Protein Tyrosine Phosphatase Sigma (Ptpσ) Targets Apical Junction Complex Proteins in the Intestine and Modulates

Total Page:16

File Type:pdf, Size:1020Kb

Protein Tyrosine Phosphatase Sigma (Ptpσ) Targets Apical Junction Complex Proteins in the Intestine and Modulates Protein tyrosine phosphatase sigma (PTPσ) targets apical junction complex proteins in the intestine and modulates epithelial permeability. by Ryan Murchie A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Biochemistry University of Toronto © Copyright by Ryan Murchie 2013 Protein tyrosine phosphatase sigma (PTPσ) targets apical junction complex proteins in the intestine and modulates epithelial permeability. Ryan Murchie Master of Science Department of Biochemistry University of Toronto 2012 Abstract Protein tyrosine phosphatase sigma (PTPσ), encoded by PTPRS, was shown previously by us to contain SNP polymorphisms that can confer susceptibility to inflammatory bowel disease (IBD). PTPσ(-/-) mice exhibit an IBD-like phenotype and show increased susceptibility to acute models of murine colitis. The function of PTPσ in the intestine is uncharacterized. Here, I show an intestinal epithelial barrier defect in the PTPσ(-/-) mouse, demonstrated by a decrease in trans-epithelial resistance and a leaky intestinal epithelium that was determined by in vivo tracer analysis. We identified several putative PTPσ intestinal substrates; among these were several proteins that form and regulate the apical junction complex, including ezrin. My results show that ezrin binds to and undergoes tyrosine de-phosphorylation by PTPσ in vitro, suggesting it is a direct substrate for this PTP. The results suggest a role for PTPσ as a positive regulator of epithelial barrier integrity in the intestine. The proteins identified in the screen, including ezrin, suggest that PTPσ may modulate epithelial cell adhesion through the targeting of AJC-associated proteins, a process impaired in IBD. ii Acknowledgements First and foremost, I would like to thank my supervisors Dr. Daniela Rotin and Dr. Aleixo Muise for all of your guidance over the course of my project. Your encouragement and support were essential to the success my endeavours. I would also like to thank my supervisory committee members Dr. John Brumell and Dr. Christine Bear for their helpful guidance and suggestions during my committee meetings. To all the members of the Rotin and Muise labs, thank you for making my time in the lab a memorable one. Your constant support always made the lab a welcoming place to work. Thank you to Chong, Chen, Angie and Hui for all your invaluable technical support throughout my time in the lab without which I would not have been successful. Special thanks to Melanie Gareau from Dr. Phil Sherman’s lab for training on the Ussing Chamber experiments and to Ramzi Fattouh from Dr. John Brumell’s lab for additional training. Lastly, thank you to my friends and family for all of your support over the years! iii Table of Contents Acknowledgements ........................................................................................................................ iii Table of Contents ........................................................................................................................... iv List of Tables ................................................................................................................................. vi List of Figures ............................................................................................................................... vii Abbreviations ............................................................................................................................... viii Chapter 1: Introduction ................................................................................................................... 1 1) Tyrosine Phosphorylation ....................................................................................... 2 2) Protein Tyrosine Phosphatases ............................................................................... 2 3) Protein Tyrosine Phosphatase Sigma (PTPσ) ......................................................... 8 4) PTPσ(-/-) Mouse Model ........................................................................................ 11 5) Inflammatory Bowel Disease ................................................................................ 12 6) Protein Tyrosine Phosphatases in IBD ................................................................. 13 7) PTPσ in IBD ......................................................................................................... 14 8) Role of Intestinal Barrier Defence in IBD ............................................................ 19 9) Apical Junction Complex and Epithelial Barrier Function ................................... 20 10) PTPσ and the Apical Junction Complex ............................................................... 20 11) Rationale and Goals .............................................................................................. 26 Chapter 2: Materials & Methods................................................................................................... 27 1) Animal Experimentation ....................................................................................... 28 2) Constructs ............................................................................................................. 28 3) Tissue Preparation ................................................................................................. 28 4) Tandem immunoprecipitation of phosphotyrosine-mass spectrometry (TIPY- MS) ....................................................................................................................... 