SP403 for Pdf.P65

Total Page:16

File Type:pdf, Size:1020Kb

SP403 for Pdf.P65 BULLETIN OF THE PUGET SOUND MYCOLOGICAL SOCIETY Number 403 June 2004 AMANITA PANTHERINA, THE PANTHER The gills are free (not touching the stem), close, somewhat wide, AMANITA Brian Luther white, and with a distinctly crenulate, eroded, or scalloped edge. The stem is 5–15 cm long and up to 2.5 cm wide, tapering up- As PSMS member Karen Boyden found out the hard way (see related article on “Puppy Poisoning” on page 5 of this issue), ward, with an enlarged bulbous base. It is white, smooth, and silky above the annulus and fibrillose roughened below. Amanita pantherina, the Panther Amanita, is widespread in the Pacific Northwest, both in the city and in the countryside. The species has a membranous, white partial veil (annulus), cen- trally located or more often superior on the stem. The veil is cot- Habit and Habitat tony to fibrillose, and becomes ragged and torn with age and hang- Amanita pantherina is mycorrhizal with and scattered to gregari- ing on the stem. ous under confers, but in the PNW it is most commonly associ- The volva has a distinctly free collar or lip around the top of the ated with Douglas Fir (Pseudotsuga menziesii). It usually fruits in the spring, but occasionally in summer or fall. bulb, with some fibrillose zones. The spores are white in deposit, 9–12 × 6.5–8 µm in size, ellipti- It’s been my experience over the years that even though spring is the real season for this species, it’s rarely found in any quantity cal, smooth, and inamyloid. and is only infrequently brought in to me for identification on Toxicology field trips. I’d say that perhaps just a few sporocarps are brought Amanita pantherina contains ibotenic acid and muscimol, ner- in on all the spring outings, which is very little material. It isn’t vous system toxins which disrupt the normal neuro transmissions clear to me why so few are collected and brought in to the spring in the brain. The first effects can begin within a half an hour of field trips, because this is its season. It’s rarely brought in during ingestion. Muscles begin to twitch, the face gets flushed, followed fall. by dizziness, delirium, and possibly vomiting. Then after a while The most abundant fruitings of this species that I’ve ever seen in the victim gets really sleepy. Eating small amounts of the mush- my life occurred in pure stands of Douglas Fir (Pseudotsuga room will cause an intoxicated drunkenness, and the person ef- menziesii) in Fort Lewis and in Camp Murray (a large Washing- fected normally becomes unconscious. The effects are profound ton National Guard reserve adjacent to Fort Lewis) that contained and can be likened to a grossly overexaggerated drunken stupor, maybe 150 to 200 year old trees on average. When still in the with other unpleasant symptoms. This pronounced inebriation syn- Army National Guard I used to have to take courses, go to the drome can, briefly, result in some pleasant thoughts and symp- firing ranges, and have training and FTX exercises (Field Train- toms, but these are usually short-lived and normally the symp- ing Exercises) in Fort Lewis and Camp Murray, and when there toms are predictably to violently unpleasant, depending on a num- in spring I was amazed at how abundantly Amanita pantherina ber of factors, such as how grew mycorrhizally associated with these pure stands of Doug much mushroom was eaten Fir. and the consumer’s size, weight, sex, and emotional This general area of Pierce County, Washington, is somewhat arid, with a microclimate much like that of the San Juan Islands— state. Very deep sleep with vivid dreams (pleasant and lower rainfall because of the pronounced rain shadow caused by unpleasant) is a character- the Olympic Mountains. This general area of Pierce County is one of the only places where you can find Ponderosa pine (Pinus istic of