Ultra-Slow Rotating Outer Main Belt and Trojan Asteroids: Search for Binaries

Total Page:16

File Type:pdf, Size:1020Kb

Ultra-Slow Rotating Outer Main Belt and Trojan Asteroids: Search for Binaries 45th Lunar and Planetary Science Conference (2014) 1703.pdf ULTRA-SLOW ROTATING OUTER MAIN BELT AND TROJAN ASTEROIDS: SEARCH FOR BINARIES. K.S. Noll1, S.D. Benecchi2, E.L. Ryan3, and W.M. Grundy4, 1NASA Goddard Space Flight Center, Code 693.0, 8800 Greenbelt Rd., Greenbelt, MD 20771, [email protected], 2Planetary Science Institute, 3NASA Postdoctoral Program Fellow 4Lowell Observatory. Introduction: Binaries are already known to exist the binary fraction of this population subset. However, in the Outer Main Belt, Hilda, and Trojan (OMB+) when combined with other published searches of Tro- populations and appear to fall into two main catego- jans [7], regardless of rotation period, it appears that ries. The first are objects like 624 Hektor, 121 Hermi- the binary fraction in the OMB+ population is lower one, 107 Camilla, and 87 Sylvia which contain elon- than among similar sized objects in the Kuiper Belt. gated/bilobed primaries with small satellites, a rapidly Colors and Classification: Spectral classes have rotating primary, and densities greater than 1000 kg/m3 been estimated from for four of the eight targets from [1-4]. On the other hand, 617 Patroclus, 17365, and Sloan colors [8], most are SMASSII X class as ex- 29314 have have similar-sized components, are syn- pected. Using HST B, V, and I colors we will be able chronously locked (or in contact), and have densities to assign approximate classifications to the remaining below 1000 kg/m3[5-6]. These two classes of binaries objects in our sample. may reflect different formation mechanisms (collision References: [1] Marchis, F. et al. (2006) IAUC vs. primordial), differences in the origin of the plane- 8732; Marchis, F. et al. (2012) ACM 2012, #1667. [2] tesimals and/or their subsequent dynamical and colli- Merline, W. et al. (2002) IAUC 7980; Marchis, F. et sional evolution. As a test, we have conducted a search al., (2005) Icarus 178, 450-464; Descamps, P. et al. for other possible binary systems in the OMB+. (2009) Icarus 203, 88-101. [3] Storrs, A. et al. (2001) Observations: Observations were obtained with IAUC 7599. [4] Marchis, F. et al. (2013) DPS 45, the Wide Field Camera 3 on the Hubble Space Tele- 112.07. [5] Merline, W. et al. (2001) IAUC 7741; scope (HST) using four filters, the F336W, F438W, Marchis, F., et al. (2006) Nature 439, 565-567. [6] F555W and F814W (approximating U, B, V, and I Mann, R. K. et al. (2007) AJ 134, 1133-1144. [7] bands). Four exposures were obtained for each filter in Merline, W. et al. (2007) DPS 39, 60.09. [8] Carvano, a standard sub-pixel box dither pattern centered on the J. M. et al. (2010) A&A 510, A43. UVIS2-C1K1C subarray. Binary Search Results: We targeted eight objects Acknowledgements: Observations made with the with periods of 56-540 hours that, if tidally locked Hubble Space Telescope as part of program 12891. binaries with the orbital period equal to the observed Support for program 12891 was provided by NASA lightcurve period (like Patroclus), would have separa- through a grant from the Space Telescope Science In- tions resolvable using HST. Observations were com- stitute, which is operated by the Association of Univer- pleted in June 2013 and none of the objects show clear sities for Research in Astronomy, Inc., under NASA evidence of being binary. (PSF-fitting is required to contract NAS 5-26555. rule out partially resolved systems.) A negative result for eight slow rotators places only weak constraints on Object H Trot a e I D1 D2/D1 ρ (mag) (h) (AU) (°) (°) (km) (kg/m3) 121 Hermione 7.31 5.55 3.45 0.143 7.58 230x120 0.10 1400 107 Camilla 7.08 4.84 3.48 0.079 10.04 240x180 0.04 1880 87 Sylvia 6.94 5.18 3.49 0.080 10.87 380x232 0.06 1300 624 Hektor 7.5 6.92 5.23 0.024 18.19 363x207 0.05 2400 617 Patroclus 8.2 102.8 5.23 0.138 22.03 122 0.92 800-1000 29314 1994 CR18 11.1 15.0 5.25 0.073 15.26 32 0.75 590 17365 1978 VF11 10.3 12.7 5.27 0.078 11.65 92 0.84 780 Table 1. Known Outer Main Belt and Trojan binaries [1-6] fall into two distinct classes that may reflect differ- ing formation mechanisms. 45th Lunar and Planetary Science Conference (2014) 1703.pdf Object H Trot a e I D q (mag) (h) (AU) (°) (°) (km) (arcsec) 1208 Troilus 9.0 56.2 5.243 0.093 33.56 103 0.14 1512 Oulu 9.6 132. 