Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System

Total Page:16

File Type:pdf, Size:1020Kb

Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System Henshall, T L ; Keller, A ; He, L ; Johansson, B R ; Wallgard, E ; Raschperger, E ; Mae, M A ; Jin, S ; Betsholtz, C ; Lendahl, U DOI: https://doi.org/10.1161/ATVBAHA.114.304849 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-120552 Journal Article Published Version Originally published at: Henshall, T L; Keller, A; He, L; Johansson, B R; Wallgard, E; Raschperger, E; Mae, M A; Jin, S; Betsholtz, C; Lendahl, U (2015). Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(2):409-420. DOI: https://doi.org/10.1161/ATVBAHA.114.304849 Notch3 Is Necessary for Blood Vessel Integrity in the Central Nervous System Tanya L. Henshall,* Annika Keller,* Liqun He, Bengt R. Johansson, Elisabet Wallgard, Elisabeth Raschperger, Maarja Andaloussi Mäe, Shaobo Jin, Christer Betsholtz,† Urban Lendahl† Objective—Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood–brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3−/− mouse on blood vessel integrity in the central nervous system. Approach and Results—Notch3−/− mice showed focal disruptions of the blood–brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood–brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3−/− mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. Conclusions—We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood–brain barrier function in the mammalian vasculature. (Arterioscler Thromb Vasc Biol. 2015;35:409-420. DOI: 10.1161/ATVBAHA.114.304849.) Key Words: aneurysm ◼ blood-brain barrier ◼ fibrin ◼ Notch3 ◼ smooth muscle ll blood vessels are composed of 2 principal cell types, what extent the mural cells of larger vessels are also critical Aendothelial cells and mural cells (vascular smooth mus- for the integrity of the BBB is unknown. In this study, we have cle cells [VSMC] and pericytes). Mural cells have different used Notch3−/− mice to address this question, as these mice phenotypic and functional characteristics, depending on the show progressive loss of arterial VSMC over time.5–7 type of blood vessel. For example, VSMC in certain types Notch signaling is an evolutionarily conserved cell–cell sig- of arteries are important regulators of vessel tone and diam- naling mechanism based on interactions between transmem- eter, while in large caliber vessels, VSMC contribute critical brane Notch receptors and Delta/Jagged ligands on juxtaposed extracellular matrix components.1 The function of capillary cells. Signaling ensues when a ligand on the signal-sending pericytes, however, is just beginning to emerge.2 A role for cell interacts with a Notch receptor on the neighboring signal- pericytes at the blood–brain barrier (BBB) was recently dem- receiving cell. Ligand-receptor interaction leads to proteolytic onstrated through analysis of mice mutated in the genes, Pdgfb processing of the Notch receptor, which ultimately releases and Pdgfrb, encoding platelet-derived growth factor-B and the intracellular portion of the receptor (Notch intracellular its receptor, PDGF-B and PDGFR-β, respectively.3,4 In these domain). The Notch intracellular domain then translocates to mice, loss of pericytes led to increased endothelial transcyto- the cell nucleus, where it interacts with the DNA-binding pro- sis and a significant transport of blood-borne tracers, includ- tein, CSL (Cp-binding factor 1 [CBF-1]/recombination signal ing large proteins, across the normally restrictive BBB.3,4 To sequence-binding protein-Jκ [RBP-Jκ], suppressor of hairless Received on: March 24, 2014; final version accepted on: November 13, 2014. From the Department of Cell and Molecular Biology (T.H., S.J., U.L.) and Department of Medical Biochemistry and Biophysics, Division of Vascular Biology (C.B., E.R.), Karolinska Institute, Stockholm, Sweden; Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden (A.K., L.H., E.R., M.A.M., C.B.); EM Unit, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden (B.R.J.); and Octapharma AB, Stockholm, Sweden (E.W.). *These authors contributed equally to this article. †Shared senior authors. Current address for A.K.: Division of Neurosurgery, University Hospital Zürich, Zürich, Switzerland. The online-only Data Supplement is available with this article at http://atvb.ahajournals.org/lookup/suppl/doi:10.1161/ATVBAHA.114.304849/-/DC1. Correspondence to Professor Christer Betsholtz, Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Uppsala University, 751 85 Uppsala, Sweden. E-mail [email protected]; or Professor Urban Lendahl, Department of Cell and Molecular Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden. E-mail [email protected] © 2014 American Heart Association, Inc. Arterioscler Thromb Vasc Biol is available at http://atvb.ahajournals.org DOI: 10.1161/ATVBAHA.114.304849 Downloaded from http://atvb.ahajournals.org/409 at Universitaet Zuerich on February 5, 2016 410 Arterioscler Thromb Vasc Biol February 2015 Nonstandard Abbreviations and Acronyms Results Gaps in SMA Staining in Notch3−/− Mice β-gal β-galactosidase Correlate With Vessel Type and Size BBB blood–brain barrier To gain better insights into the Notch3−/− vascular phenotype, CADASIL cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy we first wanted to establish whether VSMC alterations in adult −/− CNS central nervous system Notch3 mice were confined to vessels of a specific type and GOM granular osmiophilic material size. To address this, we searched for mural cell phenotypes in the retina of adult Notch3−/− mice, a structure with a highly PDGF-B platelet-derived growth factor-B visible vascular tree: primary arterioles radiate out of the SMA α-smooth muscle actin optic nerve head and stretch across the retinal inner surface TEM transmission electron microscopy while undergoing progressive branching. We found patchy VSMC vascular smooth muscle cells loss of expression of α-smooth muscle actin (SMA; a VSMC marker) along retinal arterioles leaving apparent gaps in the SMA-positive VSMC coat adjacent to regions with sparse [Su(h)], and Lag-1) and induces transcription of downstream and irregular SMA staining (Figure 1A), in agreement with target genes.8 previously published work.7 Extensive loss of SMA staining Notch signaling plays a pivotal role during vascular develop- was observed along the Notch3−/− primary radial arterioles ment. Genetic targeting of several Notch pathway components (Figure 1B; boxed area), and the SMA loss was then quan- in endothelial cells (Notch1, Dll4, RBP-Jκ) leads to severe tified along the proximodistal arterial axis of these vessels. defects in angiogenic sprouting and vessel remodeling.9,10 The When scoring arterioles in the central (0–820 μm), middle Notch3 receptor is closely related to Notch1, 2, and 411,12 and (820–1640 μm), and peripheral (1640–2710 μm) portions of is expressed in VSMC. Upregulation of human NOTCH3 as the retina (Figure 1C), SMA loss was predominantly observed a consequence of hypoxia is observed in VSMC in pulmo- in the central and middle regions, whereas the distal region nary arterial hypertension, and reduction of Notch3 signaling was largely preserved (Figure 1D). The arteriolar branching mitigates pathogenesis of pulmonary arterial hypertension in pattern showed no significant difference between the differ- mice.13 Mutations in the NOTCH3 gene are the cause of cere- ent genotypes (Figure I in the online-only Data Supplement), bral autosomal dominant arteriopathy with subcortical infarcts in agreement with a recent report.7 Loss of VSMC coverage and leukoencephalopathy (CADASIL),14 the most common appeared specific to arterioles, as we could not detect simi- inherited stroke and dementia syndrome in the group of degen- lar changes in venules (Figure II in the online-only Data erative small vessel diseases.15 In patients with CADASIL, Supplement). VSMC degenerate over time and an electron-dense extracel- In the adult Notch3−/− mouse, SMA gaps were also lular material, granular osmiophilic material (GOM) is depos- observed in brain arteries (Figure III in the online-only
