Virus Species Associated with Mosquito Culex Tritaeniorhynchus Giles

Total Page:16

File Type:pdf, Size:1020Kb

Virus Species Associated with Mosquito Culex Tritaeniorhynchus Giles 〔Med. Entomol. Zool. Vol. 65 No. 1 p. 1‒11 2014〕 1 DOI: 10.7601/mez.65.1 日本脳炎媒介蚊コガタアカイエカが 保有・媒介するウイルス , 1), 2) 鍬田龍星* 1) 山口大学共同獣医学部獣医微生物学教室(〒753‒8511 山口県山口市吉田1677‒1) 2) 国立感染症研究所昆虫医科学部(〒162‒8746 東京都新宿区戸山1‒23‒1) ( 受 領: 2013年11月1日;登載決定: 2013年12月27日) Virus species associated with mosquito Culex tritaeniorhynchus Giles Ryusei Kuwata*, 1), 2) * Corresponding author: Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677‒1 Yoshida, Yamaguchi, 753‒8511, Japan; Department of Medical Entomology, National Institute of Infectious Disease, 1‒23‒1 Toyama, Shinjuku, Tokyo 162‒8746, Japan (E-mail: [email protected]) 1) Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677‒1 Yoshida, Yamaguchi 753‒8511, Japan 2) Department of Medical Entomology, National Institute of Infectious Disease, 1‒23‒1 Toyama, Shinjuku, Tokyo 162‒8746, Japan (Received: 1 November 2013; Accepted: 27 December 2013) Abstract: Culex tritaeniorhynchus Giles (Diptera: Culicidae) is one of the main vector mosquitoes of Japanese encephalitis virus, which cause severe encephalitis and death for human in Asian countries. Recent studies have revealed a biodiversity of virus species in wild mosquito populations, and thus far, 14 viruses belonging to eight virus families (Flaviviridae, Togaviridae, Mesoniviridae, Nodaviridae, Rhabdoviridae, Bunnyaviridae, Reoviridae, and Parvoviridae), have been found in Cx. tritaeniorhynchus and characterized them. In this review, I describe the 14 virus species associating with Cx. tritaeniorhynchus in the world, in the purpose of a deep understanding for mosquito-virus complexes. Key words: Culex tritaeniorhynchus, arbovirus, RNA virus, DNA virus 媒介者(ベクター)としての重要性から,分布域諸国におい は じ め に てウイルスの保有実態が比較的よく調べられている.その コガタアカイエカCulex tritaeniorhynchus Giles(Diptera: 結果,現在までにコガタアカイエカからJEV を含め8科に亘 Culicidae)はアジア諸国に広く分布し,日本脳炎ウイルス る14種の多様なウイルスが分離・報告されている(Table 1). Japanese encephalitis virus(JEV)を媒介する蚊として広く知 これらコガタアカイエカが保有・媒介するウイルスに関す られている衛生害虫である(Fig. 1a).コガタアカイエカは る知見は,野外における蚊‒JEV の監視を行う上での誤同定 ヒトや畜産動物に対する吸血嗜好性が高く,また,ウイルス を回避する点で重要であり,また,蚊ならびにJEV の生態に Fig. 1. Adult female of Cx. tritaeniorhynchus. Whole body (a) and enlarged view of mouthparts (b). 