Sentinel-6 Michael Freilich Launch Press Kit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Back to the the Future? 07> Probing the Kuiper Belt
SpaceFlight A British Interplanetary Society publication Volume 62 No.7 July 2020 £5.25 SPACE PLANES: back to the the future? 07> Probing the Kuiper Belt 634089 The man behind the ISS 770038 Remembering Dr Fred Singer 9 CONTENTS Features 16 Multiple stations pledge We look at a critical assessment of the way science is conducted at the International Space Station and finds it wanting. 18 The man behind the ISS 16 The Editor reflects on the life of recently Letter from the Editor deceased Jim Beggs, the NASA Administrator for whom the building of the ISS was his We are particularly pleased this supreme achievement. month to have two features which cover the spectrum of 22 Why don’t we just wing it? astronautical activities. Nick Spall Nick Spall FBIS examines the balance between gives us his critical assessment of winged lifting vehicles and semi-ballistic both winged and blunt-body re-entry vehicles for human space capsules, arguing that the former have been flight and Alan Stern reports on his grossly overlooked. research at the very edge of the 26 Parallels with Apollo 18 connected solar system – the Kuiper Belt. David Baker looks beyond the initial return to the We think of the internet and Moon by astronauts and examines the plan for a how it helps us communicate and sustained presence on the lunar surface. stay in touch, especially in these times of difficulty. But the fact that 28 Probing further in the Kuiper Belt in less than a lifetime we have Alan Stern provides another update on the gone from a tiny bleeping ball in pioneering work of New Horizons. -
SP-717 Cryosat 2013
ANALYSIS OF THE IN-FLIGHT INJECTION OF THE LISA PATHFINDER TEST-MASS INTO A GEODESIC Daniele Bortoluzzi (1,2) on behalf of the LISA Pathfinder Collaboration(*), Davide Vignotto (1), Andrea Zambotti (1), Ingo Köker(3), Hans Rozemeijer(4), Jose Mendes(4), Paolo Sarra(5), Andrea Moroni(5), Paolo Lorenzi(5) (1) University of Trento, Department of Industrial Engineering, via Sommarive, 9 - 38123 Trento, Email: [email protected], [email protected], [email protected] (2) Trento Institute for Fundamental Physics and Application / INFN, Italy. (3) AIRBUS DS GmbH, Willy-Messerschmitt-Strasse 1 Ottobrunn, 85521, Germany, Email: [email protected] (4) European Space Operations Centre, European Space Agency, 64293 Darmstadt, Germany, Email: [email protected], [email protected] (5) OHB Italia S.p.A., via Gallarate, 150 – 20151 Milano, Italy, Email: [email protected], [email protected], [email protected] (*) Full list and affiliations attached in the end of the document ABSTRACT surroundings housing. The sensing body, from the locked condition, has then to LISA Pathfinder is a mission that demonstrates some key be released into free-fall to start the in-flight operations; technologies for the measurement of gravitational waves. as a consequence, the release into free-fall of the proof The mission goal is to set two test masses (TMs) into mass is a critical aspect for these missions, since it is a purely geodesic trajectories. The grabbing positioning necessary step to start the science phase. Different and release mechanism (GPRM) grabs and releases each technologies are nowadays available to perform a release TM from any position inside its housing. -
Roll Calibration for Cryosat-2: a Comprehensive Approach
