Our Modern Idol: Mathematical Science

Total Page:16

File Type:pdf, Size:1020Kb

Our Modern Idol: Mathematical Science UC San Diego SIO Reference Title Our Modern Idol: Mathematical Science Permalink https://escholarship.org/uc/item/4db41867 Author Eckart, Carl Publication Date 1984 eScholarship.org Powered by the California Digital Library University of California by Carl Eckart The Author Carl Eckart was an eminent mathematical physicist. He was a professor at the Univer- sity of Chicago and later at the University of California at San Diego. His earliest well-known achievement was in quantum mechanics where he established unifying re- lationships between the matrix and wave mechanical formulations. After leaving his mark on quantum mechanics he turned to classical physics and developed some of the fundamentals of irreversible thermodynam- ics. Subsequently his interest shifted to the physics of oceanography, in particular to acoustics and hydrodynamics. He published a number of papers on these subjects as well as a book Hydrodynamics of Oceans and Atmospheres. During this period he also served as Director of the Scripps Institution of Oceanography. He died in 1973 at the age of 71. OUR MODERN IDOL: MATHEMATICAL SCIENCE CARL ECKART SCRIPPS INSTITUTION OF OCEANOGRAPHY UNIVERSITY OF CALIFORNIA LA JOLLA, CALIFORNIA 92093 1984 SIO REF. 84-27 Preface At the time of the author's death this book was in the form of an unpublished manuscript. The manuscript consists of seven loose-leaf notebooks, handwritten in pencil, on lined notebook paper. Each page is carefully numbered and dated. It appears that it is a first draft, yet the initial wording is precise, with almost no after-thoughts. The title Our Modern Idol: Mathematical Science belies its con- tent. Although the author was an eminent mathematical physicist the book is not mathematical in nature; there are no mathematical equations or derivations. The few mathematical expressions are simple and the book is clearly intended for the non-mathematical reader. It does not appear to have a definitive, coherent theme; rather it is a collection of eclectic essays connected historically or sociologically. In short, this book is about people, ancient and recent, as individuals and in society. It was the opinion of several commercial publishers to whom this manuscript was submitted that this would not be a commer- cially viable book without extensive editing. Their proposals required condensation of the whole and the addition and deletion of material so that the theme could be more clearly developed. Upon consultation with friends and colleagues of the author, it was decided to publish the manuscript privately as written, without sub- stantive editing. In this endeavor I was ably assisted by Maureen Perry and Laurie Nord who carefully read the manuscript and made necessary but minor editorial changes. In addition Ms. Perry set the entire manuscript in type using the University of California computing facilities. Their knowledgeable contributions and persistent efforts made private publication possible. Leonard Liebermann Professor of Physics Table of Contents Introduction ....................................................................................... 1 The Failure of Universal Education ....................................................... 4 The Brandywine Valley and Similar Experiences ...................................... 7 Town and Country ............................ ..................................................... 15 The Aristocratic Fallacy ......................... .............................................. 18 Solon and the Aristocracy of Wealth ......................................................... 24 The Silver of Mount Lauriam ............................................................... 28 Pericles and the Athenian Empire .......................... ............................ 30 The Structure of Modern Western Society ...................... ................ 33 Intelligence Quotients and Career Counseling ..................................... 37 The Nature of a Plan ..................... ....................................................... 41 The Revolutions of the Eighteenth Century .......................................... 45 Fiction. Theory. and Social Change .......................................................... 48 Recent Planning by the Scientific Communities ..................................... 54 The Changing Public Images of Science and Technology ......................... 60 The Planning Process in the Federal Government ................................. 64 The Invention of the Steam Engine ............................ .. ......................... 66 The Beginning of the Scientific Revolution ............................. .. ......... 71 The Optical Industry in the Nineteenth Century ..................................... 75 The Emergence of the Engineering Communities .................................. 80 The Instrument Makers and Technicians ......................... ................. 84 The Scientific Revolution in the twentieth Century U.S. ...................... 87 Our Numerical Society .............................. ............................................. 92 The Anthropology of Whole Numbers ............................ ..................... 95 Counting. Memoranda. and Arithmetic .......................... .............. 101 Seals. Numerals. and Writing .................................... ... .............................. The Abacus: History and Conjecture ................................... .... .................. The Egyptian Mathematical Texts ............................................................ The Mesopotamian Numeral Systems .................................................... The Land of the Alphabets ................................................................... The Greek Alphabet and Numerals .......................................................... Human Language and Inhuman Logic ...................................................... Archimedes. Buddha. and the Uncountable ............................................ How the Decimal Numbers Came to Europe .......................................... Fractions. Equity. and Higher Education ................................................. The Decimal Point and Long Division ................................................... Epidemics. Square Roots. and Elementary Education .............................. The Perception of Space .............................................................................. The Rules of the Cord ............................................................................... Plato and Eucleides of Megara ................................................................. Plato and the Academy ............................................................................... The Dialogue Timaeus and Greek Cosmology ........................................... Pythagoras and the Pythagorean Theorem ................................................ Ideals and the Technology of Triangles ..................................................... Euclid of Alexandria and the Elements ................................................... Aristotle and the Axioms .......................................................................... Aristotelianism and Christianity ................................................................. Pythagoreanism becomes Rationalism ........................................ ............... The Intellectual Problems of the Seventeenth Century ............................ The Rise and Decline of the Axioms ........................................................ Pacifism and the Elements of Logic .......................................................... Atoms. Evolution. and Ethics .................................................................... Greek Religion and Mythology ........................ ....................................... The Influence of Democritus in Recent Centuries ....................... ..... Laplace's Mechanical Man ...................... ............................................... Chance. Gambling. and Insurance .......................................................... Atoms. Causality. and Politics ................................................................. 346 Man is an Animal. but not an Ape ...................................................... 350 The Changing Beliefs of Physical Scientists ............................ ........... 354 Some Conclusions .......................................................................................360 One hears it said that, for the first time, man now has the power to determine his own future, if only people will be sensible. This is a popular summary of a number of serious books, none of which are quite so incautious. Still, their authors are enthusiastic about the achievements of science and technology, and are con- vinced that others are coming; moreover that these achievements have improved the lives of people and will continue to do so. These achievements have been largely those of the physical and bio- logical sciences, and those in biology have come mainly after biolo- gists began to use the tools and methods of the physical scientists. Among these methods are the mathematical theories of physics and chemistry. Remarkably, those sciences that are specifically devoted to the study of people, sociology, psychology and political science, have made no corresponding achievements. This requires explanation. One facile explanation is widely accepted, especially by the scientific and technological communities. This is that these behavioral
Recommended publications
  • 147 MISCELLANEOUS NOTES ASHBUKNHAM DEED No
    Archaeologia Cantiana Vol. 63 1950 MISCELLANEOUS NOTES DISCOVERY Off MASONRY ON CASTLE HILL, FOLKESTONE CASTLE HILL, Folkestone, was excavated by Major-General A. H. L. F. Pitt-Rivers about 70 years ago and a report printed in Archceologia Vol. XLVII (1882). His conclusion from the " finds " was that the earthworks were Norman. He found no trace of masonry. In the summer of 1949 a fall of earth exposed a portion of walling about 10 feet long and 3 feet high in the southern face of the causeway across the inner ditch of the " camp." The masonry is of natural flints, chalk blocks, and blocks of iron- impregnated greensand set in coarse mortar. The wall appears to have been originally faced with roughly squared ironstone blocks. Near the base of the exposed wall was found a piece of Roman ridge-tile (imbrex), now in the custody of Folkestone Museum—the association of this may be purely accidental as it was a surface find. The exposed portion of wall showed no sign of Roman brick. It seems to have supported a causeway across the innermost trench round the hill-top. The causeway runs from W. to E. and the exposed wall is on its southern face. This causeway at present carries the main track eastwards from the crest of the hill (which is the centre of the " camp ") and is about the middle of the east-side of the central camp enclosure. The writer intended to carry out excavation during the summer of 1950 but circumstances prevented. The matter is worthy of further investigation.
