The Enteric Nervous System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coffee and Its Effect on Digestion
Expert report Coffee and its effect on digestion By Dr. Carlo La Vecchia, Professor of Medical Statistics and Epidemiology, Dept. of Clinical Sciences and Community Health, Università degli Studi di Milano, Italy. Contents 1 Overview 2 2 Coffee, a diet staple for millions 3 3 What effect can coffee have on the stomach? 4 4 Can coffee trigger heartburn or GORD? 5 5 Is coffee associated with the development of gastric or duodenal ulcers? 6 6 Can coffee help gallbladder or pancreatic function? 7 7 Does coffee consumption have an impact on the lower digestive tract? 8 8 Coffee and gut microbiota — an emerging area of research 9 9 About ISIC 10 10 References 11 www.coffeeandhealth.org May 2020 1 Expert report Coffee and its effect on digestion Overview There have been a number of studies published on coffee and its effect on different areas of digestion; some reporting favourable effects, while other studies report fewer positive effects. This report provides an overview of this body of research, highlighting a number of interesting findings that have emerged to date. Digestion is the breakdown of food and drink, which occurs through the synchronised function of several organs. It is coordinated by the nervous system and a number of different hormones, and can be impacted by a number of external factors. Coffee has been suggested as a trigger for some common digestive complaints from stomach ache and heartburn, through to bowel problems. Research suggests that coffee consumption can stimulate gastric, bile and pancreatic secretions, all of which play important roles in the overall process of digestion1–6. -
The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’S Disease
life Review The Baseline Structure of the Enteric Nervous System and Its Role in Parkinson’s Disease Gianfranco Natale 1,2,* , Larisa Ryskalin 1 , Gabriele Morucci 1 , Gloria Lazzeri 1, Alessandro Frati 3,4 and Francesco Fornai 1,4 1 Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; [email protected] (L.R.); [email protected] (G.M.); [email protected] (G.L.); [email protected] (F.F.) 2 Museum of Human Anatomy “Filippo Civinini”, University of Pisa, 56126 Pisa, Italy 3 Neurosurgery Division, Human Neurosciences Department, Sapienza University of Rome, 00135 Rome, Italy; [email protected] 4 Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, 86077 Pozzilli, Italy * Correspondence: [email protected] Abstract: The gastrointestinal (GI) tract is provided with a peculiar nervous network, known as the enteric nervous system (ENS), which is dedicated to the fine control of digestive functions. This forms a complex network, which includes several types of neurons, as well as glial cells. Despite extensive studies, a comprehensive classification of these neurons is still lacking. The complexity of ENS is magnified by a multiple control of the central nervous system, and bidirectional communication between various central nervous areas and the gut occurs. This lends substance to the complexity of the microbiota–gut–brain axis, which represents the network governing homeostasis through nervous, endocrine, immune, and metabolic pathways. The present manuscript is dedicated to Citation: Natale, G.; Ryskalin, L.; identifying various neuronal cytotypes belonging to ENS in baseline conditions. -
Secretin-Induced Gastric Relaxation Is Mediated by Vasoactive Intestinal Polypeptide and Prostaglandin Pathways
Neurogastroenterol Motil (2009) 21, 754–e47 doi: 10.1111/j.1365-2982.2009.01271.x Secretin-induced gastric relaxation is mediated by vasoactive intestinal polypeptide and prostaglandin pathways Y. LU & C. OWYANG Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA Abstract Secretin has been shown to delay gastric vagally mediated pathway. Through nicotinic emptying and inhibit gastric motility. We have dem- synapses, secretin stimulates VIP release from post- onstrated that secretin acts on the afferent vagal ganglionic neurons in the gastric myenteric plexus, pathway to induce gastric relaxation in the rat. How- which in turn induces gastric relaxation through a ever, the efferent pathway that mediates the action of prostaglandin-dependent pathway. secretin on gastric motility remains unknown. We Keywords gastric relaxation, indomethacin, vagus recorded the response of intragastric pressure to graded nerve. doses of secretin