Recommended publications
  • Computational Analysis of DNA Methylation and Gene Expression Patterns in Prostate Cancer
    Ieva Rauluševičiūtė Computational Analysis of DNA Methylation and Gene Expression Patterns in Prostate Cancer Master’s thesis in Molecular Medicine Trondheim, June 2018 Supervisors: dr. Morten Beck Rye and prof. Finn Drabløs Norwegian University of Science and Technology Faculty of Medicine and Health Sciences Department of Clinical and Molecular Medicine ABSTRACT DNA methylation is an important contributor for prostate cancer development and progression. It has been studied experimentally for years, but, lately, high-throughput technologies are able to produce genome-wide DNA methylation data that can be analyzed using various computational approaches. Thus, this study aims to bioinformatically investigate different DNA methylation and gene expression patterns in prostate cancer. DNA methylation data from three datasets (TCGA, Absher and Kirby) was correlated with gene expression data in order to distinguish different regulation patterns. Classically, increased DNA methylation in promoter regions is being associated with gene expression downregulation. Although, results of the present project demonstrate another robust pattern, where DNA hypermethylation in promoter regions of 1,058 common genes is accompanied by upregulated expression. After analyzing expression and methylation values in the same samples from TCGA dataset, expression overcompensation in a dataset as an explanation for upregulation was excluded. Further reasons behind the pattern were investigated using TCGA DNA methylation data with extended list of probes and includes the presence of methylated positions in CpG islands, distance to transcription start sites and alternative TSSs. As compared with the downregulated genes in the classical pattern, upregulated genes were shown to have more positions in CpG islands and closer to TSSs. Moreover, the presence of alternative TSS in prostate was demonstrated, also disclosing the limitations of methylation detection systems.
    [Show full text]
  • Identification of Chebulinic Acid As a Dual Targeting Inhibitor of Protein
    Bioorganic Chemistry 90 (2019) 103087 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Short communication Identification of chebulinic acid as a dual targeting inhibitor of protein T tyrosine phosphatases relevant to insulin resistance Sun-Young Yoona,1, Hyo Jin Kangb,1, Dohee Ahna, Ji Young Hwanga, Se Jeong Kwona, ⁎ Sang J. Chunga, a School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea b Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea ARTICLE INFO ABSTRACT Keywords: Natural products as antidiabetic agents have been shown to stimulate insulin signaling via the inhibition of the Protein tyrosine phosphatases (PTPs) protein tyrosine phosphatases relevant to insulin resistance. Previously, we have identified PTPN9 and DUSP9 as Chebulinic acid potential antidiabetic targets and a multi-targeting natural product thereof. In this study, knockdown of PTPN11 Type 2 diabetes increased AMPK phosphorylation in differentiated C2C12 muscle cells by 3.8 fold, indicating that PTPN11 could Glucose-uptake be an antidiabetic target. Screening of a library of 658 natural products against PTPN9, DUSP9, or PTPN11 PTPN9 identified chebulinic acid (CA) as a strong allosteric inhibitor with a slow cooperative binding toPTPN9 PTPN11 (IC50 = 34 nM) and PTPN11 (IC50 = 37 nM), suggesting that it would be a potential antidiabetic candidate. Furthermore, CA stimulated glucose uptake and resulted in increased AMP-activated protein kinase (AMPK) phosphorylation. Taken together, we demonstrated that CA increased glucose uptake as a dual inhibitor of PTPN9 and PTPN11 through activation of the AMPK signaling pathway. These results strongly suggest that CA could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.