3.944 0.151 6.50 83 0.19 5511 Cloanthus 9.6 336. 5.234 0.118 11.18 77 0.23 1042 Amazone 9.8 540. 3.236 0.093 20.68 74 0.54 5025 1986 TS6 9.8 250. 5.203 0.076 11.02 58 0.16 7119 Hiera 9.8 400. 5.168 0.103 19.30 76 0.29 16974 1998 WR21 9.8 78.9 5.204 0.069 15.02 55 0.07 13331 1998 SU52 11.2 375 5.078 0.110 2.29 30 0.11 Table 2. Targeted Trojan, Hilda and OMB asteroids with Trot > 56 hours are listed here. D is the effective diam- eter for a single object determined from measured albedos (or estimated using an assumed albedo of 5%). The max- imum angular separation of a hypothetical binary, q, is computed assuming a tidally evolved equal mass binary with ρ = 900 kg/m3. Actual separation would depend on orbital phase and orientation of the orbit plane. The lack of de- tection of any companions in the search suggests they are not prevalent among slow rotators. .
Recommended publications
  • Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W
    Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W. Dunham4, David Herald5, Alin Tolea6, Franck Marchis7 1. International Occultation Timing Association (IOTA), 623 Bell Rd., Newark, NY, USA, [email protected] 2. IOTA, Stephens City, VA, USA, [email protected] 3. IOTA, Gamber, MD, USA, [email protected] 4. IOTA, KinetX, Inc., and Moscow Institute of Electronics and Mathematics of Higher School of Economics, per. Trekhsvyatitelskiy B., dom 3, 109028, Moscow, Russia, [email protected] 5. IOTA, Murrumbateman, NSW, Australia, [email protected] 6. IOTA, Forest Glen, MD, USA, [email protected] 7. Carl Sagan Center at the SETI Institute, 189 Bernardo Av, Mountain View CA 94043, USA, [email protected] Corresponding author Franck Marchis Carl Sagan Center at the SETI Institute 189 Bernardo Av Mountain View CA 94043 USA [email protected] 1 Keywords: Asteroids, Binary Asteroids, Trojan Asteroids, Occultation Abstract: On 2012 January 19, observers in the northeastern United States of America observed an occultation of 8.0-mag HIP 41337 star by the Jupiter-Trojan (911) Agamemnon, including one video recorded with a 36cm telescope that shows a deep brief secondary occultation that is likely due to a satellite, of about 5 km (most likely 3 to 10 km) across, at 278 km ±5 km (0.0931″) from the asteroid’s center as projected in the plane of the sky. A satellite this small and this close to the asteroid could not be resolved in the available VLT adaptive optics observations of Agamemnon recorded in 2003.
    [Show full text]
  • Thermal-IR Spectral Analysis of Jupiter's Trojan Asteroids
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1238.pdf THERMAL-IR SPECTRAL ANALYSIS OF JUPITER’S TROJAN ASTEROIDS: DETECTING SILICATES. A. C. Martin1, J. P. Emery1, S. S. Lindsay2, 1The University of Tennessee Earth and Planetary Science Department, 1621 Cumberland Avenue, 602 Strong Hall, Knoxville TN, 37996, 2The University of Tennessee, De- partment of Physics, 1408 Circle Drive, Knoxville TN, 37996.. Introduction: Jupiter’s Trojan asteroids (hereafter (e.g., [11],[8]). Had Trojans and JFCs formed in the Trojans) populate Jupiter’s L4 and L5 Lagrange points. same region, Trojans should have fine-grained silicates The L4 and L5 points are dynamically stable over the in primarily amorphous phases. lifetime of the Solar System, and, therefore, Trojans Analysis of TIR spectra by [12] shows that the sur- could have resided in the L4 and L5 regions for nearly faces of three Trojans (624 Hektor, 1172 Aneas, and 911 4.5 Gyr [1]. However, it is still uncertain where the Tro- Agamemnon) have emissivity features similar to fine- jans formed and when they were captured. Asteroid or- grained silicates in comet comae. The TIR wavelength igins provide an effective means of constraining the region is beneficial for silicate mineralogy detection be- events that dynamically shaped the solar system. Tro- cause it contains fundamental Si-O molecular vibrations jans may help in determining the extent of radial mixing (stretching at 9 –12 µm and bending at 14 – 25 µm; that occurred during giant planet migration. [13]). Comets produce optically thin comae that result Trojans are thought to have formed in one of two in strong 10-µm emission features when comprised of locations: (1) in their current position (~5.2 AU), or (2) fine-grained (≤10 to 20 µm) dispersed silicates.