2 Med. Entomol. Zool. Table 1. List of virus species isolated from Cx. tritaeniorhynchus. Family and genus Genome form Species Abbreviation Distribution Human Pathogen References Flaviviridae Flavivirus ssRNA (+) Japanese Encephalitis JEV Asia Yes Many virus Bagaza virus BAGV Africa, Israel, Probably yes Digoutte (1978) Spain, India Tembusu virus TMUV China, Thailand Unknown Simpson et al. (1970) Malaysia, Culex avivirus CxFV Many Probably no Hoshino et al. (2007) Quang Binh virus QBV Vietnam, China Probably no Crabtree et al. (2009) Togaviridae Alphavirus ssRNA (+) Sindbis virus SINV Many Light symptoms Taylor et al. (1955) Getah virus GETV Many Probably no Berge (1975) Mesoniviridae Alphamesonivirus ssRNA (+) Alphamesonivirus 1 ― Côte d'Ivoire, Probably no Lauber et al. (2012) Vietnam, China Nodaviridae Alphanodavirus ssRNA (+) Nodamura virus NOV Japan Unknown Scherer and Hurlbut (1967) Rhabdoviridae Unclassied ssRNA (−) Culex CTRV Japan Probably no Kuwata et al. (2011) tritaeniorhynchus rhabodvirus Bunyaviridae Phlebovirus ssRNA (−) Ri Valley fever virus RVF Africa, Mideast Yes Daubney et al. (1931) Reoviridae Seadornavirus dsRNA Banna virus BAV China, Vietnam, Yes Xu et al. (1990) Indonesia Orbivirus Yunnan orbivirus YUOV China, Peru, Unknown Attoui et al. (2005b) Australia Parvoviridae Brevidensovirus ssDNA Culex pipiens CppDNV ? Probably no Zhai et al. (2008) densovirus 与える影響や,蚊とウイルスの多様性,進化などを考える上 で,非常に示唆に富んだ考察を我々に与えてくれる.そこで 本稿では,コガタアカイエカのウイルスに関する見知の普及 を目的とし,先ず日本におけるコガタアカイエカの生態につ いて簡単に述べ,次にコガタアカイエカから分離されたウイ ルスの種類と性状等について解説する. 1. コガタアカイエカについて コガタアカイエカは,分類学上,昆虫綱ハエ目カ科イエカ 属のうち,口針に明瞭な白帯を有するCulex vishnui subgroup に属する(Fig. 1b).吸血対象動物は,ヒトを始め,鳥類や Fig. 2. Seasonal activities of adult females of Cx. 畜産動物,野生動物や愛玩動物など多岐に亘るが,コガタア tritaeniorhynchus in Japan. カイエカが水田などの開けた留まり水を好んで産卵すること などから,郊外の穀倉地帯における畜舎(ウシ,ブタ)での いては,長年,多くの研究者が取り組んできたが,その実態 吸血が際立つ. は明らかになっておらず,病原ウイルスの越冬機序などを 日本におけるコガタアカイエカの分布は,西日本を中心 考える上で非常に重要な課題といえる.コガタアカイエカ に,北は東北,北海道まで及ぶ(Yajima et al., 1971; Takashima の越冬に関する最近の興味深い知見として,津田らは,9月 et al., 1989).コガタアカイエカの繁殖活動は,西日本では一 から11月にかけて,東京都品川区にある東京都立林試の森 般に,3月下旬~4月上旬から吸血する個体が出現し,7月中 公園にコガタアカイエカが集団飛来しているのを発見した 旬~9月中旬に活動のピークを迎え,その後,10月中下旬ま (Tsuda and Kim, 2008; Fig. 2).この公園は完全な非緑地域に で吸血個体が見られる(Fig. 2).繁殖活動が低下する初秋, 囲まれており,コガタアカイエカが生活環を完了し得るよう コガタアカイエカの多くは繁殖休眠状態となって越冬に備え な自然環境からは少なくとも17 kmは離れている(Tsuda and る.日本におけるコガタアカイエカの越冬期間中の動きにつ Kim, 2008).また,同園内でコガタアカイエカ幼虫の発生は Vol. 65 No. 1 2014 3 認められないことから(Tsuda, 2012),公園に集団飛来して によって5つの遺伝子型(Genotype I‒V; GI‒GV)に大別さ いるコガタアカイエカは他地域より長距離移動してきたもの れ,遺伝子型の分布は地域によって分けられる(Solomon et と考えられる.さらに,園内でコガタアカイエカの集団が確 al., 2003).日本においては,1990年代以前はGIIIが優占して 認される期間は9月~11月に限定されることから,これらコ いたが,その後,JEV の遺伝子型はGIIIからGIへ遷移した. ガタアカイエカの長距離移動には越冬が関与しており,公園 この現象はJEV の「Genotype shift」と呼ばれ(Ma et al., 2003; は南方への長距離移動の途中の休息場所という解釈が一般的 Nga et al., 2004),その原因はNabeshima and Morita(2010)な である.