intoxication. ponderosa) and Garry Oak (Quercus garryana) growing natu- A large enough dose can be rally in western Washington. Interesting. I’ve never seen large fatal. Most people eventu- fruitings of Amanita pantherina in Eastern Washington. ally fully recover from a smaller dose. However, Every year is different, and perhaps the extra dry conditions we’ve experienced here in the PNW this late winter and spring might others are permanently emotionally scarred by the result in some unusual fruitings of any number of fungi, includ- experience, which may re- ing Amanita pantherina. sult in many unseen problems in the future. Description BEGINNER’S CLASS LAST SESSION Amanita pantherina caps are 5–30 cm broad, convex, or becom- ing plane or expanded further to an uplifted margin with age. The The final session of the spring beginners class will be held 6–8 PM caps are moist and viscid when fresh with a clearly striate margin on Sunday, June 6, in the Douglas Classroom at CUH. Subjects and are covered with regularly spaced or scattered whitish to cream will include compass setting, maps, safe hunting practices, pres- colored, flat to conical patches of universal veil tissue (or warts) ervation and cooking of mushrooms, and assorted other aspects at maturity. The cap color varies from tan to brownish tan, buff, of artistic merit. Any PSMS member may attend by bringing $7 yellowish-brown, dark brown or even a brassy brown and is usu- to cover the cost of room rental and supplies. Those who have ally slightly lighter at the margin. registered for the class will not need to contribute. page 1 MEMBERSHIP MEETING Spore Prints Tuesday, June 8, 2004, at 7:30 PM at the Center for Urban Horti- culture, 3501 NE 41st Street, Seattle is published monthly, September through June by the The June meeting features Storm of the Olympic Park Institute. PUGET SOUND MYCOLOGICAL SOCIETY Storm has written about primitive uses of fungi and his experi- Center for Urban Horticulture, Box 354115 ments in mycophagy for the Bulletin of Primitive Technology and University of Washington, Seattle, Washington 98195 Mushroom, The Journal of Wild Mushrooming. He will tell us (206) 522-6031 http://www.psms.org about eating neglected or avoided mushrooms, and talk about some User name: Password: of the Stone Age and Bronze Age uses of fungi. To conclude, OFFICERS: Ron Post, President Storm will, with burning intensity, build a smolder and then a fire Patrice Benson, Vice President using a wooden drill, polypore tinder, and lots of sweat and muscle. John Goldman, Treasurer After the demonstration, we will be celebrating our volunteers Ramona Owen, Secretary with a brief announcement and the usual food and mingling. TRUSTEES: Alissa Allen, Steve Bigelow, If your last name begins with the letters N to Z, please bring some- Colleen Compton, Lynne Elwell, David Hunt, Dennis Oliver, thing festive and maybe even primitive to share at the meeting. Pacita Roberts, Tony Tschanz, This is the last PSMS membership meeting until September 14. Bret Vielbig, Daniel Winkler, Karin Mendell (Immed. Past Pres.) ALTERNATES: Marilyn Droege, Karin Tolgu SCI. ADVISOR: Dr. Joseph F. Ammirati BOARD NEWS Ramona Owen EDITOR: Agnes A. Sieger, 271 Harmony Lane, Port Angeles, WA 98362 Flowers and a card were delivered on behalf of the club by Karin [email protected] Mendell to Joy Spur, who would appreciate hearing from mem- Annual dues $25; full-time students $15 bers as she recuperates. Membership renewal reminders were mailed out; those folks will not receive Spore Prints until sub- scriptions are renewed. The new PSMS roster will be printed this CALENDAR summer after membership data are updated. The treasurer’s re- port included a discussion about rolling over the club investments June 5 Field Trip, Chatter Creek Campground into a CD or Treasury Note, comparing the yields and maturation dates, with