    [Show full text]
  • Ty996i the Astronomical Journal Volume 71, Number
    coPC THE ASTRONOMICAL JOURNAL VOLUME 71, NUMBER 6 AUGUST 1966 TY996I Observations of Comets, Minor Planets, and Satellites Elizabeth Roemer* and Richard E. Lloyd U. S. Naval Observatory, Flagstaff Station, Arizona (Received 10 May 1966) Accurate positions and descriptive notes are presented for 38 comets, 33 minor planets, 5 faint natural satellites, and Pluto, for which astrometric reduction of the series of Flagstaff observations has been completed. THE 1022 positions and descriptive notes presented reference star positions; therefore, she bears responsi- here supplement those given by Roemer (1965), bility for the accuracy of the results given here. who also described the program, the equipment used, Coma diameters and tail dimensions given in the and the procedures of observation and of reduction. Notes to Table I refer to the exposures taken for In this paper as in the earlier one, the participation astrometric purposes unless otherwise stated. In of those who shared in critical phases of the work is general, longer exposures show more extensive head and indicated in the Obs/Meas column of Table I according tail structure. to the following letters: For brighter comets the minimum exposure is determined by the necessity of recording measurable R=Elizabeth Roemer. images of 12th-13th magnitude reference stars. On Part-time assistants under contract Nonr-3342(00) such exposures the position of the nuclear condensation with Lowell Observatory: may be more or less obscured by the overexposed coma and be correspondingly difficult and uncertain to L = Richard E. Lloyd, measure. T = Maryanna Thomas, A colon has been used to indicate greater than normal S = Marjorie K.
    [Show full text]
  • On the Accuracy of Restricted Three-Body Models for the Trojan Motion
    DISCRETE AND CONTINUOUS Website: http://AIMsciences.org DYNAMICAL SYSTEMS Volume 11, Number 4, December 2004 pp. 843{854 ON THE ACCURACY OF RESTRICTED THREE-BODY MODELS FOR THE TROJAN MOTION Frederic Gabern1, Angel` Jorba1 and Philippe Robutel2 Departament de Matem`aticaAplicada i An`alisi Universitat de Barcelona Gran Via 585, 08007 Barcelona, Spain1 Astronomie et Syst`emesDynamiques IMCCE-Observatoire de Paris 77 Av. Denfert-Rochereau, 75014 Paris, France2 Abstract. In this note we compare the frequencies of the motion of the Trojan asteroids in the Restricted Three-Body Problem (RTBP), the Elliptic Restricted Three-Body Problem (ERTBP) and the Outer Solar System (OSS) model. The RTBP and ERTBP are well-known academic models for the motion of these asteroids, and the OSS is the standard model used for realistic simulations. Our results are based on a systematic frequency analysis of the motion of these asteroids. The main conclusion is that both the RTBP and ERTBP are not very accurate models for the long-term dynamics, although the level of accuracy strongly depends on the selected asteroid. 1. Introduction. The Restricted Three-Body Problem models the motion of a particle under the gravitational attraction of two point masses following a (Keple- rian) solution of the two-body problem (a general reference is [17]). The goal of this note is to discuss the degree of accuracy of such a model to study the real motion of an asteroid moving near the Lagrangian points of the Sun-Jupiter system. To this end, we have considered two restricted three-body problems, namely: i) the Circular RTBP, in which Sun and Jupiter describe a circular orbit around their centre of mass, and ii) the Elliptic RTBP, in which Sun and Jupiter move on an elliptic orbit.