    [Show full text]
  • MATH 15, CLS 15 — Spring 2020 Problem Set 1, Due 24 January 2020
    MATH 15, CLS 15 — Spring 2020 Problem set 1, due 24 January 2020 General instructions for the semester: You may use any references you like for these assignments, though you should not need anything beyond the books on the syllabus and the specified web sites. You may work with your classmates provided you all come to your own conclusions and write up your own solutions separately: discussing a problem is a really good idea, but letting somebody else solve it for you misses the point. When a question just asks for a calculation, that’s all you need to write — make sure to show your work! But if there’s a “why” or “how” question, your answer should be in the form of coherent paragraphs, giving evidence for the statements you make and the conclusions you reach. Papers should be typed (double sided is fine) and handed in at the start of class on the due date. 1. What is mathematics? Early in the video you watched, du Sautoy says the fundamental ideas of mathematics are “space and quantity”; later he says that “proof is what gives mathematics its strength.” English Wikipedia tells us “mathematics includes the study of such topics as quantity, structure, space, and change,” while Simple English Wikipedia says “mathematics is the study of numbers, shapes, and patterns.” In French Wikipedia´ we read “mathematics is a collection of abstract knowledge based on logical reasoning applied to such things as numbers, forms, structures, and transformations”; in German, “mathematics is a science that started with the study of geometric figures and calculations with numbers”; and in Spanish, “mathematics is a formal science with, beginning with axioms and continuing with logical reasoning, studies the properties of and relations between abstract objects like numbers, geometric figures, or symbols” (all translations mine).
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Patronage and Science: Roger Revelle, the US Navy, And
    PATRONAGE AND SCIENCE: ROGER REVELLE, THE NAVY, AND OCEANOGRAPHY AT THE SCRIPPS INSTITUTION RONALD RAINGER Department of History, Texas Tech University,Lubbock, TX 79409-1013, [email protected] Originally published as: Rainger, Ronald. "Patronage and Science: Roger Revelle, the U.S. Navy, and Oceanography at the Scripps Institution." Earth sciences history : journal of the History of the Earth Sciences Society 19(1):58-89, 2000. This article is reprinted courtesy of the History of the Sciences Society from Earth Sciences History, 2000, 19:58-89. ABSTRACT In the years between 1940 and 1955, American oceanography experienced considerable change. Nowhere was that more true than at the Scripps Institution of Oceanography in La Jolla, California. There Roger Revelle (1909-1991) played a major role in transforming a small, seaside laboratory into one of the leading oceanographic centers in the world. This paper explores the impact that World War II had on oceanography and his career. Through an analysis of his activities as a naval officer responsible for promoting oceanography in the navy and wartime civilian laboratories, this article examines his understanding of the relationship between military patronage and scientific research and the impact that this relationship had on disciplinary and institutional developments at Scripps. In 1947 Harald Sverdrup (1888-1957) and Roger Revelle, two of the leading oceanographers in the United States, made plans for Revelle's return to the Scripps 2 Institution of Oceanography (SIO). After six years of coordinating and promoting oceanography within the U.S. Navy, Revelle was returning to the center where he had earned his Ph.D.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Ore Bin / Oregon Geology Magazine / Journal
    Vol . 36, No . 2 February 1974 STATE OF OREGON DEPARTMENT OF GEOlOGY AND MINERAL INDUSTRIES The Ore Bin Published Monthly By STATE OF OREGON DEPARTMENT OF GEOlOGY AND MINERAL INDUSTRIES Head Office: 1069 State Office Bldg., Portland, Oregon - 97201 Telephone: 229 - 5580 FIELD OFFICES 2033 First Street 521 N . E. "E" Street Baker 97814 Grants Pass 97526 xxxxxxxxxxxxxxxxxxxx Subscription rate - $2.00 per calencbr year Available bock issues $.25 each Second class postage paid at Portland, Oregon GOVERNING SOARD R. W. deWeese, Portland, Chairman Willic:m E. Miller, Bend H. lyle Von Gordon, Grants Pass STATE GEOlOGIST R. E. Corcoran GEOLOGISTS IN CHARGE OF FIELD OFFICES Howard C. Brooks, Boker len Romp, Grants Pass Permission i. granted to reprint information contaiMd herein . Credit given the State of Oregon Oepcrtment af Geology and Min_allndustries fO( compiling this information will be appreciated. State of Oregon The ORE BIN Departmentof Geology Volume 36,No.2 and Mineral Industries 1069 State Office Bldg. February 1974 Portland Oregon 97201 ECONOMICS OF GEOTHERMAL DEVELOPMENT The following article by Dr. RobertW. Rex is the text of his remarks to the Sub-Committee on Energy, Committee on Science and Astronautics, U. S. House of Representatives, on September 18, 1973. This text was previously published in Geothermal Energy, vol. 1, no. 4, December 1973. We are reprinting it in this issue of The ORE BIN because we believe the thoughts expressed are pertinent to Oregon at this time and should have as wide dissemination as possible. Dr. Rex is the President of Republic Geothermal, Inc., Playa del Rey, California.