a decision tabled pending more research by John June 6 Last Beginner’s Class, 6–8 PM, Douglas Classroom, CUH Goldman. A microscopy class to be taught by Judy Roger is being June 8 Membership Meeting, 7:30 PM, CUH developed; the date, to be announced, will be either June or Sep- June 12 Field Trip, Swauk Creek Campground tember. PSMS has eight working microscopes and five that need June 14 Board Meeting, 7:30 PM, CUH various levels of repair. The Board agreed on $500 microscope July 3 Summer Picnic, noon–4 PM, Steward Park repair budget. Ron Post offered to build microscope cases this July 10 TrailsFest 2004, Rattlesnake Lake, North Bend summer. Field trips have been going well. Ron Post reported that July 19 Board Meeting, 7:30 PM, CUH several young members were very interested in the cultivation Aug. 16 Board Meeting, 7:30 PM, CUH kits from Fungi Perfecti that PSMS made available to them on the Aug. 24 Spore Prints deadline last field trip. The Circle 8 field trip was attended by 40 people; Sept. 14 Membership Meeting, 7:30 PM, CUH Dave Hunt reports that the cabins have been refurbished. Park rangers informed the field trip group that a cougar had been sighted in the fields and to make sure any kids were especially warned of PSMS DISCUSSION GROUP John Goldman its presence. Certain book costs for serious PSMS identifiers may be underwritten by the club. The Fall Wild Mushroom Exhibit The PSMS e-mail discussion group maintained by Yahoo Groups will be co-chaired by Ron Post and an as-yet-to-volunteer mem- is an easy way to keep in contact with other members, circulate ber; your support and enthusiasm are much needed. All the steps information about PSMS events, and post general mushroom in- and contacts for the job have been meticulously recorded by im- formation.
Recommended publications
  • Appendix K. Survey and Manage Species Persistence Evaluation
    Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site.
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • AMATOXIN MUSHROOM POISONING in NORTH AMERICA 2015-2016 by Michael W
    VOLUME 57: 4 JULY-AUGUST 2017 www.namyco.org AMATOXIN MUSHROOM POISONING IN NORTH AMERICA 2015-2016 By Michael W. Beug: Chair, NAMA Toxicology Committee Assessing the degree of amatoxin mushroom poisoning in North America is very challenging. Understanding the potential for various treatment practices is even more daunting. Although I have been studying mushroom poisoning for 45 years now, my own views on potential best treatment practices are still evolving. While my training in enzyme kinetics helps me understand the literature about amatoxin poisoning treatments, my lack of medical training limits me. Fortunately, critical comments from six different medical doctors have been incorporated in this article. All six, each concerned about different aspects in early drafts, returned me to the peer reviewed scientific literature for additional reading. There remains no known specific antidote for amatoxin poisoning. There have not been any gold standard double-blind placebo controlled studies. There never can be. When dealing with a potentially deadly poisoning (where in many non-western countries the amatoxin fatality rate exceeds 50%) treating of half of all poisoning patients with a placebo would be unethical. Using amatoxins on large animals to test new treatments (theoretically a great alternative) has ethical constraints on the experimental design that would most likely obscure the answers researchers sought. We must thus make our best judgement based on analysis of past cases. Although that number is now large enough that we can make some good assumptions, differences of interpretation will continue. Nonetheless, we may be on the cusp of reaching some agreement. Towards that end, I have contacted several Poison Centers and NAMA will be working with the Centers for Disease Control (CDC).