remote sensing Technical Note Roll Calibration for CryoSat-2: A Comprehensive Approach Albert Garcia-Mondéjar 1,* , Michele Scagliola 2 , Noel Gourmelen 3,4 , Jerome Bouffard 5 and Mònica Roca 1 1 isardSAT S.L., Barcelona Advanced Industry Park, 08042 Barcelona, Spain; [email protected] 2 Aresys SRL, 20132 Milano, Italy; [email protected] 3 School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK; [email protected] 4 IPGS UMR 7516, Université de Strasbourg, CNRS, 67000 Strasbourg, France 5 ESA ESRIN, 00044 Frascati, Italy; [email protected] * Correspondence: [email protected] Abstract: CryoSat-2 is the first satellite mission carrying a high pulse repetition frequency radar altimeter with interferometric capability on board. Across track interferometry allows the angle to the point of closest approach to be determined by combining echoes received by two antennas and knowledge of their orientation. Accurate information of the platform mispointing angles, in particular of the roll, is crucial to determine the angle of arrival in the across-track direction with sufficient accuracy. As a consequence, different methods were designed in the CryoSat-2 calibration plan in order to estimate interferometer performance along with the mission and to assess the roll’s contribution to the accuracy of the angle of arrival. In this paper, we present the comprehensive approach used in the CryoSat-2 Mission to calibrate the roll mispointing angle, combining analysis from external calibration of both man-made targets, i.e., transponder and natural targets. The roll calibration approach for CryoSat-2 is proven to guarantee that the interferometric measurements are exceeding the expected performance. -
Download The
Research. Innovation. Sustainability PLANS FOR A NEW WAVE OF EUROPEAN SENTINEL SATELLITES The most ambitious and comprehensive plans ever for the European space sector, were approved at the end of 2019, with a total budget of ¤14.5 billion for the European Space Agency for the next three years – a 20% increase over the previous three-year budget. The decision allows a direct uplift to Europe’s Earth observation capability, expanding Copernicus – the European Union’s flagship Earth observation programme – with a suite of new, high-priority satellite missions. In this explainer we delve into the improvements and what they mean for sustainability and climate science. What is the Copernicus Programme? Copernicus is the European Union’s Earth observation programme, coordinated by the European Commission in partnership with the European Space Agency (ESA), EU Member States and other EU Agencies. Established in 2014, it builds on ESA’s Global Monitoring for Environment and Security (GMES) programme. Copernicus encompasses a system of satellites, airborne data, and ground stations supplying global monitoring data and operational services on a free-of-charge basis across six themes: atmosphere, marine, land, climate, emergency response and security. The Sentinel System – new and improved At the centre of the programme sits the Copernicus Space Component, which includes a family of satellites known collectively as Sentinels. These spacecraft provide routine atmospheric, oceanic, cryosphere and land global monitoring data, which are made freely available for Copernicus Services and major research and commercial applications such as precision farming, environmental hazards monitoring, weather forecasting and climate resilience. The soon-to-be-expanded Sentinel system will incorporate six high-priority missions. -
The Pancam Instrument for the Exomars Rover
ASTROBIOLOGY ExoMars Rover Mission Volume 17, Numbers 6 and 7, 2017 Mary Ann Liebert, Inc. DOI: 10.1089/ast.2016.1548 The PanCam Instrument for the ExoMars Rover A.J. Coates,1,2 R. Jaumann,3 A.D. Griffiths,1,2 C.E. Leff,1,2 N. Schmitz,3 J.-L. Josset,4 G. Paar,5 M. Gunn,6 E. Hauber,3 C.R. Cousins,7 R.E. Cross,6 P. Grindrod,2,8 J.C. Bridges,9 M. Balme,10 S. Gupta,11 I.A. Crawford,2,8 P. Irwin,12 R. Stabbins,1,2 D. Tirsch,3 J.L. Vago,13 T. Theodorou,1,2 M. Caballo-Perucha,5 G.R. Osinski,14 and the PanCam Team Abstract The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. -
Sentinel-3 Product Notice