    [Show full text]
  • Seeking Signals in The
    $: t j ! Ij ~ ,l IOJ I ~ , I I I! 1I I 1 " Edited by Elizabeth N. Shor Layout by jo p. griffith June 1997 Published by: Marine Physical Laboratory ofthe Scripps Institution of Oceanography University of California, San Diego We gratefully acknowledge the following for use of their photographs in this publication: Christine Baldwin W. Robert Cherry Defense Nuclear Agency Fritz Goro William S. Hodgkiss Alan C. Jones MPL Photo Archives SIO Archives (UCSD) Eric T. Slater SIO Reference Series 97-5 ii Contents Introduction: How MPL Came To Be Betty Shor 1 Carl Eckart and the Marine Physical Laboratory Leonard Liebermann 6 Close Encounter of the Worst Kind Fred Fisher and Christine Baldwin 9 Early Days of Seismic and Magnetic Programs at MPL Arthur D. Raft 10 Recollections of Work at the Marine Physical Laboratory: A Non-Academic Point of View Dan Gibson 23 Capricorn Expedition, 1952 Alan C. Jones 39 Que Sera Sera R. J. Smith 42 A Beginning in Undersea Research Fred Noel Spiess ....... 46 The Value of MPL to the Navy Charles B. Bishop 51 The Outhouse Fred Fisher ....... 54 Exploring the Gulf of Alaska and Beyond George G. Shor, Jr 55 Chinook Expedition, 1956 Alan C. Jones 59 Operation HARDTACK I W. Robert Cherry 62 DELTIC and DIMUS, Two Siblings Victor C. Anderson 65 MPL and ARTEMIS Victor C. Anderson 71 Early Days of MPL Christine Baldwin 78 There's Always a Way Around the Rules George G. Shor, Jr 82 iii A Saga from Graduate Student to FLIP Fred Fisher 85 Anchoring FLIP in Deep Water Earl Bronson 95 Then There was SLIP Fred Fisher ......
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • Introducing the 1966 Alfred Korzybski Memorial Lecturer
    INTRODUCING THE 1966 ALFRED KORZYBSKI MEMORIAL LECTURER Eugene P. Wigner Thomas D. Jones Professor of Mathematical Physics, Princeton University, 1963 Nobel Laureate for Physics It is a very great pleasure to be called upon to say a few words about Alvin Weinberg . I have known him now for almost 25 years, but such is his modesty and inclination toward self-effacement that I know very little about him through himself . He was born in the windy city of Chicago in 1915, went to school there, both lower ones and the University, married there, and had his first job there . He is a physicist and had, among others, the great Carl Eckart as his teacher . He was just about 22 when he published his first paper, in collaboration with Eckart, on a subject of theoretical physics, then in the foreground of interest . He taught physics for a year, then became interested in biophysics . For a few years he was Research Assistant at Rashevsky's Institute at the University of Chicago and published about ten papers centered around the sub- ject of nerve conduction . Nevertheless, when the war broke out and physicists were urgently needed for the uranium project at the University of Chicago, it was natural to call on Dr . Weinberg for help, and he readily followed the call . This was an important turn in Dr . Weinberg's life . He had an opportunity to work in virgin territory, and his abilities and gifts unfolded rapidly . It was at this time that I met him . We were both members of the 8 theoretical team in charge of establishing a theory of the nuclear chain reaction as well as designing a large reactor, capable of producing large amounts of the nuclear fuel and explosive, plutonium .
