma Associated Macrophages/Microglia 2021, 22, 5775.
    [Show full text]
  • Blood Platelet Adenosine Receptors As Potential Targets for Anti-Platelet Therapy
    International Journal of Molecular Sciences Review Blood Platelet Adenosine Receptors as Potential Targets for Anti-Platelet Therapy Nina Wolska and Marcin Rozalski * Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Science, Medical University of Lodz, 92-215 Lodz, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-504-836-536 Received: 30 September 2019; Accepted: 1 November 2019; Published: 3 November 2019 Abstract: Adenosine receptors are a subfamily of highly-conserved G-protein coupled receptors. They are found in the membranes of various human cells and play many physiological functions. Blood platelets express two (A2A and A2B) of the four known adenosine receptor subtypes (A1,A2A, A2B, and A3). Agonization of these receptors results in an enhanced intracellular cAMP and the inhibition of platelet activation and aggregation. Therefore, adenosine receptors A2A and A2B could be targets for anti-platelet therapy, especially under circumstances when classic therapy based on antagonizing the purinergic receptor P2Y12 is insufficient or problematic. Apart from adenosine, there is a group of synthetic, selective, longer-lasting agonists of A2A and A2B receptors reported in the literature. This group includes agonists with good selectivity for A2A or A2B receptors, as well as non-selective compounds that activate more than one type of adenosine receptor. Chemically, most A2A and A2B adenosine receptor agonists are adenosine analogues, with either adenine or ribose substituted by single or multiple foreign substituents. However, a group of non-adenosine derivative agonists has also been described. This review aims to systematically describe known agonists of A2A and A2B receptors and review the available literature data on their effects on platelet function.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • G Protein-Coupled Receptors in Cancer
    International Journal of Molecular Sciences Review G Protein-Coupled Receptors in Cancer Rachel Bar-Shavit 1,*, Myriam Maoz 1, Arun Kancharla 1, Jeetendra Kumar Nag 1, Daniel Agranovich 1, Sorina Grisaru-Granovsky 2 and Beatrice Uziely 1 1 Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; [email protected] (M.M.); [email protected] (A.K.); [email protected] (J.K.N.); [email protected] (D.A.); [email protected] (B.U.) 2 Department of Obstetrics and Gynecology, Shaare-Zedek Medical Center, Jerusalem 91031, Israel; [email protected] * Correspondence: [email protected]; Tel.: +972-2-677-7563; Fax: +972-2-642-7485 Academic Editors: Kathleen Van Craenenbroeck and Gregor Drummen Received: 6 June 2016; Accepted: 8 August 2016; Published: 12 August 2016 Abstract: Despite the fact that G protein-coupled receptors (GPCRs) are the largest signal-conveying receptor family and mediate many physiological processes, their role in tumor biology is underappreciated. Numerous lines of evidence now associate GPCRs and their downstream signaling targets in cancer growth and development. Indeed, GPCRs control many features of tumorigenesis, including immune cell-mediated functions, proliferation, invasion and survival at the secondary site. Technological advances have further substantiated GPCR modifications in human tumors. Among these are point mutations, gene overexpression, GPCR silencing by promoter methylation and the number of gene copies. At this point, it is imperative to elucidate specific signaling pathways of “cancer driver” GPCRs. Emerging data on GPCR biology point to functional selectivity and “biased agonism”; hence, there is a diminishing enthusiasm for the concept of “one drug per GPCR target” and increasing interest in the identification of several drug options.
    [Show full text]