    [Show full text]
  • Structure and Composition of the Surfaces of Trojan Asteroids from Reflection and Emission Spectroscopy
    Lunar and Planetary Science XXXVII (2006) 2075.pdf STRUCTURE AND COMPOSITION OF THE SURFACES OF TROJAN ASTEROIDS FROM REFLECTION AND EMISSION SPECTROSCOPY. Joshua. P. Emery,1 Dale. P. Cruikshank,2 and Jeffrey Van Cleve3 1NASA Ames / SETI Institute ([email protected]), 2NASA Ames Research Center ([email protected]), 3 Ball Aerospace ([email protected]). Introduction: The orbits of Trojan asteroids (~5.2 AU – beyond the Main Belt) place them in the transi- 1.0 tion region between the rocky inner and icy outer Solar 0.9 1172 Aneas System. Most Trojans were traditionally thought to 0.8 have originated in this region [3], although other loca- 1.0 tions of origin are possible [e.g., 4,5,6]. Possible con- 0.9 nections between Trojans and other groups of objects 911 Agamemnon 0.8 (Jupiter family comets, irregular satellites, Centaurs, Emissivity KBOs) are also important, but only poorly understood 1.0 [4,6,7,9]. The compositions of Trojans thereby hold 0.9 624 Hektor important clues concerning conditions in this critical 0.8 transition region, and the solar nebula as a whole. We discuss emission and reflection spectra of three Trojans 10 15 20 25 30 35 Wavelength (µm) (624 Hektor, 911 Agamemnon, and 1172 Aneas) and implications for surface structure and composition. Figure 2. Mid-IR emissivity spectra of Trojans. Vis-NIR Reflectance Spectroscopy: Reflectance studies of Trojans in the visible and NIR (0.8 – 4.0 Analysis: The Trojans have a similar spectral shape µm) reveal dark surfaces with mild to very red spectral to some carbonaceous meteorites and fine-grained sili- slopes, but no distinct absorption features (Fig.
    [Show full text]
  • Astrocladistics of the Jovian Trojan Swarms
    MNRAS 000,1–26 (2020) Preprint 23 March 2021 Compiled using MNRAS LATEX style file v3.0 Astrocladistics of the Jovian Trojan Swarms Timothy R. Holt,1,2¢ Jonathan Horner,1 David Nesvorný,2 Rachel King,1 Marcel Popescu,3 Brad D. Carter,1 and Christopher C. E. Tylor,1 1Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD, Australia 2Department of Space Studies, Southwest Research Institute, Boulder, CO. USA. 3Astronomical Institute of the Romanian Academy, Bucharest, Romania. Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The Jovian Trojans are two swarms of small objects that share Jupiter’s orbit, clustered around the leading and trailing Lagrange points, L4 and L5. In this work, we investigate the Jovian Trojan population using the technique of astrocladistics, an adaptation of the ‘tree of life’ approach used in biology. We combine colour data from WISE, SDSS, Gaia DR2 and MOVIS surveys with knowledge of the physical and orbital characteristics of the Trojans, to generate a classification tree composed of clans with distinctive characteristics. We identify 48 clans, indicating groups of objects that possibly share a common origin. Amongst these are several that contain members of the known collisional families, though our work identifies subtleties in that classification that bear future investigation. Our clans are often broken into subclans, and most can be grouped into 10 superclans, reflecting the hierarchical nature of the population. Outcomes from this project include the identification of several high priority objects for additional observations and as well as providing context for the objects to be visited by the forthcoming Lucy mission.
    [Show full text]
  • Trajectory Design of the Lucy Mission to Explore the Diversity of the Jupiter Trojans
    70th International Astronautical Congress, Washington, DC. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. IAC–2019–C1.2.11 Trajectory Design of the Lucy Mission to Explore the Diversity of the Jupiter Trojans Jacob A. Englander Aerospace Engineer, Navigation and Mission Design Branch, NASA Goddard Space Flight Center Kevin Berry Lucy Flight Dynamics Lead, Navigation and Mission Design Branch, NASA Goddard Space Flight Center Brian Sutter Totally Awesome Trajectory Genius, Lockheed Martin Space Systems, Littleton, CO Dale Stanbridge Lucy Navigation Team Chief, KinetX Aerospace, Simi Valley, CA Donald H. Ellison Aerospace Engineer, Navigation and Mission Design Branch, NASA Goddard Space Flight Center Ken Williams Flight Director, Space Navigation and Flight Dynamics Practice, KinetX Aerospace, Simi Valley, California James McAdams Aerospace Engineer, Space Navigation and Flight Dynamics Practice, KinetX Aerospace, Simi Valley, California Jeremy M. Knittel Aerospace Engineer, Space Navigation and Flight Dynamics Practice, KinetX Aerospace, Simi Valley, California Chelsea Welch Fantastically Awesome Deputy Trajectory Genius, Lockheed Martin Space Systems, Littleton, CO Hal Levison Principle Investigator, Lucy mission, Southwest Research Institute, Boulder, CO Lucy, NASA’s next Discovery-class mission, will explore the diversity of the Jupiter Trojan asteroids. The Jupiter Trojans are thought to be remnants of the early solar system that were scattered inward when the gas giants migrated to their current positions as described in the Nice model. There are two stable subpopulations, or “swarms,” captured at the Sun-Jupiter L4 and L5 regions. These objects are the most accessible samples of what the outer solar system may have originally looked like.