しかし,同公園内において,1~3月にも少数なが どによって系統地理学的に考察されているものの,未だ決定 ら生存個体が捕獲されることから(津田,2013),それらの 的な証拠は得られておらず,JEV 研究史における謎の一つと 一部は公園内に留まり越冬し,翌年のコガタアカイエカの発 して挙げられる.近年,兵庫県西宮市で捕獲されたイノシシ 生に関与すると考えられる.これは長年謎となっているコガ の血清からJEV GIの遺伝子検出ならびに分離がなされ(高 タアカイエカの越冬問題について一石を投じる大きな発見と 崎ら,2009), JEV は我々が通常イメージするような鳥‒コガ いえるが,園内におけるコガタアカイエカの生存率や越冬場 タアカイエカ‒豚以外にも様々な感染環を保持していること 所など,この発見にはまだまだ解明すべき点が多く残されて が示唆された.この「Genotype shift」の謎の解明には,JEV いる(津田,2013). 遺伝子型の違いを,生態学,ウイルス学(病原性や複製効 率),宿主動物との親和性など,多角的に検証する必要があ 2. コガタアカイエカが保有・媒介するウイルス るだろう. これまでアジア諸国に分布するコガタアカイエカより,哺 2) バガザウイルスBagaza virus(BAGV) 乳動物や鳥類に病原性を示すものから,病原性を示さない, BAGV は,1966年,南アフリカ共和国バガザで捕集され または不明なものも含め,計8科14種のウイルスが発見され たイエカ属蚊Culex spp. より分離され(Digoutte, 1978),その ている( Table 1). 以下,これらのウイルスについて解説する. 後,媒介蚊調査により,数種イエカ属蚊ならびにコブハシ カ属蚊Genus Mimomyia から分離された(Traore-Lamizana et 2‒1. フラビウイルス科 al., 1994). BAGV は,過去,イスラエルや南アフリカで家禽 約11k bpの一本鎖センスRNA をゲノムに持つ,直径40~ に髄膜脳炎を起こす病原体として認知されていたIsrael turkey 60 nmの球形エンベロープウイルスである.本科はフラビウ meningoencephalitis virus が,その後の遺伝子解析によりBAGV イルス属Genus Flavivirus,ペスチウイルス属Genus Pestivirus, であることが判明した(Kuno and Chang, 2007). ヘパシウイルス属Genus Hepacivirusの3属で構成され,本稿 1996年,インド国ケーララ州において日本脳炎のアウ で紹介するウイルスはすべてフラビウイルス属に含まれる. トブレークが起こり,この間の調査でコガタアカイエカ フラビウイルス属は,吸血性の節足動物(蚊やマダニなど) ならびに脳炎患者血清よりBAGV も分離された(Bondre が媒介する節足動物媒介性ウイルスarthropod-borne virus(ア et al., 2009). 2010年にはスペインで発生した野鳥の大量死 ルボウイルスarbovirus)として多くの種が知られているが, (Agüero et al., 2011)ならびに猟鳥(Gamino et al., 2012)より これらすべてがヒトや家畜に対して病原性を示すわけではな BAGV が検出され,また,BAGV はコガタアカイエカ,ネッ く,近年になって昆虫(蚊)のみを宿主とする起源的な昆虫 タイイエカ、ネッタイシマカ体内での増殖が確認されたこと フラビウイルスが世界中に多数存在することが明らかとなっ から(Sudeep et al., 2013),今後も警戒を要するアルボウイル てきた(Cook et al., 2012).この項では,コガタアカイエカ スである. から分離されたフラビウイルスについて,ヒトや家畜に病気 3) テンブスウイルスTembusu virus(TMUV) を媒介する病原性のフラビウイルスと昆虫フラビウイルスに 1955年,マレーシア国クアランプールの牛放牧地で採 大別して解説する. 集されたコガタアカイエカより分離された(Simpson et al., 1970).当時の調査でTMUVはコガタアカイエカ以外にも複 2‒1‒1. 病原性フラビウイルス 数蚊種やニワトリ血清から分離されており,さらに同国にお 1) 日本脳炎ウイルスJapanese encephalitis virus(JEV) いてヒトで高い抗体陽性率を示したことから,TMUVは発 JEV はアジア諸国で今なお年間約5万人の新たな感染者 見当初より人または家禽に対する病原性アルボウイルスに分 ならびに約1万5千人の死亡者が報告される,世界的に大 類されている.その後,マレーシアにおいてブロイラーに きなアルボウイルス感染症問題の一つである.主要な媒介 脳炎や発育遅延を起こすSitiawan virus(Kono et al., 2000)が, 蚊はコガタアカイエカであるが,ニセシロハシイエカCulex 後にTMUVと遺伝的に近縁なウイルスとして報告されてい vishnui TheobaldやシロハシイエカCulex pseudovishnui Colless る(Liu et al., 2012). も媒介する.また,カラツイエカCulex bitaeniorhynchus 2010年,中国のアヒルファームにおいて軟卵症候群や運 Giles(Takhampunya et al., 2011),オオクロヤブカArmigeres 動失調などの明瞭な病徴を示す病気が発生し,その病原体と subalbatus Coquillett(Chen et al., 2000),ネッタイイエカ してTMUVが認められた(Cao et al., 2011; Su et al., 2011). 