administered intravenously to anaesthetized rats using a balloon attached to a cath- eter and placed in the body of the stomach. Secretin INTRODUCTION evoked a dose-dependent decrease in intragastric Secretin has been shown to inhibit gastric contrac- pressure. The threshold dose of secretin was 1.4 pmol tions and delay gastric emptying of liquids and kg)1 h)1 and the effective dose, 50% was 5.6 pmol kg)1 solids.1–3 However, the mechanisms of secretinÕs h)1. Pretreatment with hexamethonium markedly inhibitory effects on gastric motility remain unclear. reduced gastric relaxation induced by secretin The gene expression of secretin receptor has been (5.6 pmol kg)1 h)1). Bilateral vagotomy also signifi- demonstrated in the rat nodose ganglia.4 We have cantly reduced gastric motor responses to secretin. -
Enteric Nervous System (ENS): 1) Myenteric (Auerbach) Plexus & 2
Enteric Nervous System (ENS): 1) Myenteric (Auerbach) plexus & 2) Submucosal (Meissner’s) plexus à both triggered by sensory neurons with chemo- and mechanoreceptors in the mucosal epithelium; effector motors neurons of the myenteric plexus control contraction/motility of the GI tract, and effector motor neurons of the submucosal plexus control secretion of GI mucosa & organs. Although ENS neurons can function independently, they are subject to regulation by ANS. Autonomic Nervous System (ANS): 1) parasympathetic (rest & digest) – can innervate the GI tract and form connections with ENS neurons that promote motility and secretion, enhancing/speeding up the process of digestion 2) sympathetic (fight or flight) – can innervate the GI tract and inhibit motility & secretion by inhibiting neurons of the ENS Sections and dimensions of the GI tract (alimentary canal): Esophagus à ~ 10 inches Stomach à ~ 12 inches and holds ~ 1-2 L (full) up to ~ 3-4 L (distended) Duodenum à first 10 inches of the small intestine Jejunum à next 3 feet of small intestine (when smooth muscle tone is lost upon death, extends to 8 feet) Ileum à final 6 feet of small intestine (when smooth muscle tone is lost upon death, extends to 12 feet) Large intestine à 5 feet General Histology of the GI Tract: 4 layers – Mucosa, Submucosa, Muscularis Externa, and Serosa Mucosa à epithelium, lamina propria (areolar connective tissue), & muscularis mucosae Submucosa à areolar connective tissue Muscularis externa à skeletal muscle (in select parts of the tract); smooth muscle (at least 2 layers – inner layer of circular muscle and outer layer of longitudinal muscle; stomach has a third layer of oblique muscle under the circular layer) Serosa à superficial layer made of areolar connective tissue and simple squamous epithelium (a.k.a. -
Download PDF Enteric Nervous System Development in Cavitary
Romanian Journal of Morphology and Embryology 2008, 49(1):63–67 ORIGINAL PAPER Enteric nervous system development in cavitary viscera allocated to the celiac plexus ALINA MARIA ŞIŞU1), CODRUŢA ILEANA PETRESCU1), C. C. CEBZAN1), M. C. NICULESCU1), V. NICULESCU1), P. L. MATUSZ1), M. C. RUSU2) 1)Department of Anatomy and Embryology, “Victor Babeş” University of Medicine and Pharmacy, Timisoara 2)Department of Anatomy and Embryology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bucharest Abstract Enteric nervous system (ENS) is a network made of neuronal cells and nervous fibers. There are two plexuses: myenteric of Auerbach and sub mucous of Meissner and Henle. Many substances are involved in neurotransmission at ENS level. ENS assures all gastrointestinal system functions: digestion, absorption, etc. Our study is made on 23 human fetal specimens at different ages of evolution with crown-rump lengths from 9 to 28 cm, and three new born human specimens. We used the Trichrome Masson stain technique and the argental impregnation Bielschowsky on block technique for microscopic evidence. Our study concerned the cavitary viscera allocated to the celiac plexus, involving all layers of each studied viscera. Keywords: viscera, neurons, celiac plexus, argental impregnation. Introduction Auerbach myenteric plexus, with location between the longitudinal and circular muscular layers and sub The enteric nervous system (ENS) is from mucous plexus (Meissner and Henle) between the morphological and neurochemistry point of view a real circular muscle and mucous muscle layer. “brain”. At a complex network level made from neurons The ultra structural studies show that the ENS and nervous fibers we find much more structure is closer to the central nervous system than the neurotransmitters and neuromodulaters than anywhere sympathetic and parasympathetic ganglia [5–7]. -