    [Show full text]
  • Bridgeoporus Nobilissimus Is Much More Abundant Than Indicated by the Presence of Basidiocarps in Forest Stands
    North American Fungi Volume 10, Number 3, Pages 1-28 Published May 29, 2015 Bridgeoporus nobilissimus is much more abundant than indicated by the presence of basidiocarps in forest stands Matthew Gordon1 and Kelli Van Norman2 1Molecular Solutions LLC, 715 NW Hoyt St., #2546, Portland, OR 97208, USA 2Interagency Special Status/Sensitive Species Program, USDI Bureau of Land Management Oregon State Office & USDA Forest Service Region 6, 1220 SW 3rd Ave., Portland, OR 97204, USA Gordon, M., and K. Van Norman. 2015. Bridgeoporus nobilissimus is much more abundant than indicated by the presence of basidiocarps in forest stands. North American Fungi 10(3): 1-28. http://dx.doi:10.2509/naf2015.010.003 Corresponding author: Matt Gordon [email protected]. Accepted for publication May 4, 2015. http://pnwfungi.org Copyright © 2015 Pacific Northwest Fungi Project. All rights reserved. Abstract: The polypore Bridgeoporus nobilissimus produces large perennial basidiocarps on large diameter Abies stumps, snags and trees in coniferous forests of the Pacific Northwest. Despite the size and persistence of the basidiocarps, they are rarely observed, making the conservation of this species a concern. We determined that a genetic marker for this fungus could be detected in DNA extracted from wood cores taken from trees hosting basidiocarps. We then tested 105 trees and stumps that did not host B. nobilissimus basidiocarps in plots surrounding B. nobilissimus conks, and 291 trees and stumps in randomly located plots in four stands that contained at least one B. nobilissimus basidiocarp. We found that trees of all sizes throughout all of the stands hosted B.
    [Show full text]
  • Toxicological and Pharmacological Profile of Amanita Muscaria (L.) Lam
    Pharmacia 67(4): 317–323 DOI 10.3897/pharmacia.67.e56112 Review Article Toxicological and pharmacological profile of Amanita muscaria (L.) Lam. – a new rising opportunity for biomedicine Maria Voynova1, Aleksandar Shkondrov2, Magdalena Kondeva-Burdina1, Ilina Krasteva2 1 Laboratory of Drug metabolism and drug toxicity, Department “Pharmacology, Pharmacotherapy and Toxicology”, Faculty of Pharmacy, Medical University of Sofia, Bulgaria 2 Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Bulgaria Corresponding author: Magdalena Kondeva-Burdina ([email protected]) Received 2 July 2020 ♦ Accepted 19 August 2020 ♦ Published 26 November 2020 Citation: Voynova M, Shkondrov A, Kondeva-Burdina M, Krasteva I (2020) Toxicological and pharmacological profile of Amanita muscaria (L.) Lam. – a new rising opportunity for biomedicine. Pharmacia 67(4): 317–323. https://doi.org/10.3897/pharmacia.67. e56112 Abstract Amanita muscaria, commonly known as fly agaric, is a basidiomycete. Its main psychoactive constituents are ibotenic acid and mus- cimol, both involved in ‘pantherina-muscaria’ poisoning syndrome. The rising pharmacological and toxicological interest based on lots of contradictive opinions concerning the use of Amanita muscaria extracts’ neuroprotective role against some neurodegenerative diseases such as Parkinson’s and Alzheimer’s, its potent role in the treatment of cerebral ischaemia and other socially significant health conditions gave the basis for this review. Facts about Amanita muscaria’s morphology, chemical content, toxicological and pharmacological characteristics and usage from ancient times to present-day’s opportunities in modern medicine are presented. Keywords Amanita muscaria, muscimol, ibotenic acid Introduction rica, the genus had an ancestral origin in the Siberian-Be- ringian region in the Tertiary period (Geml et al.