    [Show full text]
  • Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data
    INTEROPERABILITY IN TOXICOLOGY: CONNECTING CHEMICAL, BIOLOGICAL, AND COMPLEX DISEASE DATA Sean Mackey Watford A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Gillings School of Global Public Health (Environmental Sciences and Engineering). Chapel Hill 2019 Approved by: Rebecca Fry Matt Martin Avram Gold David Reif Ivan Rusyn © 2019 Sean Mackey Watford ALL RIGHTS RESERVED ii ABSTRACT Sean Mackey Watford: Interoperability in Toxicology: Connecting Chemical, Biological, and Complex Disease Data (Under the direction of Rebecca Fry) The current regulatory framework in toXicology is expanding beyond traditional animal toXicity testing to include new approach methodologies (NAMs) like computational models built using rapidly generated dose-response information like US Environmental Protection Agency’s ToXicity Forecaster (ToXCast) and the interagency collaborative ToX21 initiative. These programs have provided new opportunities for research but also introduced challenges in application of this information to current regulatory needs. One such challenge is linking in vitro chemical bioactivity to adverse outcomes like cancer or other complex diseases. To utilize NAMs in prediction of compleX disease, information from traditional and new sources must be interoperable for easy integration. The work presented here describes the development of a bioinformatic tool, a database of traditional toXicity information with improved interoperability, and efforts to use these new tools together to inform prediction of cancer and complex disease. First, a bioinformatic tool was developed to provide a ranked list of Medical Subject Heading (MeSH) to gene associations based on literature support, enabling connection of compleX diseases to genes potentially involved.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification of Potential Proteases for Abdominal Aortic Aneurysm by Weighted Gene Coexpression Network Analysis
    Genome Identification of potential proteases for abdominal aortic aneurysm by weighted gene coexpression network analysis Journal: Genome Manuscript ID gen-2020-0041.R1 Manuscript Type: Article Date Submitted by the 28-Jun-2020 Author: Complete List of Authors: Zhang, Hui; Peking Union Medical College Hospital, Department of Vascular Surgery Yang, Dan; Chinese Academy of Medical Sciences and Peking Union Medical College, Department of Computational Biology and Bioinformatics,Draft Institute of Medicinal Plant Development Chen, Siliang; Peking Union Medical College Hospital, Department of Vascular Surgery Li, Fangda; Peking Union Medical College Hospital, Department of Vascular Surgery Cui, Liqiang; Peking Union Medical College Hospital, Department of Vascular Surgery Liu, Zhili; Peking Union Medical College Hospital, Department of Vascular Surgery Shao, Jiang; Peking Union Medical College Hospital, Department of Vascular Surgery Chen, Yuexin; Peking Union Medical College Hospital, Department of Vascular Surgery Liu, Bao; Peking Union Medical College Hospital, Department of Vascular Surgery Zheng, Yuehong; Peking Union Medical College Hospital, Department of Vascular Surgery Abdominal aortic aneurysm, next-generation sequencing, WGCNA, Keyword: proteases, matrix metalloproteinase Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 35 Genome 1 Identification of potential proteases for abdominal aortic aneurysm by weighted gene 2 coexpression network analysis 3 Short title: WGCNA identifies crucial proteases in AAA 4 5 Hui Zhang1, Dan Yang2, Siliang Chen1, Fangda Li1, Liqiang Cui1, Zhili Liu1, Jiang Shao1, Yuexin 6 Chen1, Bao Liu1, Yuehong Zheng1. 7 1Department of Vascular Surgery, Peking Union Medical College Hospital, Beijing 100730, PR 8 China; 2Department of Computational Biology and Bioinformatics, Institute of Medicinal Plant 9 Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 10 100730, PR China.