1 the Anatomy and Physiology of the Oesophagus
111 2 3 1 4 5 6 The Anatomy and Physiology of 7 8 the Oesophagus 9 1011 Peter J. Lamb and S. Michael Griffin 1 2 3 4 5 6 7 8 911 2011 location deep within the thorax and abdomen, 1 Aims a close anatomical relationship to major struc- 2 tures throughout its course and a marginal 3 ● To develop an understanding of the blood supply, the surgical exposure, resection 4 surgical anatomy of the oesophagus. and reconstruction of the oesophagus are 5 ● To establish the normal physiology and complex. Despite advances in perioperative 6 control of swallowing. care, oesophagectomy is still associated with the 7 highest mortality of any routinely performed ● To determine the structure and function 8 elective surgical procedure [1]. of the antireflux barrier. 9 In order to understand the pathophysiol- 3011 ● To evaluate the effect of surgery on the ogy of oesophageal disease and the rationale 1 function of the oesophagus. for its medical and surgical management a 2 basic knowledge of oesophageal anatomy and 3 physiology is essential. The embryological 4 Introduction development of the oesophagus, its anatomical 5 structure and relationships, the physiology of 6 The oesophagus is a muscular tube connecting its major functions and the effect that surgery 7 the pharynx to the stomach and measuring has on them will all be considered in this 8 25–30 cm in the adult. Its primary function is as chapter. 9 a conduit for the passage of swallowed food and 4011 fluid, which it propels by antegrade peristaltic 1 contraction. It also serves to prevent the reflux Embryology 2 of gastric contents whilst allowing regurgita- 3 tion, vomiting and belching to take place. -
NROSCI/BIOSC 1070 and MSNBIO 2070 November 15, 2017 Gastrointestinal 1 Functions of the Digestive Tract
NROSCI/BIOSC 1070 and MSNBIO 2070 November 15, 2017 Gastrointestinal 1 Functions of the Digestive Tract. The digestive system has two primary roles: digestion, or the chemical and mechanical breakdown of foods into small molecules that can absorbed, or moved across the intestinal mucosa into the bloodstream. In order to accomplish these functions, the secretion of enzymes, hormones, mucus, and paracrines by the gastrointestinal organs is needed. Furthermore, motility, or controlled movement of materials through the digestive tract is required. In addition to these primary functions, the gastrointestinal tract faces a number of challenges. Almost 7 liters of fluid must be released into the lumen of the digestive tract per day to allow for digestion and absorption to occur. Clearly, most of this fluid must be reabsorbed or dehydration will occur. Furthermore, the inner surface of the digestive tract is technically in contact with the external environment; for this reason, protective mechanisms are needed. In part, these mechanisms must protect against the secretions of the GI tract, including acid and enzymes. Anatomy of the Gastrointestinal System November 15, 2017 Page 1 GI 1 The anatomy of the GI system is illustrated in the previous 2 figures. The organs involved in digestion and absorption include the salivary glands, esophagus, stomach, small intestine, liver, pancreas, and large intestine. In addition, 7 sphincters control the movement of material and secretions between the organs. The total length of the GI tract is about 15 feet, of which 13 feet are comprised of intestine. The processed material within the GI tract is referred to as chyme. -
Interactions of the Enteric Nervous System with the Gut Microbiome in the Neuroligin-3 R451C Mouse Model of Autism
Interactions of the enteric nervous system with the gut microbiome in the neuroligin-3R451C mouse model of autism M.H.M. Madusani Herath Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy September 2020 Department of Physiology The University of Melbourne ABSTRACT Autism patients are four times more likely to be hospitalized due to gastrointestinal (GI) dysfunction compared to the general public. However, the exact cause of GI dysfunction in individuals with autism is currently unknown. Genetic predisposition to autism spectrum disorder (ASD) has been highlighted in various studies and mutations in genes that affect nervous system function can drive both behavioural abnormalities and GI dysfunction in