    [Show full text]
  • Amanita Muscaria (Fly Agaric)
    J R Coll Physicians Edinb 2018; 48: 85–91 | doi: 10.4997/JRCPE.2018.119 PAPER Amanita muscaria (fly agaric): from a shamanistic hallucinogen to the search for acetylcholine HistoryMR Lee1, E Dukan2, I Milne3 & Humanities The mushroom Amanita muscaria (fly agaric) is widely distributed Correspondence to: throughout continental Europe and the UK. Its common name suggests MR Lee Abstract that it had been used to kill flies, until superseded by arsenic. The bioactive 112 Polwarth Terrace compounds occurring in the mushroom remained a mystery for long Merchiston periods of time, but eventually four hallucinogens were isolated from the Edinburgh EH11 1NN fungus: muscarine, muscimol, muscazone and ibotenic acid. UK The shamans of Eastern Siberia used the mushroom as an inebriant and a hallucinogen. In 1912, Henry Dale suggested that muscarine (or a closely related substance) was the transmitter at the parasympathetic nerve endings, where it would produce lacrimation, salivation, sweating, bronchoconstriction and increased intestinal motility. He and Otto Loewi eventually isolated the transmitter and showed that it was not muscarine but acetylcholine. The receptor is now known variously as cholinergic or muscarinic. From this basic knowledge, drugs such as pilocarpine (cholinergic) and ipratropium (anticholinergic) have been shown to be of value in glaucoma and diseases of the lungs, respectively. Keywords acetylcholine, atropine, choline, Dale, hyoscine, ipratropium, Loewi, muscarine, pilocarpine, physostigmine Declaration of interests No conflicts of interest declared Introduction recorded by the Swedish-American ethnologist Waldemar Jochelson, who lived with the tribes in the early part of the Amanita muscaria is probably the most easily recognised 20th century. His version of the tale reads as follows: mushroom in the British Isles with its scarlet cap spotted 1 with conical white fl eecy scales.
    [Show full text]
  • ! a Revised Generic Classification for The
    A REVISED GENERIC CLASSIFICATION FOR THE RHODOCYBE-CLITOPILUS CLADE (ENTOLOMATACEAE, AGARICALES) INCLUDING THE DESCRIPTION OF A NEW GENUS, CLITOCELLA GEN. NOV. by Kerri L. Kluting A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biology Middle Tennessee State University 2013 Thesis Committee: Dr. Sarah E. Bergemann, Chair Dr. Timothy J. Baroni Dr. Andrew V.Z. Brower Dr. Christopher R. Herlihy ! ACKNOWLEDGEMENTS I would like to first express my appreciation and gratitude to my major advisor, Dr. Sarah Bergemann, for inspiring me to push my limits and to think critically. This thesis would not have been possible without her guidance and generosity. Additionally, this thesis would have been impossible without the contributions of Dr. Tim Baroni. I would like to thank Dr. Baroni for providing critical feedback as an external thesis committee member and access to most of the collections used in this study, many of which are his personal collections. I want to thank all of my thesis committee members for thoughtfully reviewing my written proposal and thesis: Dr. Sarah Bergemann, thesis Chair, Dr. Tim Baroni, Dr. Andy Brower, and Dr. Chris Herlihy. I am also grateful to Dr. Katriina Bendiksen, Head Engineer, and Dr. Karl-Henrik Larsson, Curator, from the Botanical Garden and Museum at the University of Oslo (OSLO) and to Dr. Bryn Dentinger, Head of Mycology, and Dr. Elizabeth Woodgyer, Head of Collections Management Unit, at the Royal Botanical Gardens (KEW) for preparing herbarium loans of collections used in this study. I want to thank Dr. David Largent, Mr.
    [Show full text]
  • Revised Taxonomy and Phylogeny of an Avian-Dispersed Neotropical Rhizomorph-Forming Fungus
    Mycological Progress https://doi.org/10.1007/s11557-018-1411-8 ORIGINAL ARTICLE Tying up loose threads: revised taxonomy and phylogeny of an avian-dispersed Neotropical rhizomorph-forming fungus Rachel A. Koch1 & D. Jean Lodge2,3 & Susanne Sourell4 & Karen Nakasone5 & Austin G. McCoy1,6 & M. Catherine Aime1 Received: 4 March 2018 /Revised: 21 May 2018 /Accepted: 24 May 2018 # This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018 Abstract Rhizomorpha corynecarpos Kunze was originally described from wet forests in Suriname. This unusual fungus forms white, sterile rhizomorphs bearing abundant club-shaped branches. Its evolutionary origins are unknown because reproductive struc- tures have never been found. Recent collections and observations of R. corynecarpos were made from Belize, Brazil, Ecuador, Guyana, and Peru. Phylogenetic analyses of three nuclear rDNA regions (internal transcribed spacer, large ribosomal subunit, and small ribosomal subunit) were conducted to resolve the phylogenetic relationship of R. corynecarpos. Results show that this fungus is sister to Brunneocorticium bisporum—a widely distributed, tropical crust fungus. These two taxa along with Neocampanella blastanos form a clade within the primarily mushroom-forming Marasmiaceae. Based on phylogenetic evidence and micromorphological similarities, we propose the new combination, Brunneocorticium corynecarpon, to accommodate this species. Brunneocorticium corynecarpon is a pathogen, infecting the crowns of trees and shrubs in the Neotropics; the long, dangling rhizomorphs with lateral prongs probably colonize neighboring trees. Longer-distance dispersal can be accomplished by birds as it is used as construction material in nests of various avian species. Keywords Agaricales . Fungal systematics .