Copernicus S3 Product Notice – Altimetry Mission S3 Sensor SRAL / MWR Product LAND L2 NRT, STC and NTC Product Notice ID S3A.PN-STM-L2L.10 Issue/Rev Date 16/07/2020 Version 1.1 This Product Notice was prepared by the S3 Mission Performance Centre Preparation and ESA experts Approval ESA Mission Management Summary This is a Product Notice (PN) for the Copernicus Sentinel-3A and Sentinel-3B Surface Topography Mission (STM) Level-2 Land products at Near Real Time (NRT), Short Time Critical (STC) and Non Time Critical (NTC) timeliness. The Notice describes the STM current status, product quality and limitations, and product availability status. © ESA page 1 / 16 Processing Baseline S3A S3B Processing Baseline • Processing Baseline: 2.68 • Processing Baseline: 1.42 • • SR_1 IPF version: 06.18 SR_1 IPF version: 06.18 • MW_1 IPF version: 06.11 IPFs version • MW_1 IPF version: 06.11 • • SM_2 IPF version: 06.19 SM_2 IPF version: 06.19 Current Operational Processing Baseline IPF IPF Version In OPE since S3A SR1 06.18 Land Centres: NRT mode : 2020-07-09 STC mode : 2020-07-09 NTC mode : 2020-07-09 S3A MW1 06.11 Land Centres: NRT mode : 2020-01-21 STC mode : 2020-01-21 NTC mode : 2020-01-21 S3A SM2 06.19 Land Centres: NRT mode : 2020-07-09 STC mode : 2020-07-09 NTC mode : 2020-07-09 S3B SR1 06.18 Land Centres: NRT mode : 2020-07-09 STC mode : 2020-07-09 NTC mode : 2020-07-09 S3B MW1 06.11 Land Centres: NRT mode : 2020-01-21 STC mode : 2020-01-21 NTC mode : 2020-01-21 S3B SM2 06.19 Land Centres: NRT mode : 2020-07-09 STC mode : 2020-07-09 NTC mode : 2020-07-09 © ESA page 2 / 16 Status of the Processing Baseline S3A The Processing Baseline (PB) for Copernicus Sentinel-3A STM products associated to this PN is reported above. -
About the Consistency Between Envisat and Cryosat-2 Radar Freeboard Retrieval Over Antarctic Sea Ice
The Cryosphere, 10, 1415–1425, 2016 www.the-cryosphere.net/10/1415/2016/ doi:10.5194/tc-10-1415-2016 © Author(s) 2016. CC Attribution 3.0 License. About the consistency between Envisat and CryoSat-2 radar freeboard retrieval over Antarctic sea ice Sandra Schwegmann1, Eero Rinne2, Robert Ricker1, Stefan Hendricks1, and Veit Helm1 1Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 2Finnish Meteorological Institute, Marine Research, Erik Palménin aukio 1, 00560 Helsinki, Finland Correspondence to: Sandra Schwegmann ([email protected]) Received: 26 June 2015 – Published in The Cryosphere Discuss.: 16 September 2015 Revised: 6 June 2016 – Accepted: 8 June 2016 – Published: 8 July 2016 Abstract. Knowledge about Antarctic sea-ice volume and its 1 Introduction changes over the past decades has been sparse due to the lack of systematic sea-ice thickness measurements in this Over the last 3 decades, sea-ice extent (SIE) in the Arctic remote area. Recently, first attempts have been made to de- has decreased and submarine ice draft measurements indi- velop a sea-ice thickness product over the Southern Ocean cate that also sea-ice volume is declining (Rothrock et al., from space-borne radar altimetry and results look promising. 1999, 2008; Lindsay and Schweiger, 2015). In the Antarctic, Today, more than 20 years of radar altimeter data are poten- in contrast, SIE is increasing, but little is known about the tially available for such products. However, the characteris- changes in sea-ice volume. This is due to the lack of system- tics of individual radar types differ for the available altimeter atic sea-ice thickness measurements in the Southern Hemi- missions. -
Exploring the Benefits of Using Cryosat-2'S Cross-Track