以 Culex quinquefasciatus Say(Nitatpattana et al., 2005),ハマダラ 降,中国ではTMUVに関する研究が多数報告されているが, カAnopheles spp.(Tan et al., 1993; Samuel et al., 2000; Feng et al., これらの研究報告のうちの一つに,アヒルファームの労働者 2012; Liu et al., 2013)などからもJEV は分離されている.JEV の血清から高い割合で抗体ならびに遺伝子検出が報告され のウイルス学的諸性状については他に優れた解説文が多数存 (Tang et al., 2013), TMUVは中国を中心に病原性フラビウイ 在するため,詳細な解説はそれらに委ね,本稿では日本にお ルスとして再認識されている.なお,タイ国の鶏舎付近で採 けるJEV の最近の知見について述べる. 集された蚊を調べた結果,ニセシロハシイエカからTMUV 現在,アジア諸国に分布するJEV はE遺伝子の塩基配列 が検出され(O’Guinn et al., 2013), 今 後 , TMUVのベクター 4 Med. Entomol. Zool. や感染環についての研究も進展すると思われる. avivirus(Parreira et al., 2012)のイエカ属蚊から分離された フラビウイルスと独自のクレードを形成することから,これ 2‒1‒2. 昆虫フラビウイルス ら3種のウイルスは昆虫フラビウイルスのなかでもとくにイ 1) キュレックスフラビウイルスCulex avivirus(CxFV) エカ属蚊と共種分化したものと考えられる. 国内捕集アカイエカCulex pipiens pallens Linnaeus,コガタ アカイエカならびにインドネシア捕集ネッタイイエカから 2‒2. トガウイルス科 分離され,イエカ属蚊に特異的なフラビウイルスとして世 9.7~11.8k bpの一本鎖センスRNA をゲノムとし,エンベ 界で初めて報告された(Hoshino et al., 2007; Fig. 3).その後, ロープを持つ直径約70 nmの正二十面体ウイルスである.本 CxFVは,グアテマラ(Morales-Betoulle et al., 2008),メキ 科はアルファウイルス属Genus Alphavirus とルビウイルス属 シコ(Farfan-Ale et al., 2009; Saiyasombat et al., 2010),ウガン Genus Rubivirus の2属に分けられ,前者は30種が認められる ダ(Cook et al., 2009),アメリカ(Blitvich et al., 2009; Bolling 一方,後者は風疹ウイルスの1種のみが属する.アルファウ et al., 2011; Newman et al., 2011; Crockett et al., 2012),中米 イルスの多くは蚊やマダニによって媒介されるアルボウイル (Kim et al., 2009),ブラジル(Machado et al., 2012),スペイン スであり,近年,我が国における感染症の予防及び感染症の (Vázquez et al., 2011),中国(Huanyu et al., 2012)など,世界 患者に対する医療に関する法律(感染症法)の四類感染症に 各地に広く分布することが明らかとなった.なお,CxFV は, 指定された蚊媒介性チクングニア熱の病原ウイルスなどが本 野外では主に経卵伝播によって蚊個体群内に維持されると考 属に分類される. えられている(Saiyasombat et al., 2011; Bolling et al., 2012). 1) シンドビスウイルスSindbis virus(SINV) CxFVの発見を皮切りに,昆虫(蚊)特異的なフラビウイ アルファウイルスの基準種であり,1953年,エジプト国 ルスは世界各地の様々な蚊種から見出されており,ウイルス シンドビスで捕集されたCulex spp.(アカイエカまたはCx. 株として分離されたものからウイルス遺伝子検出のみの報告 univittatus)から分離された(Taylor et al., 1955).ベクターの まで含めると,現在,昆虫フラビウイルスには10数種が存 分離源は,コガタアカイエカを始め,イエカ属蚊,ヤブカ属 在する(Calzolari et al., 2012; Hobson-Peters et al., 2013な ど ). 蚊,ハマダラカ属蚊,ヌマカ属蚊Mansonia sp., ハボシカ属蚊
Recommended publications
  • Viral Haemorrhagic Septicaemia Virus (VHSV): on the Search for Determinants Important for Virulence in Rainbow Trout Oncorhynchus Mykiss