    [Show full text]
  • Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
    Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals.
    [Show full text]
  • The Minor Planet Bulletin 37 (2010) 45 Classification for 244 Sita
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 37, NUMBER 2, A.D. 2010 APRIL-JUNE 41. LIGHTCURVE AND PHASE CURVE OF 1130 SKULD Robinson (2009) from his data taken in 2002. There is no evidence of any change of (V-R) color with asteroid rotation. Robert K. Buchheim Altimira Observatory As a result of the relatively short period of this lightcurve, every 18 Altimira, Coto de Caza, CA 92679 (USA) night provided at least one minimum and maximum of the [email protected] lightcurve. The phase curve was determined by polling both the maximum and minimum points of each night’s lightcurve. Since (Received: 29 December) The lightcurve period of asteroid 1130 Skuld is confirmed to be P = 4.807 ± 0.002 h. Its phase curve is well-matched by a slope parameter G = 0.25 ±0.01 The 2009 October-November apparition of asteroid 1130 Skuld presented an excellent opportunity to measure its phase curve to very small solar phase angles. I devoted 13 nights over a two- month period to gathering photometric data on the object, over which time the solar phase angle ranged from α = 0.3 deg to α = 17.6 deg. All observations used Altimira Observatory’s 0.28-m Schmidt-Cassegrain telescope (SCT) working at f/6.3, SBIG ST- 8XE NABG CCD camera, and photometric V- and R-band filters. Exposure durations were 3 or 4 minutes with the SNR > 100 in all images, which were reduced with flat and dark frames.
    [Show full text]
  • Constraints on the Composition of Trojan Asteroid 624 Hektor Dale P
    Constraints on the Composition of Trojan Asteroid 624 Hektor Dale P. Cruikshank 1'2 NASA Ames Research Center, MS 245-6, Moffett Field, California 94035-1000 E-mail: dcruikshank @ mail.arc.nasa.gov Cristina M. Dalle Ore SETI Institute and NASA Ames Research Center, MS 245-6, Moffett Field, California 94035-1000 Ted L. Roush NASA Ames Research Center, MS 245-3, Moffett Field, California 94035-1000 Thomas R. Geballe Gemini Observatory, 670 N. A'ohoku Place, Hilo, Hawaii 96720 Tobias C. Owen 1 Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, Hawaii 96822 Catherine de Bergh 1 Observatoire de Paris, 4 Place Jules Jannsen, 92195 Meudon Cedex, France Michele D. Cash Stanford University, P.O. Box 16637, Stanford, California 94309 William K. Hartmann 2 Planetary Science Institute, 620 N. 6th Avenue, Tucson, Arizona 85715-8331 Submitted to Icarus December 12, 2000 Received Pages: 39 Figures: 7 Tables: 3 1. Guest observer, United Kingdom Infrared Telescope facility (UKIRT) 2. Guest observer, NASA Infrared Telescope Facility (IRTF) Proposed Running Head: Composition of Trojan Asteroid Hektor Address for Correspondence: Dale P. Cruikshank Mail Stop 245-6 NASA Ames Research Center Moffett Field, CA 94035-1000 dcruikshank @ mail.arc.n asa.gov Phone: 650-604-4244, Fax: 650-604-6779 Key Words: Asteroids, Composition Mineralogy Surfaces, Asteroids Spectroscopy ABSTRACT We presenta compositespectrumof Trojan asteroid624Hektor,0.3-3.6 p.m,which showsthatthereis no discernible3-p.mabsorptionband. Suchabandwould indicatethe presenceof OH or H20- bearing silicate minerals, or macromolecular carbon-rich organic material of the kind seen on the low-albedo hemisphere of Saturn's satellite Iapetus (Owen et al.