JULY 2013 D I B A R B O U R E E T A L . 1511 Exploring the Benefits of Using CryoSat-2’s Cross-Track Interferometry to Improve the Resolution of Multisatellite Mesoscale Fields G. DIBARBOURE CLS, Ramonville St-Agne, France P. Y. LE TRAON IFREMER, Plouzane, France N. GALIN Centre for Polar Observation and Modelling, Department of Earth Sciences, University College London, London, United Kingdom (Manuscript received 7 August 2012, in final form 12 January 2013) ABSTRACT Sea surface height (SSH) measurements provided by pulse-limited radar altimeters are one-dimensional profiles along the satellite’s nadir track, with no information whatsoever in the cross-track direction. The anisotropy of resulting SSH profiles is the most limiting factor of mesoscale SSH maps that merge the 1D profiles. This paper explores the potential of the cross-track slope derived from the Cryosphere Satellite-2 (CryoSat- 2)’s synthetic aperture radar interferometry (SARin) mode to increase the resolution of mesoscale fields in the cross-track direction. Through idealized 1D simulations, this study shows that it is possible to exploit the dual SARin measurement (cross-track slope and SSH profile) in order to constrain mesoscale mapping in the cross-track direction. An error-free SSH slope allows a single SARin instrument to recover almost as much SSH variance as two coordinated altimeters. Noise-corrupted slopes can also be exploited to improve the mapping, and a break- through is observed for SARin errors ranging from 1 to 5 mrad for 150-km-radius features in strong currents, and 0.1–0.5 mrad for global mesoscale. -
2004-118.Pdf
East MeetsWest in Near-Earth The Hubble Space Telescope Space SpaceTechnologies for Building Making the Most of Earth Observation Data The Hubble Space Telescope ESA's Cooperation with International Partners - Present and Future - Export Control lssues Nino Panagia Andre Farand & Ukike Bohlmann 49 ESA Reaches Out into Deep Space from Spain lntellectual Property Rights -The New Cebreros Station - A New Regime in ESA Contracts Valeriano Claros, Gisela Siiss & Manfred Warhaut tt Karl Eisermann & Christian Grafd 55 East Meets West in Near-Earth Space Programmes in Progress bU - Double Star Bodo Gramkow et al. z.t News - In Brief 76 Making the Most of Earth Observation with Publications 82 Data Assimilation Alan O'Neill, Pierre-Philippe Mathieu & Claus Zehner JJ Space Technologies for the Building Sector Fritz Gamoe 41 eso bulletin ll8-moy 2004 For over twenty yeors Gore Spoce Wire ond Cobies hcve contributed to the success of mony spoce missions, slch os Moon Londing, Spcceob, EURECA, ERSI + 2, lfolsol, SAX, SPCT, lSC, Envisot, XMM, Metop, Integrol, scienfific reseorch in spoce, Co,.lmbus As o speciol cob e supplier we support you in p onning the nexf sfep inlo spoce Coll us now. EORE IEI + 49/91 44/6 Al O Creative Technologies FAX.+ 49/91 44/6a l4 53 Worldwide e ectronics europe@w gore com www goree ecfron co com Our spoce communicotion scenqrio covers the whole ronge of sotellite ond spocecroh opplicotions: Telecommunicotions, Eorth Observotion, Science, Spoce Inlrostructure ond Novigotion. As on experienced developer & supplier of On-Boord TTC & Doto Tronsmission, Pqssive Microwoves, Digitol Processing Units. For over fifteen yeors, Alcotel Espocio hos contributed to the success of more thon 50 progroms sotellites Alcotel Espocio is o Sponish subsidiory compony of Alcotel Spoce BROADEN YOUR IIFE Nino Panogio Spoce Telexope Srience Inslilule, ISA Direclorole of Scientific Progrommes, Boltimore, USA Hubble role in n of the mosl importonl ond prolilic spoce oslronomy nissions of oll time. -
Europe's Earth Observation, Satellite Navigation and Communications
Europe’s Earth Observation, Satellite Navigation and Communications Missions and Services for the benefit of the Arctic Inventory of current and future capabilities, their synergies and societal benefits Boniface, K., Gioia, C. Pozzoli, L., Diehl, T., Dobricic, S., Fortuny Guasch, J., Greidanus, H., Kliment, T., Kucera, J., Janssens- Maenhout, G., Soille, P., Strobl, P., and Wilson, J. 2021 EUR 30629 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Contact information Name: Karen Boniface Address: European Commission, Joint Research Centre, Directorate E: Space, Security and Migration Email: [email protected] Tel.: +39-0332-785295 EU Science Hub https://ec.europa.eu/jrc JRC121206 EUR 30629 EN PDF ISBN 978-92-76-32079-1 ISSN 1831-9424 doi:10.2760/270136 Luxembourg: Publications Office of the European Union, 2021 © European Union, 2021 The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. -