29 5) MS/MS Data Analysis .......................................................................................... 29 6) In vitro substrate trapping assay ........................................................................... 30 7) Tissue culture ........................................................................................................ 31 8) para-Nitrophenyl phosphate (pNPP) phosphatase activity assay .......................... 31 9) In vitro dephosphorylation assay .......................................................................... 31 10) Ussing Chamber Studies ....................................................................................... 32 11) Macromolecular Permeability ............................................................................... 33 12) FITC-dextran assay ............................................................................................... 33 13) Dextran Sodium Sulfate (DSS) Model for IBD .................................................... 33 14) Immunohistochemistry ......................................................................................... 34 15) Transmission Electron Microscopy ...................................................................... 34 Chapter 3: Results ......................................................................................................................... 36 1) PTPσ(-/-) mice exhibit defects in intestinal barrier integrity ................................ 37 2) PTPRS is expressed in the crypts regions of the mouse intestine ......................... 40 3) Tyrosine phosphorylation is enriched in the crypts of PTPσ(-/-) mouse colon and small bowel .................................................................................................... 40 iv 4) Identification of Villin and Ezrin as PTPσ binding partners by mass spectrometry .......................................................................................................... 45 5) Ezrin is a substrate of PTPσ .................................................................................. 49 6) E-cadherin and β-catenin colocalization and β-catenin localization to the nucleus is unaffected in the PTPσ(-/-) mouse small bowel and colon .................. 54 7) Ezrin localization is altered in PTPσ(-/-) mouse small bowel after DSS treatment ............................................................................................................... 58 8) Intestinal morphology is not disrupted in the small bowel and colon of neonatal PTPσ (-/-) mice ....................................................................................... 61 9) Lysozyme immunostaining is reduced in the Paneth cells of the PTPσ(-/-) mouse small bowel ................................................................................................ 64 10) Ki-67 immunostaining, a marker for cell proliferation, appears unchanged in PTPσ(-/-) mouse small bowel and colon .............................................................. 64 Chapter 4: Discussion ................................................................................................................... 70 Role of PTPσ in intestinal epithelia .............................................................................................. 71 1) Evidence of defects in intestinal barrier integrity ................................................. 71 2) Role for E-cadherin and β-catenin ........................................................................ 72 3) Ezrin as a colonic PTPσ substrate ......................................................................... 73 Proposed Mechanism: PTPσ regulation of adherens junction proteins ........................................ 74 Implications for PTPσ in Paneth cell function .............................................................................. 78 PTPσ in IBD pathogenesis ...........................................................................................................
Recommended publications
  • Deciphering the Functions of Ets2, Pten and P53 in Stromal Fibroblasts in Multiple
    Deciphering the Functions of Ets2, Pten and p53 in Stromal Fibroblasts in Multiple Breast Cancer Models DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Julie Wallace Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2013 Dissertation Committee: Michael C. Ostrowski, PhD, Advisor Gustavo Leone, PhD Denis Guttridge, PhD Dawn Chandler, PhD Copyright by Julie Wallace 2013 Abstract Breast cancer is the second most common cancer in American women, and is also the second leading cause of cancer death in women. It is estimated that nearly a quarter of a million new cases of invasive breast cancer will be diagnosed in women in the United States this year, and approximately 40,000 of these women will die from breast cancer. Although death rates have been on the decline for the past decade, there is still much we need to learn about this disease to improve prevention, detection and treatment strategies. The majority of early studies have focused on the malignant tumor cells themselves, and much has been learned concerning mutations, amplifications and other genetic and epigenetic alterations of these cells. However more recent work has acknowledged the strong influence of tumor stroma on the initiation, progression and recurrence of cancer. Under normal conditions this stroma has been shown to have protective effects against tumorigenesis, however the transformation of tumor cells manipulates this surrounding environment to actually promote malignancy. Fibroblasts in particular make up a significant portion of this stroma, and have been shown to impact various aspects of tumor cell biology.
