View Appendix A12.2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methods and Work Profile
REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services ....................................... -
The Irish Mountain Ringlet [Online]
24 November 2014 (original version February 2014) © Peter Eeles Citation: Eeles, P. (2014). The Irish Mountain Ringlet [Online]. Available from http://www.dispar.org/reference.php?id=1 [Accessed November 24, 2014]. The Irish Mountain Ringlet Peter Eeles Abstract: The presence of the Mountain Ringlet (Erebia epiphron) in Ireland has been a topic of much interest to Lepidopterists for decades, partly because of the small number of specimens that are reputedly Irish. This article examines available literature to date and includes images of all four surviving specimens that can lay claim to Irish provenance. [This is an update to the article written in February 2014]. The presence of the Mountain Ringlet (Erebia epiphron) in Ireland has been a topic of much interest to Lepidopterists for decades, partly because of the small number of specimens that are reputedly Irish. The Irish Mountain Ringlet is truly the stuff of legend and many articles have been written over the years, including the excellent summary by Chalmers-Hunt (1982). The purpose of this article is to examine all relevant literature and, in particular, the various points of view that have been expressed over the years. This article also includes images of all four surviving specimens that can lay claim to Irish provenance and some of the sites mentioned in conjunction with these specimens are shown in Figure 1. Figure 1 - Key Sites The Birchall Mountain Ringlet (1854) The first reported occurrence of Mountain Ringlet in Ireland was provided by Edwin Birchall (Birchall, 1865) where, -
Erebia Epiphron and Erebia Orientalis
applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Biological Journal of the Linnean Society, 2018, XX, 1–11. With 4 figures. Erebia epiphron and Erebia orientalis: sibling butterfly Downloaded from https://academic.oup.com/biolinnean/advance-article-abstract/doi/10.1093/biolinnean/bly182/5233450 by guest on 11 December 2018 species with contrasting histories JOAN CARLES HINOJOSA1,4, YERAY MONASTERIO2, RUTH ESCOBÉS2, VLAD DINCĂ3 and ROGER VILA1,* 1Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain 2Asociación Española para la Protección de las Mariposas y su Medio (ZERYNTHIA), Madre de Dios 14, 26004 Logroño, Spain 3Department of Ecology and Genetics, PO Box 3000, 90014 University of Oulu, Finland 4Departament de Ciències de la Salut i de la Vida (DCEXS), Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003 Barcelona, Spain Received 5 September 2018; revised 21 October 2018; accepted for publication 21 October 2018 The butterfly genus Erebia (Lepidoptera: Nymphalidae) is the most diverse in Europe and comprises boreo-alpine habitat specialists. Populations are typically fragmented, restricted to high altitudes in one or several mountain ranges, where habitat is relatively well preserved, but where the effects of climate change are considerable. As a result, the genus Erebia has become a model to study the impact of climate changes, past and present, on intraspecific genetic diversity. In this study, we inferred phylogenetic relationships among populations of the European species Erebia epiphron and Erebia orientalis using mitochondrial (COI) and nuclear markers (ITS2, wg and RPS5), and reconstructed their phylogeographical history. We confirm E. orientalis and E. epiphron as a relatively young species pair that split c. -
Appendix 12.13