Connecting @Ll Space People Welcome Message 2
Connecting @ll Space People Welcome Message 2 IAF 2018 Events Overview 3 IAF General Assembly 4 ISF 2017 6 IAF Spring Meetings 2018 8 GLAC 2018 9 IAC 2018 10 Overview 11 Plenaries 13 Highlight Lectures 20 Late Breaking News 23 IAF Global Networking Forum (GNF) 24 IAC Special Sessions 37 IAF IDEA “3G” Diversity Events 44 IAC Hosts Summit 46 9th IAF International Meeting for Members 48 of Parliaments YPP Networking Reception 50 Emerging Space Leaders 51 Grant Programme (ESL Grants) Press Conference: Upcoming Global Conference 52 on Space for Emerging Countries, GLEC 2019 ISF 2018 54 IAF Committees’ Reports 56 Technical Committees 57 Administrative Committees 78 Published by the International Astronautical Federation (IAF) 3rd Issue - February 2019 IAF 2018 Activities 80 Copyright © International Astronautical Federation. Other 2018 Events 80 All rights reserved. No part of this magazine may be reproduced or transmitted by any form or by any The International Astronautical Federation 83 means, electronical or mechanical, including photocopying or recording by any information storage or retrieval system without prior written permission from the publishers. CONTENTS IAF 2018 Events Overview Welcome Message Spring has already event in Uruguay. For three days, than 10,000 attendees came to Meetings begun, but experts gathered in Montevideo witness this exceptional event. 2018 2019 we can look to discuss space applications back at 2018 as a very impressive with a specific focus on emerging The majority of IAF publications and successful year. This publica- space nations and Latin America. and for the first time, the IAC tion, the IAF Highlights, is sum- Final Programmes, have been marizing the main IAF events The 69th International Astro- printed in recycled paper this and activities that took place. -
Proceedings of the 2018 Conference on Adding Value and Preserving Data
Conference Proceedings RAL-CONF-2018-001 PV2018: Proceedings of the 2018 conference on adding value and preserving data Harwell, UK 15th-17th May, 2018 Esther Conway (editor), Kate Winfield (editorial assistant) May 2018 ©2018 Science and Technology Facilities Council This work is licensed under a Creative Commons Attribution 4.0 Unported License. Enquiries concerning this report should be addressed to: RAL Library STFC Rutherford Appleton Laboratory Harwell Oxford Didcot OX11 0QX Tel: +44(0)1235 445384 Fax: +44(0)1235 446403 email: [email protected] Science and Technology Facilities Council reports are available online at: http://epubs.stfc.ac.uk ISSN 1362-0231 Neither the Council nor the Laboratory accept any responsibility for loss or damage arising from the use of information contained in any of their reports or in any communication about their tests or investigations. Proceedings of the 2018 conference on adding value and preserving data This publication is a Conference report published by the This publication is a Conference report published by the Science and Technology (STFC) Library and Information Service. The scientific output expressed does not imply a policy position of STFC. Neither STFC nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Name: Esther Conway Address: STFC, Rutherford Appleton Laboratory Harwell, Oxon, UK Email: [email protected] Tel.: +44 01235 446367 STFC https://www.stfc.ac.uk RAL-CONF-2018-001 ISSN- 1362-0231. Preface The PV2018 Conference welcomes you to its 9th edition, to be held 15th – 17th May 2018 at the Rutherford Appleton Laboratory, Harwell Space Cluster (UK), hosted by the UK Space Agency and jointly organised by STFC, NCEO and the Satellite Applications Catapult.