    [Show full text]
  • Identification of Chebulinic Acid As a Dual Targeting Inhibitor of Protein
    Bioorganic Chemistry 90 (2019) 103087 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Short communication Identification of chebulinic acid as a dual targeting inhibitor of protein T tyrosine phosphatases relevant to insulin resistance Sun-Young Yoona,1, Hyo Jin Kangb,1, Dohee Ahna, Ji Young Hwanga, Se Jeong Kwona, ⁎ Sang J. Chunga, a School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea b Department of Chemistry, Dongguk University, Seoul 100-715, Republic of Korea ARTICLE INFO ABSTRACT Keywords: Natural products as antidiabetic agents have been shown to stimulate insulin signaling via the inhibition of the Protein tyrosine phosphatases (PTPs) protein tyrosine phosphatases relevant to insulin resistance. Previously, we have identified PTPN9 and DUSP9 as Chebulinic acid potential antidiabetic targets and a multi-targeting natural product thereof. In this study, knockdown of PTPN11 Type 2 diabetes increased AMPK phosphorylation in differentiated C2C12 muscle cells by 3.8 fold, indicating that PTPN11 could Glucose-uptake be an antidiabetic target. Screening of a library of 658 natural products against PTPN9, DUSP9, or PTPN11 PTPN9 identified chebulinic acid (CA) as a strong allosteric inhibitor with a slow cooperative binding toPTPN9 PTPN11 (IC50 = 34 nM) and PTPN11 (IC50 = 37 nM), suggesting that it would be a potential antidiabetic candidate. Furthermore, CA stimulated glucose uptake and resulted in increased AMP-activated protein kinase (AMPK) phosphorylation. Taken together, we demonstrated that CA increased glucose uptake as a dual inhibitor of PTPN9 and PTPN11 through activation of the AMPK signaling pathway. These results strongly suggest that CA could be used as a potential therapeutic candidate for the treatment of type 2 diabetes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Regulatory Roles of Phosphatases in Cancer
    Oncogene (2014) 33, 939–953 & 2014 Macmillan Publishers Limited All rights reserved 0950-9232/14 www.nature.com/onc REVIEW The regulatory roles of phosphatases in cancer J Stebbing1, LC Lit1, H Zhang, RS Darrington, O Melaiu, B Rudraraju and G Giamas The relevance of potentially reversible post-translational modifications required for controlling cellular processes in cancer is one of the most thriving arenas of cellular and molecular biology. Any alteration in the balanced equilibrium between kinases and phosphatases may result in development and progression of various diseases, including different types of cancer, though phosphatases are relatively under-studied. Loss of phosphatases such as PTEN (phosphatase and tensin homologue deleted on chromosome 10), a known tumour suppressor, across tumour types lends credence to the development of phosphatidylinositol 3--kinase inhibitors alongside the use of phosphatase expression as a biomarker, though phase 3 trial data are lacking. In this review, we give an updated report on phosphatase dysregulation linked to organ-specific malignancies. Oncogene (2014) 33, 939–953; doi:10.1038/onc.2013.80; published online 18 March 2013 Keywords: cancer; phosphatases; solid tumours GASTROINTESTINAL MALIGNANCIES abs in sera were significantly associated with poor survival in Oesophageal cancer advanced ESCC, suggesting that they may have a clinical utility in Loss of PTEN (phosphatase and tensin homologue deleted on ESCC screening and diagnosis.5 chromosome 10) expression in oesophageal cancer is frequent, Cao et al.6 investigated the role of protein tyrosine phosphatase, among other gene alterations characterizing this disease. Zhou non-receptor type 12 (PTPN12) in ESCC and showed that PTPN12 et al.1 found that overexpression of PTEN suppresses growth and protein expression is higher in normal para-cancerous tissues than induces apoptosis in oesophageal cancer cell lines, through in 20 ESCC tissues.