    [Show full text]
  • Paddy Straw Mushroom (433)
    Pacific Pests, Pathogens and Weeds - Online edition Paddy straw mushroom (433) Common Name Paddy straw mushroom, straw mushroom, Chinese mushroom. Scientific Name Volvariella volvacea Distribution It is cultivated widely in East and Southeast Asia, and introduced in many other regions, including Africa, North America and Australia. It is recorded from Solomon Islands. Use & Appearance The paddy straw mushroom is grown on rice straw beds and picked immature, during the button or egg phase and before the veil ruptures (Photo 1). It is found in woodchips, rich garden Photo 1. Button stage of the paddy straw soil, compost piles and, in the Pacific, on decaying trunks of fallen sago palm and empty fruit mushroom, Volvariella volvacea, showing bunches of oil palm. They are often available fresh in Asia, but are more frequently found canned many still enclosed in the veil, and others or dried in countries where they are not cultivated. where the veil has broken. Methods of cultivation are here: http://www.fao.org/3/ca4450en/ca4450en.pdf. Young stages are formed under a greyish-brown veil (‘universal veil’), which surrounds the mushroom at the ‘button stage’ (Photo 2). It breaks to allow the stem and cap to expand leaving a dark brown cup-shaped structure (the ‘volva’) at the base (Photo 2). The cap is 5-12 cm diameter, first ovoid, then cone-like and finally broadly convex or bell- shaped, dark grey in the centre, becoming silvery-white or brownish-grey towards the margins, radially streaked with soft hairs (Photo 3). The cap tends to split at the edges.
    [Show full text]
  • On the Evolutionary History of Uleiella Chilensis, a Smut Fungus Parasite of Araucaria Araucana in South America: Uleiellales Ord
    RESEARCH ARTICLE On the Evolutionary History of Uleiella chilensis, a Smut Fungus Parasite of Araucaria araucana in South America: Uleiellales ord. nov. in Ustilaginomycetes Kai Riess1, Max E. Schön1, Matthias Lutz1, Heinz Butin2, Franz Oberwinkler1, Sigisfredo Garnica1* 1 Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany, 2 Am Roten Amte 1 H, 38302, Wolfenbüttel, Germany * [email protected] Abstract The evolutionary history, divergence times and phylogenetic relationships of Uleiella chilen- OPEN ACCESS sis (Ustilaginomycotina, smut fungi) associated with Araucaria araucana were analysed. Citation: Riess K, Schön ME, Lutz M, Butin H, DNA sequences from multiple gene regions and morphology were analysed and compared Oberwinkler F, Garnica S (2016) On the Evolutionary to other members of the Basidiomycota to determine the phylogenetic placement of smut History of Uleiella chilensis, a Smut Fungus Parasite of Araucaria araucana in South America: Uleiellales fungi on gymnosperms. Divergence time estimates indicate that the majority of smut fungal ord. nov. in Ustilaginomycetes. PLoS ONE 11(1): orders diversified during the Triassic–Jurassic period. However, the origin and relationships e0147107. doi:10.1371/journal.pone.0147107 of several orders remain uncertain. The most recent common ancestor between Uleiella chi- Editor: Jonathan H. Badger, National Cancer lensis and Violaceomyces palustris has been dated to the Lower Cretaceous. Comparisons
    [Show full text]
  • Poisonous Mushrooms