A9 Dualling – Crubenmore to Kincraig DMRB Stage 3 Environmental Impact Assessment Appendix 12.13 Outline Habitat Management Plan A9 Dualling – Crubenmore to Kincraig DMRB Stage 3 Environmental Impact Assessment Contents 1 Introduction 1 1.1 Background 1 1.2 Purpose and Objectives 1 1.3 Report Structure 2 2 Ecological Context 3 2.1 Overview 3 2.2 Designated Sites 3 2.3 Habitats 4 3 Mitigation Requirements 7 3.1 Introduction 7 3.2 Construction Phase Habitat Loss 7 3.3 Operational Phase Habitat Loss 9 3.4 Priorities and Scope of the OHMP 11 4 European Dry Heaths 13 4.1 Introduction 13 4.2 Objective 1: Minimise disturbance of dry heath within construction working areas 13 4.3 Objective 2: Restore areas of dry heath disturbed during construction 13 4.4 Objective 3: Dry heath mitigation areas on earthworks slopes 14 5 Woodland 16 5.1 Introduction 16 5.2 Objective 1: Minimise disturbance of woodland within construction working areas 17 5.3 Objective 2: Reinstate trees on areas disturbed during construction 17 5.4 Objective 3: Landscape planting within Proposed Scheme extent 18 5.5 Objective 4: Ancient woodland mitigation areas beyond the Proposed Scheme extent 18 6 Juniper 20 6.1 Introduction 20 6.2 Objective 1: Minimise clearance of juniper within construction working areas 20 6.3 Objective 2: Maximise advantageous site conditions for existing juniper stands 20 6.4 Objective 3: Plant juniper on earthworks slopes 20 7 Other Features 21 7.1 Introduction 21 7.2 Habitat Features for Birds 21 7.3 Habitat Features for CNPA Non-Protected Priority Species -
Treasures of the Krkonoše Tundra
Treasures of The KrKonoše Tundra Podpořeno grantem z Islandu, Lichtenštejnska a Norska. Supported by grant from Iceland, Liechtenstein and Norway. Terminological Dictionary a plant or animal species which originated and only occurs in endemic a specific, geographically defined area; outside of this area it does species not naturally occur a plant or animal species which has survived in a locality since the glacial relict ice ages Hercynides, a geologically ancient, non-limestone, mountain range in central Hercynian and western Europe (Massif Central, Vosges, Schwarzwald, Harz, mountain Šumava, Bayerischer Wald, Krušné hory Mountains and the High range Sudetes) large animals which lived on Earth at the end of the last ice age (e.g. cave bear, cave lion, woolly rhinoceros, woolly mammoth, megafauna spotted hyena); most of these animals died out during the warming in the Holocene dwarf pine scrub with rare plant community on the subarctic ridge peatbogs in Krkonoše cloudberry the individual layers of snow on the slope are moving at different speeds, which causes pressure and on the bodies of plants, creeping snow especially on the branches and trunks of woody plants, which become deformed; various unusually shaped forms of woody plants occur in this way e.g. on avalanche runs (crooked forests) green plant capable of photosynthesis, but extracting water and semi-parasite mineral nutrients from its host plant Life Corcontica supports improved management of the most valuable montane project meadows in Krkonoše and selected plant and animal -
The Story of Creag Meagaidh National Nature Reserve
Scotland’s National Nature Reserves For more information about Creag Meagaidh National Nature Reserve please contact: Scottish Natural Heritage, Creag Meagaidh NNR, Aberarder, Kinlochlaggan, Newtonmore, Inverness-shire, PH20 1BX Telephone/Fax: 01528 544 265 Email: [email protected] The Story of Creag Meagaidh National Nature Reserve The Story of Creag Meagaidh National Nature Reserve Foreword Creag Meagaidh National Nature Reserve (NNR), named after the great whalebacked ridge which dominates the Reserve, is one of the most diverse and important upland sites in Scotland. Creag Meagaidh is a complex massif, with numerous mountain tops and an extensive high summit plateau edged by a dramatic series of ice-carved corries and gullies. The Reserve extends from the highest of the mountain tops to the shores of Loch Laggan. The plateau is carpeted in moss-heath and is an important breeding ground for dotterel. The corries support unusual