    [Show full text]
  • 2Oc3 Lichtarge Lab 2006
    Pages 1–5 2oc3 Evolutionary trace report by report maker September 25, 2008 4.3.3 DSSP 5 4.3.4 HSSP 5 4.3.5 LaTex 5 4.3.6 Muscle 5 4.3.7 Pymol 5 4.4 Note about ET Viewer 5 4.5 Citing this work 5 4.6 About report maker 5 4.7 Attachments 5 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 2oc3): Title: Crystal structure of the catalytic domain of human protein tyrosine phosphatase non-receptor type 18 Compound: Mol id: 1; molecule: tyrosine-protein phosphatase non- receptor type 18; chain: a; synonym: brain-derived phosphatase; ec: CONTENTS 3.1.3.48; engineered: yes Organism, scientific name: 1 Introduction 1 Homo Sapiens; 2oc3 contains a single unique chain 2oc3A (279 residues long). 2 Chain 2oc3A 1 2.1 Q53P42 overview 1 2.2 Multiple sequence alignment for 2oc3A 1 2.3 Residue ranking in 2oc3A 1 2.4 Top ranking residues in 2oc3A and their position on the structure 1 2 CHAIN 2OC3A 2.4.1 Clustering of residues at 25% coverage. 2 2.1 Q53P42 overview 2.4.2 Possible novel functional surfaces at 25% From SwissProt, id Q53P42, 96% identical to 2oc3A: coverage. 2 Description: Hypothetical protein PTPN18. Organism, scientific name: Homo sapiens (Human). 3 Notes on using trace results 3 Taxonomy: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; 3.1 Coverage 3 Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; 3.2 Known substitutions 3 Catarrhini; Hominidae; Homo. 3.3 Surface 4 3.4 Number of contacts 4 3.5 Annotation 4 3.6 Mutation suggestions 4 2.2 Multiple sequence alignment for 2oc3A 4 Appendix 4 For the chain 2oc3A, the alignment 2oc3A.msf (attached) with 49 4.1 File formats 4 sequences was used.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Protein Phosphatases Cat. no. 330231 PAHS-045ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Protein Phosphatases RT² Profiler PCR Array profiles the gene expression of the 84 most important and well-studied phosphatases in the mammalian genome. By reversing the phosphorylation of key regulatory proteins mediated by protein kinases, phosphatases serve as a very important complement to kinases and attenuate activated signal transduction pathways. The gene classes on this array include both receptor and non-receptor tyrosine phosphatases, catalytic subunits of the three major protein phosphatase gene families, the dual specificity phosphatases, as well as cell cycle regulatory and other protein phosphatases.
    [Show full text]
  • Receptor Protein Tyrosine Phosphatases Control Purkinje Neuron Firing
    Receptor protein tyrosine phosphatases control Purkinje neuron firing Alexander S. Brown1, Pratap Meera2, Gabe Quinones1, Jessica Magri1, Thomas S. Otis3, Stefan M. Pulst4, and Anthony E. Oro1,5 1Program in Epithelial Biology Stanford University School of Medicine, Stanford CA, 2Department of Neurobiology University of California Los Angeles, Los Angeles CA 3Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom 4Department of Neurology, University of Utah Medical Center, Salt Lake City, UT 5To whom correspondence should be addressed: Anthony E.Oro ( [email protected]) . Abstract (173/200 words): Spinocerebellar ataxias (SCA) are a genetically heterogeneous family of cerebellar neurodegenerative diseases characterized by abnormal firing of Purkinje neurons and degeneration. We recently demonstrated the slowed firing rates seen in several SCAs share a common etiology of hyper-activation of the Src family of non-receptor tyrosine kinases (SFKs)1. However, because of the lack of effective neuroactive, clinically available SFK inhibitors, alternative mechanisms to modulate SFK activity are needed. Previous studies demonstrate that SFK activity can be enhanced by the removal of inhibitory phospho-marks by receptor-protein-tyrosine phosphatases (RPTPs)2,3. In this Extra View we show that MTSS1 inhibits SFK activity through the binding and inhibition of a subset of the RPTP family members. RPTP activity normally results in SFK activation in vitro, and lowering RPTP activity in cerebellar slices using recently described RPTP peptide inhibitors increases the suppressed Purkinje neuron basal firing rates seen in two different SCA models. Together these results identify RPTPs as novel effectors of cerebellar activity, extending the MTSS1/SFK regulatory circuit we previously described and expanding the therapeutic targets for SCA patients.
    [Show full text]
  • LAR Receptor Phospho-Tyrosine Phosphatases Regulate NMDA-Receptor Responses Alessandra Sclip*, Thomas C Su¨ Dhof
    RESEARCH ARTICLE LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses Alessandra Sclip*, Thomas C Su¨ dhof Department of Cellular and Molecular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, United States Abstract LAR-type receptor phosphotyrosine-phosphatases (LAR-RPTPs) are presynaptic adhesion molecules that interact trans-synaptically with multitudinous postsynaptic adhesion molecules, including SliTrks, SALMs, and TrkC. Via these interactions, LAR-RPTPs are thought to function as synaptogenic wiring molecules that promote neural circuit formation by mediating the establishment of synapses. To test the synaptogenic functions of LAR-RPTPs, we conditionally deleted the genes encoding all three LAR-RPTPs, singly or in combination, in mice before synapse formation. Strikingly, deletion of LAR-RPTPs had no effect on synaptic connectivity in cultured neurons or in vivo, but impaired NMDA-receptor-mediated responses. Deletion of LAR-RPTPs decreased NMDA-receptor-mediated responses by a trans-synaptic mechanism. In cultured neurons, deletion of all LAR-RPTPs led to a reduction in synaptic NMDA-receptor EPSCs, without changing the subunit composition or the protein levels of NMDA-receptors. In vivo, deletion of all LAR-RPTPs in the hippocampus at birth also did not alter synaptic connectivity as measured via AMPA-receptor-mediated synaptic responses at Schaffer-collateral synapses monitored in juvenile mice, but again decreased NMDA-receptor mediated synaptic transmission. Thus, LAR-RPTPs are not essential for synapse formation, but control synapse properties by regulating postsynaptic NMDA-receptors via a trans-synaptic mechanism that likely involves binding to one or multiple postsynaptic ligands. *For correspondence: [email protected] Competing interests: The Introduction authors declare that no In the brain, neurons wire to form distinct neural circuits that are important for processing informa- competing interests exist.