autism. Neuroligin-3 (NLGN3) is a postsynaptic membrane protein and the R451C missense mutation in the NLGN3 gene is associated with ASD. Recent studies revealed that the NLGN3 R451C mutation induces GI dysfunction in autism patients as well as in mice but, the cellular localization and the effects of this mutation on NLGN3 production in the enteric nervous system (ENS) have not been reported to date. The intestinal mucosal barrier is the interface separating the external environment from the interior of the body. Mucosal barrier functions are directly regulated by the enteric nervous system. Therefore, ENS dysfunction can induce mucosal barrier impairments. An impaired intestinal barrier has been reported in autism patients, but neurally-mediated barrier dysfunctions have not been assessed in transgenic autism mouse models with an altered nervous system. The intestinal mucus layer is the outermost layer of the mucosa which separates the intestinal microbiota from the intestinal epithelium. -
Activation of Intrinsic Afferent Pathways in Submucosal Ganglia of the Guinea Pig Small Intestine
The Journal of Neuroscience, May 1, 2000, 20(9):3295–3309 Activation of Intrinsic Afferent Pathways in Submucosal Ganglia of the Guinea Pig Small Intestine Hui Pan and Michael D. Gershon Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032 The enteric nervous system contains intrinsic primary afferent blocked by an antagonist of human calcitonin gene-related neurons that allow mucosal stimulation to initiate reflexes with- peptide (hCGRP8–37). hCGRP8–37 also inhibited the spread of out CNS input. We tested the hypothesis that submucosal excitation in the submucosal plexus, assessed by measuring primary afferent neurons are activated by 5-hydroxytryptamine the uptake of FM2-10 and induction of c-fos. In summary, data (5-HT) released from the stimulated mucosa. Fast and/or slow are consistent with the hypothesis that 5-HT from enterochro- EPSPs were recorded in submucosal neurons after the delivery maffin cells in response to mucosal stimuli initiates reflexes by of exogenous 5-HT, WAY100325 (a 5-HT1P agonist), mechani- stimulating 5-HT1P receptors on submucosal primary afferent cal, or electrical stimuli to the mucosa of myenteric plexus-free neurons. Second-order neurons respond to these cholinergic/ preparations (Ϯ extrinsic denervation). These events were re- CGRP-containing cells with nicotinic fast EPSPs and/or CGRP- sponses of second-order cells to transmitters released by ex- mediated slow EPSPs. Slow EPSPs are necessary for excita- cited primary afferent neurons. After all stimuli, fast and slow tion to spread within the submucosal plexus. Because some EPSPs were abolished by a 5-HT1P antagonist, N-acetyl-5- second-order neurons contain also CGRP,primary afferent neu- hydroxytryptophyl-5-hydroxytryptophan amide, and by 1.0 M rons may be multifunctional and also serve as interneurons. -
Practical Approaches to Dysphagia Caused by Esophageal Motor Disorders Amindra S
Practical Approaches to Dysphagia Caused by Esophageal Motor Disorders Amindra S. Arora, MB BChir and Jeffrey L. Conklin, MD Address nonspecific esophageal motor disorders (NSMD), diffuse Division of Gastroenterology and Hepatology, Mayo Clinic, esophageal spasm (DES), nutcracker esophagus (NE), 200 First Street SW, Rochester, MN 55905, USA. hypertensive lower esophageal sphincter (hypertensive E-mail: [email protected] LES), and achalasia [1••,3,4••,5•,6]. Out of all of these Current Gastroenterology Reports 2001, 3:191–199 conditions, only achalasia can be recognized by endoscopy Current Science Inc. ISSN 1522-8037 Copyright © 2001 by Current Science Inc. or radiology. In addition, only achalasia has been shown to have an underlying distinct pathologic basis. Recent data suggest that disorders of esophageal motor Dysphagia is a common symptom with which patients function (including LES incompetence) affect nearly present. This review focuses primarily on the esophageal 20% of people aged 60 years or over [7••]. However, the motor disorders that result in dysphagia. Following a brief most clearly defined motility disorder to date is achalasia. description of the normal swallowing mechanisms and the Several studies reinforce the fact that achalasia is a rare messengers involved, more specific motor abnormalities condition [8•,9]. However, no population-based studies are discussed. The importance of achalasia, as the only exist concerning the prevalence of most esophageal motor pathophysiologically defined esophageal motor disorder, disorders, and most estimates are derived from people with is discussed in some detail, including recent developments symptoms of chest pain and dysphagia. A recent review of in pathogenesis and treatment options. Other esophageal the epidemiologic studies of achalasia suggests that the spastic disorders are described, with relevant manometric worldwide incidence of this condition is between 0.03 and tracings included. -