artic- alpine plants and the lower slopes have scattered patches of ancient woodland dominated by birch. Located 45 kilometres (km) northeast of Fort William and covering nearly 4,000 hectares (ha), the Reserve is owned and managed by Scottish Natural Heritage (SNH). Creag Meagaidh has been a NNR since 1986 and during the last twenty years SNH has worked to restore natural habitats, particularly woodland, on the Reserve. Like much of the Highlands, the vegetation has been heavily grazed for centuries, so it was decided to reduce the number of grazing animals by removing sheep and culling red deer. The aim was not to eliminate grazing animals altogether, but to keep numbers at a level that allowed the habitats, especially the woodland, to recover. -
A Revision of the Xestia (Radddea) Alexis
Zootaxa 3590: 51–62 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:EDCF20FD-2E07-416C-AE2D-7260E09D5B05 A revision of the Xestia (Radddea) alexis (Kozhanchikov, 1928) species-group with a checklist of subgenus Raddea Alphéraky, 1892 and description of brachipterous females (Lepidoptera, Noctuidae, Noctuinae) VLADIMIR S. KONONENKO1, ANTON V. VOLYNKIN2 & ALEXEI YU. MATOV3 1Laboratory of Entomology, Institute of Biology and Soil Science Far Eastern Branch of Russian Academy of Sciences, RF-690022 Vladivostok, Russia. E-mail: [email protected], [email protected] 2Tigirek State Nature Reserve, Nikitina str. 111, RF-656049, Barnaul, Russia. E-mail: [email protected] 3Laboratory of Entomology, Zoological Institute of Russian Academy of Sciences RF-199034 Sankt-Petersburg, Russia. E-mail: [email protected], [email protected] Abstract The subgenus Raddea Alphéraky, 1892 of the genus Xestia Hübner, 1818 is reviewed. A checklist of 29 described species is presented, with 26 new combinations (comb. n.) introduced. Two taxa, Xestia (Raddea) alexis (Kozhanchikov, 1928) and Xestia (Raddea) herrichschaefferi (Alphéraky, 1895) are revised, and three new synonyms are introduced (X. alexis (Kozhanchikov, 1928) = Estimata oschi Kozhanchikov, 1937, syn. n.; = Estimata militzae Kozhanchikov, 1937 syn. n.; Protolampra sobrina (Duponchel, 1843) = Estimata dailingensis Chen, 1984, syn. n.). The name alexis Kozhanchikov, 1937 is recognized as unjustified emendation. Lectotypes for X. alexis and X. herrichschaefferi are designated; brac- hypterous females for X. alexii and X. herrichschaefferi are described. Key words: Lepidoptera, Noctuidae, Noctuinae, Xestia, Raddea, Estimata, taxonomic notes, new synonymy, new com- bination, Russia, South Siberia Introduction Xestia Hübner, 1818 (type-species Noctua ochreago Hübner, 1790) is the largest genus of the tribe Noctuini (Noctuidae) with about 200 species occurring around the World. -
The Mcguire Center for Lepidoptera and Biodiversity
Supplemental Information All specimens used within this study are housed in: the McGuire Center for Lepidoptera and Biodiversity (MGCL) at the Florida Museum of Natural History, Gainesville, USA (FLMNH); the University of Maryland, College Park, USA (UMD); the Muséum national d’Histoire naturelle in Paris, France (MNHN); and the Australian National Insect Collection in Canberra, Australia (ANIC). Methods DNA extraction protocol of dried museum specimens (detailed instructions) Prior to tissue sampling, dried (pinned or papered) specimens were assigned MGCL barcodes, photographed, and their labels digitized. Abdomens were then removed using sterile forceps, cleaned with 100% ethanol between each sample, and the remaining specimens were returned to their respective trays within the MGCL collections. Abdomens were placed in 1.5 mL microcentrifuge tubes with the apex of the abdomen in the conical end of the tube. For larger abdomens, 5 mL microcentrifuge tubes or larger were utilized. A solution of proteinase K (Qiagen Cat #19133) and genomic lysis buffer (OmniPrep Genomic DNA Extraction Kit) in