    POISONOUS MUSHROOMS DR. SURANJANA SARKAR ASSISTANT PROFESSOR IN BOTANY, SURENDRANATH COLLEGE, KOLKATA Dr. Suranjana Sarkar, SNC INTRODUCTION It was difficult not to since eating wild mushrooms and mushroom poisoning seem to be closely related subjects. This is a rather important topic since mushrooms have apparently been gathered for eating throughout the world, for thousands of years, and it is also likely that during that time many people became ill or died when they inadvertently consumed poisonous mushrooms. Because some mushrooms were known to cause death when consumed, they were also known to be used by assassins. Dr. Suranjana Sarkar, SNC Used as Poison in Assassinations and Murders The most famous of all planned murders was that of Emperor Claudius by his fourth wife, Agrippina, The Younger (also his niece!). The story behind this assassination, as well as the political intrigue that was present during this period of the Roman Empire would have made a great mini series or soap opera. Claudius became emperor, in 41 A.D., following the assassination of his nephew Caligula, and married Agrippina, his fourth wife, after disposing of Messalina, his third wife, for adultery. Agrippina came into the marriage with Nero, a son from a previous marriage and wanted him to follow Claudius as emperor. Agrippina persuaded him to adopt her son so that Nero would be in line to become emperor. Once Nero was adopted, Agrippina plotted to kill Claudius, which involved a number of people. Although ClaudiusDr. Suranjana Sarkar,had SNCa son, Brittanicus, by Messalina, and should have succeeded him as emperor, Claudius shielded him from the responsibilities as heir to the throne and promoted Nero as his successor.
    [Show full text]
  • Population Genetics and Spatial Structure of the Fairy Ring Fungus Marasmius Oreades in a Norwegian Sand Dune Ecosystem
    Mycologia, 95(6), 2003, pp. 1021–1031. q 2003 by The Mycological Society of America, Lawrence, KS 66044-8897 Population genetics and spatial structure of the fairy ring fungus Marasmius oreades in a Norwegian sand dune ecosystem Emnet Abesha menting dikaryotic, vegetative mycelium, as previous- Gustavo Caetano-Anolle´s1 ly proposed. Division of Molecular Biology, Department of Biology, Key words: basidiomycetes, basidiocarps, clado- University of Oslo, P.O. Box 1066, Blindern, grams, DNA amplification fingerprinting, genetic dis- 0316 Oslo, Norway similarity Klaus Høiland2 Division of Botany and Plant Physiology, Department of Biology, University of Oslo, P.O. Box 1066, INTRODUCTION Blindern, 0316 Oslo, Norway Organismal units must be identified when studying populations at the genetic level to establish patterns Abstract: The population genetics and spatial struc- of propagation, inheritance and evolution. In fungi, genetic clones resulting from asexual reproduction ture of the fairy ring fungus Marasmius oreades (Bolt. : Fr.) Fr. was studied by DNA amplification fin- can be characterized by recurrent multilocus geno- gerprinting (DAF). Basidiocarp samples were collect- types (Milgroom 1996, Anderson and Kohn 1998). ed from fairy rings from two separate sand dune sys- Fungal clones generally are of recent origin (Guidot tems of about 560 m2 and 1750 m2, respectively, on et al 1999, Gryta et al 2000). However, in some cases, the Lista Peninsula in southwestern Norway in 1996. such as those that establish symbiosis with fungus- Samples were collected after a careful mapping of farming ants (Mueller et al 1998), they can be an- fairy rings and a vegetation survey of the composition cient. Clones can separate from their origin for dis- and spatial structure of vascular plants, bryophytes persal, while in other cases they can be physically con- and lichens.
    [Show full text]