    [Show full text]
  • Investigation of Candidate Genes and Mechanisms Underlying Obesity
    Prashanth et al. BMC Endocrine Disorders (2021) 21:80 https://doi.org/10.1186/s12902-021-00718-5 RESEARCH ARTICLE Open Access Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules G. Prashanth1 , Basavaraj Vastrad2 , Anandkumar Tengli3 , Chanabasayya Vastrad4* and Iranna Kotturshetti5 Abstract Background: Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. Methods: To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. Results: A total of 820 DEGs were identified between
    [Show full text]
  • Ryanodine Receptors Are Part of the Myospryn Complex in Cardiac Muscle Received: 10 March 2017 Matthew A
    www.nature.com/scientificreports OPEN Ryanodine receptors are part of the myospryn complex in cardiac muscle Received: 10 March 2017 Matthew A. Benson1, Caroline L. Tinsley2, Adrian J. Waite 2, Francesca A. Carlisle2, Steve M. Accepted: 12 June 2017 M. Sweet3, Elisabeth Ehler4, Christopher H. George5, F. Anthony Lai5,6, Enca Martin-Rendon7 Published online: 24 July 2017 & Derek J. Blake 2 The Cardiomyopathy–associated gene 5 (Cmya5) encodes myospryn, a large tripartite motif (TRIM)- related protein found predominantly in cardiac and skeletal muscle. Cmya5 is an expression biomarker for a number of diseases afecting striated muscle and may also be a schizophrenia risk gene. To further understand the function of myospryn in striated muscle, we searched for additional myospryn paralogs. Here we identify a novel muscle-expressed TRIM-related protein minispryn, encoded by Fsd2, that has extensive sequence similarity with the C-terminus of myospryn. Cmya5 and Fsd2 appear to have originated by a chromosomal duplication and are found within evolutionarily-conserved gene clusters on diferent chromosomes. Using immunoafnity purifcation and mass spectrometry we show that minispryn co-purifes with myospryn and the major cardiac ryanodine receptor (RyR2) from heart. Accordingly, myospryn, minispryn and RyR2 co-localise at the junctional sarcoplasmic reticulum of isolated cardiomyocytes. Myospryn redistributes RyR2 into clusters when co-expressed in heterologous cells whereas minispryn lacks this activity. Together these data suggest a novel role for the myospryn complex in the assembly of ryanodine receptor clusters in striated muscle. Te unique cytoskeletal organisation of striated muscle is dependent upon the formation of specialised interac- tions between proteins that have both structural and signalling functions1.
    [Show full text]
  • SUPPLEMENTARY MATERIAL Human Engineered Skeletal Muscle
    SUPPLEMENTARY MATERIAL Human engineered skeletal muscle of hypaxial origin from pluripotent stem cells with advanced function and regenerative capacity Mina Shahriyari1,2, Md Rezaul Islam3, M. Sadman Sakib3, Anastasia Rika1,2, Dennis Krüger3, Lalit Kaurani3, Harithaa Anandakumar1,2, Orr Shomroni4, Matthias Schmidt5, Jana Zschüntzsch5, Jens Schmidt5, Gabriela Salinas-Riester4, Andreas Unger6, Wolfgang A. Linke6, André Fischer3,7, Wolfram-Hubertus Zimmermann1,2,3,7,8*, Malte Tiburcy1,2* 1 Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany. 2 DZHK (German Center for Cardiovascular Research), partner site Göttingen. 3 Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany 4 NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany 5 Department of Neurology, University Medical Center Göttingen, Göttingen, Germany 6 Institute of Physiology II, University of Münster, D-48149 Münster, Germany 7 Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany; 8 Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany Supplementary table 1 related to Figure 2: Biological process annotation of coexpression clusters. Cluster Biological process annotated Enriched GO terms identifier Black Migrating limb progenitors Muscle
    [Show full text]
  • The Regulatory Roles of Phosphatases in Cancer
    Oncogene (2014) 33, 939–953 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW The regulatory roles of phosphatases in cancer J Stebbing1, LC Lit1, H Zhang, RS Darrington, O Melaiu, B Rudraraju and G Giamas The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3--kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. Oncogene (2014) 33, 939–953; doi:10.1038/onc.2013.80; published online 18 March 2013 Keywords: cancer; phosphatases; solid tumours GASTROINTESTINAL MALIGNANCIES abs in sera were significantly associated with poor survival in Oesophageal cancer advanced ESCC, suggesting that they may have a clinical utility in Loss of PTEN (phosphatase and tensin homologue deleted on ESCC screening and diagnosis.5 chromosome 10) expression in oesophageal cancer is frequent, Cao et al.6 investigated the role of protein tyrosine phosphatase, among other gene alterations characterizing this disease. Zhou non-receptor type 12 (PTPN12) in ESCC and showed that PTPN12 et al.1 found that overexpression of PTEN suppresses growth and protein expression is higher in normal para-cancerous tissues than induces apoptosis in oesophageal cancer cell lines, through in 20 ESCC tissues.