a 1:50 ratio was added to each abdomen containing tube, sufficient to cover the abdomen (typically either 300 µL or 500 µL) - similar to the concept used in Hundsdoerfer & Kitching (1). Ratios of 1:10 and 1:25 were utilized for low quality or rare specimens. Low quality specimens were defined as having little visible tissue inside of the abdomen, mold/fungi growth, or smell of bacterial decay. Samples were incubated overnight (12-18 hours) in a dry air oven at 56°C. Importantly, we also adjusted the ratio depending on the tissue type, i.e., increasing the ratio for particularly large or egg-containing abdomens. -
Contribution to the Knowledge of the Fauna of Bombyces, Sphinges And
driemaandelijks tijdschrift van de VLAAMSE VERENIGING VOOR ENTOMOLOGIE Afgiftekantoor 2170 Merksem 1 ISSN 0771-5277 Periode: oktober – november – december 2002 Erkenningsnr. P209674 Redactie: Dr. J–P. Borie (Compiègne, France), Dr. L. De Bruyn (Antwerpen), T. C. Garrevoet (Antwerpen), B. Goater (Chandlers Ford, England), Dr. K. Maes (Gent), Dr. K. Martens (Brussel), H. van Oorschot (Amsterdam), D. van der Poorten (Antwerpen), W. O. De Prins (Antwerpen). Redactie-adres: W. O. De Prins, Nieuwe Donk 50, B-2100 Antwerpen (Belgium). e-mail: [email protected]. Jaargang 30, nummer 4 1 december 2002 Contribution to the knowledge of the fauna of Bombyces, Sphinges and Noctuidae of the Southern Ural Mountains, with description of a new Dichagyris (Lepidoptera: Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae, Arctiidae) Kari Nupponen & Michael Fibiger [In co-operation with Vladimir Olschwang, Timo Nupponen, Jari Junnilainen, Matti Ahola and Jari- Pekka Kaitila] Abstract. The list, comprising 624 species in the families Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae and Arctiidae from the Southern Ural Mountains is presented. The material was collected during 1996–2001 in 10 different expeditions. Dichagyris lux Fibiger & K. Nupponen sp. n. is described. 17 species are reported for the first time from Europe: Clostera albosigma (Fitch, 1855), Xylomoia retinax Mikkola, 1998, Ecbolemia misella (Püngeler, 1907), Pseudohadena stenoptera Boursin, 1970, Hadula nupponenorum Hacker & Fibiger, 2002, Saragossa uralica Hacker & Fibiger, 2002, Conisania arida (Lederer, 1855), Polia malchani (Draudt, 1934), Polia vespertilio (Draudt, 1934), Polia altaica (Lederer, 1853), Mythimna opaca (Staudinger, 1899), Chersotis stridula (Hampson, 1903), Xestia wockei (Möschler, 1862), Euxoa dsheiron Brandt, 1938, Agrotis murinoides Poole, 1989, Agrotis sp. -
With Description of Immature Stages (Lepidoptera, Nymphalidae, Satyrinae) 187-196 ©Ges
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Atalanta Jahr/Year: 2001 Band/Volume: 32 Autor(en)/Author(s): Kuras Tomás, Benes Jiri, Konvicka Martin, Honc Lubomír Artikel/Article: Life histories of Erebia sudetica sudetica and E. epiphron silesiana with description of immature stages (Lepidoptera, Nymphalidae, Satyrinae) 187-196 ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (June 2001) 32(1/2): 187-196, Colour plate XII, Wurzburg, ISSN 0171-0079 Life histories of Erebia sudetica sudetica and E. epiphron silesiana with description of immature stages (Lepidoptera, Nymphalidae, Satyrinae) by To m á s Ku ras , J ir í Benes , M a r t in Ko n v ic k a & L u b o m ír H o n c received 19.111.2001 Summary: The life cycies, morphology and behaviour of the immature stages of the ringlets Erebia sudetica sudetica and E. epiphron silesiana inhabiting the Hruby Jesenik Mts. (= Alt- vatergebirge; Czech Republic) are presented. Immature stages of E. sudetica are described here for the first time. Both species have been reared to maturity from eggs laid by females caught in the wild. Out of accord with hitherto attainments, both species preferred Festuca supina as the main host plant (in choice experiments, E. epiphron preferred Avenella flexuosa). In rearing experiments, the species overwintered only once and finished their development within a one-year period. Highest mortality of individuals appeared during overwintering of L2- [E. sudetica) and L3-larvae (E epiphron). Introduction Five species of the species-rich holarctic genus Erebia Dalman, 1816, which is renown for high diversity in alpine and arctic habitats, frequent endemism and subspecific differentiation (Warren, 1936), occur in the HrubyJesenik Mts. -