Somatostatin Inhibits Gastric Acid Secretion After Gastric Mucosal Prostaglandin Synthesis Inhibition by Indomethacin in Man
Gut: first published as 10.1136/gut.26.11.1189 on 1 November 1985. Downloaded from Gut, 1985, 26, 1189-1191 Somatostatin inhibits gastric acid secretion after gastric mucosal prostaglandin synthesis inhibition by indomethacin in man M H MOGARD, V MAXWELL, T KOVACS, G VAN DEVENTER, J D ELASHOFF, T YAMADA, G L KAUFFMAN JR, AND J H WALSH From the Centerfor Ulcer Research and Education, VA Wadsworth MedicallSurgical Services and UCLA, LosAngeles, California, USA. SUMMARY The inhibitory effect of indomethacin, 200+200 mg administered per os over 24 hours, on the prostaglandin E2 generative capacity of gastric mucosal tissue was determined in healthy male volunteers. The effect of prostaglandin synthesis inhibition on somatostatin induced suppression of food-stimulated acid secretion was tested. Peptone meal stimulated acid secretion was quantified in five healthy volunteers by intragastric titration with and without indomethacin pretreatment. Somatostatin doses of 200, 400, and 800 pmol/kg/h each significantly inhibited the peptone stimulated acid output. Indomethacin treatment, resulting in 90% inhibition of prostaglandin E2 synthesis, did not affect glucose- or peptone-stimulated acid output or modify the inhibitory action of somatostatin. Clinically, acid inhibition by somatostatin has been used to treat bleeding peptic ulcers. Ulcer haemorrhage may be preceded by an excessive use of drugs that inhibit prostaglandin synthesis such as aspirin or other non-steroidal anti-inflammatory agents. Recent observations in the rat indicate that prostaglandins mediate the inhibitory action of somatostatin on gastric acid secretion. The present results suggest that prostaglandins are not http://gut.bmj.com/ required for inhibition of gastric acid secretion by somatostatin in man. -
Lecture Series Gastrointestinal Tract
Lecture series Gastrointestinal tract Professor Shraddha Singh, Department of Physiology, KGMU, Lucknow INNERVATION OF GIT • 1.Intrinsic innervation-1.Myenteric/Auerbach or plexus Local 2.Submucosal/Meissners plexus 2.Extrinsic innervation-1.Parasympathetic or -2.Sympathetic Higher centre Enteric Nervous System - Lies in the wall of the gut, beginning in the esophagus and - extending all the way to the anus - controlling gastrointestinal movements and secretion. - (1) an outer plexus lying between the longitudinal and circular muscle layers, called the myenteric plexus or Auerbach’s plexus, - controls mainly the gastrointestinal movements - (2) an inner plexus, called the submucosal plexus or Meissner’s plexus, that lies in the submucosa. - controls mainly gastrointestinal secretion and local blood flow Enteric Nervous System - The myenteric plexus consists mostly of a linear chain of many interconnecting neurons that extends the entire length of the GIT - When this plexus is stimulated, its principal effects are - (1) increased tonic contraction, or “tone,” of the gut wall, - (2) increased intensity of the rhythmical contractions, - (3) slightly increased rate of the rhythmical contraction, - (4) increased velocity of conduction of excitatory waves along the gut wall, causing more rapid movement of the gut peristaltic waves. - Inhibitory transmitter - vasoactive intestinal polypeptide (VIP) - pyloric sphincter, sphincter of the ileocecal valve Enteric Nervous System - The submucosal plexus is mainly concerned with controlling function within the inner wall - local intestinal secretion, local absorption, and local contraction of the submucosal muscle - Neurotransmitters: - (1) Ach (7) substance P - (2) NE (8) VIP - (3)ATP (9) somatostatin - (4) 5 – HT (10) bombesin - (5) dopamine (11) metenkephalin - (6) cholecystokinin (12) leuenkephalin Higher centre innervation - the extrinsic sympathetic and parasympathetic fibers that connect to both the myenteric and submucosal plexuses.