    [Show full text]
  • PTPN18 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science PTPN18 Rabbit pAb Catalog No.: A8487 Basic Information Background Catalog No. The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) A8487 family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, the mitotic cycle, and oncogenic Observed MW transformation. This PTP contains a PEST motif, which often serves as a protein-protein 60kDa interaction domain, and may be related to protein intracellular half-live. This protein can differentially dephosphorylate autophosphorylated tyrosine kinases that are Calculated MW overexpressed in tumor tissues, and it appears to regulate HER2, a member of the 38kDa/50kDa epidermal growth factor receptor family of receptor tyrosine kinases. Two transcript variants encoding different isoforms have been found for this gene. Category Primary antibody Applications WB Cross-Reactivity Human Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 26469 Q99952 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 1-210 of human PTPN18 (NP_001135842.1). Synonyms PTPN18;BDP1;PTP-HSCF Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using PTPN18 antibody (A8487) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit (RM00020).
    [Show full text]
  • The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma
    cancers Review The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma Yide Huang 1,2, Yafei Zhang 1, Lilin Ge 2,3, Yao Lin 1,* ID and Hang Fai Kwok 2,* ID 1 Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; [email protected] (Y.H.); [email protected] (Y.Z.) 2 Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China; [email protected] 3 Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China * Correspondence: [email protected] (Y.L.); [email protected] (H.F.K.) Received: 8 January 2018; Accepted: 15 March 2018; Published: 20 March 2018 Abstract: The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC. Keywords: protein-tyrosine phosphatase inhibitors; hepatocellular carcinoma; signaling pathways; therapeutic targets 1.
    [Show full text]
  • Live-Cell Imaging Rnai Screen Identifies PP2A–B55α and Importin-Β1 As Key Mitotic Exit Regulators in Human Cells
    LETTERS Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells Michael H. A. Schmitz1,2,3, Michael Held1,2, Veerle Janssens4, James R. A. Hutchins5, Otto Hudecz6, Elitsa Ivanova4, Jozef Goris4, Laura Trinkle-Mulcahy7, Angus I. Lamond8, Ina Poser9, Anthony A. Hyman9, Karl Mechtler5,6, Jan-Michael Peters5 and Daniel W. Gerlich1,2,10 When vertebrate cells exit mitosis various cellular structures can contribute to Cdk1 substrate dephosphorylation during vertebrate are re-organized to build functional interphase cells1. This mitotic exit, whereas Ca2+-triggered mitotic exit in cytostatic-factor- depends on Cdk1 (cyclin dependent kinase 1) inactivation arrested egg extracts depends on calcineurin12,13. Early genetic studies in and subsequent dephosphorylation of its substrates2–4. Drosophila melanogaster 14,15 and Aspergillus nidulans16 reported defects Members of the protein phosphatase 1 and 2A (PP1 and in late mitosis of PP1 and PP2A mutants. However, the assays used in PP2A) families can dephosphorylate Cdk1 substrates in these studies were not specific for mitotic exit because they scored pro- biochemical extracts during mitotic exit5,6, but how this relates metaphase arrest or anaphase chromosome bridges, which can result to postmitotic reassembly of interphase structures in intact from defects in early mitosis. cells is not known. Here, we use a live-cell imaging assay and Intracellular targeting of Ser/Thr phosphatase complexes to specific RNAi knockdown to screen a genome-wide library of protein substrates is mediated by a diverse range of regulatory and targeting phosphatases for mitotic exit functions in human cells. We subunits that associate with a small group of catalytic subunits3,4,17.
    [Show full text]