    [Show full text]
  • The Origin and Evolution of Celestial Bodies Gravitating in the Vicinity of Earth’S Orbit
    “BABES¸-BOLYAI” UNIVERSITY, CLUJ-NAPOCA FACULTY OF MATHEMATICS AND COMPUTER SCIENCE THE ORIGIN AND EVOLUTION OF CELESTIAL BODIES GRAVITATING IN THE VICINITY OF EARTH’S ORBIT -doctoral thesis- EXTENDED ABSTRACT S¸tefan Gh. Berinde Research supervisor: Prof. Dr. Vasile Ureche June 2002 Additional information about this work can be found at the following internet address: http://math.ubbcluj.ro/»sberinde/thesis Thesis content Introduction Abbreviations Chapter 1. Population description 1.1 Observational evidences 1.2 Observational biases Chapter 2. Dynamics of close encounters 2.1 The restricted three-body problem 2.1.1 Equations of motion 2.1.2 Jacobi integral 2.1.3 Tisserand criterion 2.1.4 Lagrange equilibrium points 2.1.5 Hill’s equations 2.2 Opik’s¨ geometric formalism 2.2.1 Motion characteristics 2.2.2 Motion outside the planetary sphere of action 2.2.3 Motion inside the planetary sphere of action 2.2.4 A complete map of orbital changes Chapter 3. Characteristics of long-term dynamical evolution 3.1 Chaotic behaviour 3.1.1 Chaos in the planar, circular, restricted three-body problem 3.1.2 Lyapounov exponents 3.1.3 Effects of chaos on long-term numerical integrations 3.2 Resonant motions 3.2.1 Mean motion resonances 3.2.2 Secular resonances 3.2.3 Protection mechanisms 3.3 Dynamical classifications 3.3.1 Classification against minimal orbital intersection distance 3.3.2 SPACEGUARD classification Chapter 4. Source regions and dynamical transport mechanisms 4.1 The main belt of asteroids as NEA source 4.1.1 Dynamical structure of the asteroid belt 4.1.2 Transport mechanisms to the inner solar system 4.1.3 The role of inter-asteroidal collisions 4.1.4 Estimating the mass of asteroids 4.2 NEA asteroids of cometary origin 4.2.1 Populations of bodies in the outer solar system 4.2.2 Chaotic diffusion of bodies from the Kuiper belt to the inner solar system Chapter 5.
    [Show full text]
  • I N S I D E T H I S I S S
    February / février 2008 Volume/volume 102 Number/numéro 1 [728] This Issue's Winning Astrophoto! FEATURING A FULL COLOUR SECTION! The Journal of the Royal Astronomical Society of Canada Cassiopeia Rising Over the Plaskett by Charles Banville, Victoria Centre. This is a montage of two pictures I took using a Canon 20Da and a Canon EF 17-40mm f/4L lens. The foreground image was acquired at the Dominion Astrophysical Observatory in Victoria on 2007 July 26. That evening the Plaskett Dome was illuminated by a bright 12-day-old Moon. The star trails were created using 87 light frames of 1 minute each taken from Cattle Point on 2007 August 8. Le Journal de la Société royale d’astronomie du Canada [Editor’s Note: The two-member team of Dietmar Kupke and Paul Mortfield of the Toronto Centre selected this late-entry image from among the 30 or so entries to the “Own the Back Cover” con- test. Thanks to all the submitters. We welcome further entries, so don’t delay – send in yours now! INSIDE THIS ISSUE Watch the back cover of the April issue for the next winner.] One Hundred Editions of the Observer's Handbook · Seriously Seeking Ceres! Mont-Mégantic Dark-Sky Reserve Conference, 2007 September 19-21 Duplicity of ZC1042: My First Double-Star Discovery In Memory of Gertrude Jean Southam Building for the International Year of Astronomy (IYA2009) THE ROYAL ASTRONOMICAL SOCIETY OF CANADA February / février 2008 NATIONAL OFFICERS AND COUNCIL FOR 2007-2008/CONSEIL ET ADMINISTRATEURS NATIONAUX Honorary President Robert Garrison, Ph.D., Toronto President Scott Young, B.Sc., Winnipeg Vol.
    [Show full text]