The Effects of Winter Recreation on Alpine and Subalpine Fauna: a Systematic Review and Meta- Analysis
The Effects of Winter Recreation on Alpine and Subalpine Fauna: A Systematic Review and Meta- Analysis Chloe F. Sato1*, Jeff T. Wood1, David B. Lindenmayer1,2 1 Fenner School of Environment and Society, The Australian National University, Canberra, Australia, 2 ARC Centre of Excellence for Environmental Decisions, The Australian National University, Canberra, Australia Abstract The ski industry is often perceived as having a negative impact on sensitive alpine and subalpine communities. However, empirical evidence of such impacts is lacking. We reviewed the available literature from the last 35 years to quantify the reported effects of winter recreation on faunal communities. Overall, using one-sample binomial tests (‘sign tests’) we found that the effects of all types of winter recreation-related disturbances (i.e. ski runs, resort infrastructure and winter tourism) were more likely to be negative or have no effect, than be positive for wildlife. More specifically, in Europe, where the majority of the available research was conducted, the impacts of winter recreation were most often negative for fauna. In terms of specific taxa, birds and to a lesser extent mammals and arthropods, responded negatively to disturbance. Results from our meta-analysis confirmed the results from our binomial tests. Richness, abundance and diversity of fauna were lower in areas affected by winter recreation when compared with undisturbed areas. For most regions and taxa, however, empirical evidence remains too limited to identify clear impacts of winter recreation. We therefore conclude that the majority of ski resorts are operating in the absence of knowledge needed to inform effective strategies for biodiversity conservation and ecologically-sound management. -
Phylogenomics Reveals Major Diversification Rate Shifts in The
bioRxiv preprint doi: https://doi.org/10.1101/517995; this version posted January 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Phylogenomics reveals major diversification rate shifts in the evolution of silk moths and 2 relatives 3 4 Hamilton CA1,2*, St Laurent RA1, Dexter, K1, Kitching IJ3, Breinholt JW1,4, Zwick A5, Timmermans 5 MJTN6, Barber JR7, Kawahara AY1* 6 7 Institutional Affiliations: 8 1Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA 9 2Department of Entomology, Plant Pathology, & Nematology, University of Idaho, Moscow, ID 10 83844 USA 11 3Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 12 4RAPiD Genomics, 747 SW 2nd Avenue #314, Gainesville, FL 32601. USA 13 5Australian National Insect Collection, CSIRO, Clunies Ross St, Acton, ACT 2601, Canberra, 14 Australia 15 6Department of Natural Sciences, Middlesex University, The Burroughs, London NW4 4BT, UK 16 7Department of Biological Sciences, Boise State University, Boise, ID 83725, USA 17 *Correspondence: [email protected] (CAH) or [email protected] (AYK) 18 19 20 Abstract 21 The silkmoths and their relatives (Bombycoidea) are an ecologically and taxonomically 22 diverse superfamily that includes some of the most charismatic species of all the Lepidoptera. 23 Despite displaying some of the most spectacular forms and ecological traits among insects, 24 relatively little attention has been given to understanding their evolution and the drivers of 25 their diversity.