    [Show full text]
  • Dystrophin Complex Functions As a Scaffold for Signalling Proteins☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1838 (2014) 635–642 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamem Review Dystrophin complex functions as a scaffold for signalling proteins☆ Bruno Constantin IPBC, CNRS/Université de Poitiers, FRE 3511, 1 rue Georges Bonnet, PBS, 86022 Poitiers, France article info abstract Article history: Dystrophin is a 427 kDa sub-membrane cytoskeletal protein, associated with the inner surface membrane and Received 27 May 2013 incorporated in a large macromolecular complex of proteins, the dystrophin-associated protein complex Received in revised form 22 August 2013 (DAPC). In addition to dystrophin the DAPC is composed of dystroglycans, sarcoglycans, sarcospan, dystrobrevins Accepted 28 August 2013 and syntrophin. This complex is thought to play a structural role in ensuring membrane stability and force trans- Available online 7 September 2013 duction during muscle contraction. The multiple binding sites and domains present in the DAPC confer the scaf- fold of various signalling and channel proteins, which may implicate the DAPC in regulation of signalling Keywords: Dystrophin-associated protein complex (DAPC) processes. The DAPC is thought for instance to anchor a variety of signalling molecules near their sites of action. syntrophin The dystroglycan complex may participate in the transduction of extracellular-mediated signals to the muscle Sodium channel cytoskeleton, and β-dystroglycan was shown to be involved in MAPK and Rac1 small GTPase signalling. More TRPC channel generally, dystroglycan is view as a cell surface receptor for extracellular matrix proteins.
    [Show full text]
  • Supplementary Data
    Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type
    [Show full text]
  • Identification of Novel Genes in Human Airway Epithelial Cells Associated with Chronic Obstructive Pulmonary Disease (COPD) Usin
    www.nature.com/scientificreports OPEN Identifcation of Novel Genes in Human Airway Epithelial Cells associated with Chronic Obstructive Received: 6 July 2018 Accepted: 7 October 2018 Pulmonary Disease (COPD) using Published: xx xx xxxx Machine-Based Learning Algorithms Shayan Mostafaei1, Anoshirvan Kazemnejad1, Sadegh Azimzadeh Jamalkandi2, Soroush Amirhashchi 3, Seamas C. Donnelly4,5, Michelle E. Armstrong4 & Mohammad Doroudian4 The aim of this project was to identify candidate novel therapeutic targets to facilitate the treatment of COPD using machine-based learning (ML) algorithms and penalized regression models. In this study, 59 healthy smokers, 53 healthy non-smokers and 21 COPD smokers (9 GOLD stage I and 12 GOLD stage II) were included (n = 133). 20,097 probes were generated from a small airway epithelium (SAE) microarray dataset obtained from these subjects previously. Subsequently, the association between gene expression levels and smoking and COPD, respectively, was assessed using: AdaBoost Classifcation Trees, Decision Tree, Gradient Boosting Machines, Naive Bayes, Neural Network, Random Forest, Support Vector Machine and adaptive LASSO, Elastic-Net, and Ridge logistic regression analyses. Using this methodology, we identifed 44 candidate genes, 27 of these genes had been previously been reported as important factors in the pathogenesis of COPD or regulation of lung function. Here, we also identifed 17 genes, which have not been previously identifed to be associated with the pathogenesis of COPD or the regulation of lung function. The most signifcantly regulated of these genes included: PRKAR2B, GAD1, LINC00930 and SLITRK6. These novel genes may provide the basis for the future development of novel therapeutics in COPD and its associated morbidities.
    [Show full text]