    [Show full text]
  • A.C. Myshrall
    CHAPTER 9. AN INTRODUCTION TO LECTIONARY 299 (A.C. MYSHRALL) Codex Zacynthius, as it is currently bound, is a near-complete Greek gospel lectionary dating to the late twelfth century. Very little work has been done on this lectionary because of the intense interest in the text written underneath. Indeed, New Testament scholars have generally neglected most lectionaries in favour of working on continuous text manuscripts.1 This is largely down to the late date of most of the available lectionaries as well as the assumption that they form a separate, secondary, textual tradition. However, the study of Byzantine lectionaries is vital to understand the development of the use of the New Testament text. Nearly half of the catalogued New Testament manuscripts are lectionaries.2 These manuscripts show us how, in the words of Krueger and Nelson, ‘Christianity is not so much the religion of the New Testament as the religion of its use’.3 These lectionaries were how the Byzantine faithful heard the Bible throughout the Church year, how they interacted with the Scriptures, and they open a window for us to see the worship of a particular community in a particular time and place. THE LECTIONARY A lectionary is a book containing selected scripture readings for use in Christian worship on a given day. The biblical text is thus arranged not in the traditional order of the Bible, but in the order of how the readings appear throughout the year of worship. So, not all of the Bible is included (the Book of Revelation never appears in a Greek lectionary) and the 1 Exceptions to this include the Chicago Lectionary Project (for an overview of the project see Carroll Osburn, ‘The Greek Lectionaries of the New Testament,’ in The Text of the New Testament.
    [Show full text]
  • Literature in the Louisiana Plantation Home Prior to 1861: a Study in Literary Culture
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1937 Literature in the Louisiana Plantation Home Prior to 1861: A Study in Literary Culture. Walton R. Patrick Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Part of the English Language and Literature Commons Recommended Citation Patrick, Walton R., "Literature in the Louisiana Plantation Home Prior to 1861: A Study in Literary Culture." (1937). LSU Historical Dissertations and Theses. 7803. https://digitalcommons.lsu.edu/gradschool_disstheses/7803 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. MANUSCRIPT THESES Unpublished theses submitted for the master^ and doctor*s degrees and deposited in the Louisiana State University Library are available for inspection* Use of any thesis is limited by the rights of the author* Bibliographical references may be noted, but passages may not be copied unless the author has given permission# Credit must be given in subsequent written or published work* A library which borrows this thesis for use by its clientele is expected to make sure that the borrower is aware of the above res trictions * LOUISIANA STATE UNIVERSITY LIBRARY LITERATURE IN THE LOUISIANA PLANTATION HOME PRIOR TO 1861 A STUDY IN LITERARY CULTURE A DISSERTATION SUBMITTED TO THE FACULTY OF THE LOUISIANA STATE UNIVERSITY AND AGRICULTURAL AND MECHANICAL COLLEGE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ENGLISH Walton Richard Patrick M.
    [Show full text]
  • M-1392 Publication Title: Bush-Conant File
    Publication Number: M-1392 Publication Title: Bush-Conant File Relating to the Development of the Atomic Bomb, 1940-1945 Date Published: n.d. BUSH-CONANT FILE RELATING TO THE DEVELOPMENT OF THE ATOMIC BOMB, 1940-1945 The Bush-Conant File, reproduced on the 14 rolls of this microfilm publication, M1392, documents the research and development of the atomic bomb from 1940 to 1945. These records were maintained in Dr. James B. Conant's office for himself and Dr. Vannevar Bush. Bush was director of the Office of Scientific Research and Development (OSRD, 1941-46), chairman of the National Defense Research Committee (NDRC) prior to the establishment of OSRD (1940-41), chairman of the Military Policy Committee (1942-45) and member of the Interim Committee (May-June 1945). During this period Conant served under Bush as chairman of the National Defense Research Committee of OSRD (1941-46), chairman of the S-1 Executive Committee (1942-43), alternate chairman of the Military Policy Committee (1942-45), scientific advisor to Maj. Gen. Leslie R. Groves (1943-45), and member of the Interim Committee (May-June 1945). The file, which consists primarily of letters, memorandums, and reports, is part of the Records of the Office of Scientific Research and Development, Record Group (RG) 227. The Bush-Conant File documents OSRD's role in promoting basic scientific research and development on nuclear fission before August 1942. In addition, the files document Bush and Conant's continuing roles, as chairman and alternate chairman of the Military Policy Committee, in overseeing the army's development of the atomic bomb during World War II and, as members of the short-lived Interim Committee, in advising on foreign policy and domestic legislation for the regulation of atomic energy immediately after the war.
    [Show full text]