    Downloaded from orbit.dtu.dk on: Nov 08, 2017 Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss Olesen, Niels Jørgen; Skall, H. F.; Kurita, J.; Mori, K.; Ito, T. Published in: 17th International Conference on Diseases of Fish And Shellfish Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Olesen, N. J., Skall, H. F., Kurita, J., Mori, K., & Ito, T. (2015). Viral haemorrhagic septicaemia virus (VHSV): on the search for determinants important for virulence in rainbow trout oncorhynchus mykiss. In 17th International Conference on Diseases of Fish And Shellfish: Abstract book (pp. 147-147). [O-139] Las Palmas: European Association of Fish Pathologists. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. DISCLAIMER: The organizer takes no responsibility for any of the content stated in the abstracts.
    [Show full text]
  • Oryzias Latipes)
    Betanodavirus infection in the freshwater model fish medaka (Oryzias latipes) Ryo Furusawa, Yasushi Okinaka,* and Toshihiro Nakai Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima 739- 8528, Japan æfAuthor for correspondence: Yasushi Okinaka. Telephone: +8 1-82-424-7978. Fax: +81- 82-424-79 1 6. E-mail: [email protected] Running title: Betanodavirus infection in medaka Key words: medaka, betanodavirus, model fish, model virus, freshwater fish Total number of words; text (3532 words), summary (230 words) Total number of figures; 6 figures Total number of tables; 0 table SUMMARY Betanodaviruses, the causal agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNA genomes. Because the genomes are the smallest and simplest among viruses, betanodaviruses are well studied using a genetic engineering system as model viruses, like the cases with the insect viruses, alphanodaviruses, the other members of the family Nodaviridae. However, studies of virus-host interactions have been limited because betanodaviruses basically infect marine fish at early developmental stages (larval and juvenile). These fish are only available for a few months of the year and are not suitable for the construction of a reversed genetics system. To overcome these problems, several freshwater fish species were tested for their susceptibility to betanodaviruses. We have demonstrated that adult medaka (Oryzias latipes), a well-known model fish, is susceptible to both Stripedjack nervous necrosis virus (the type species of the betanodaviruses) and Redspotted grouper nervous necrosis virus which have different host specificity in marine fish species. Infected medaka exhibited erratic swimming and the viruses were specifically localized to the brain, spinal cord, and retina of the infected fish, similar to the pattern of infection in naturally infected marine fish.
    [Show full text]
  • Emerging Viral Diseases of Fish and Shrimp Peter J
    Emerging viral diseases of fish and shrimp Peter J. Walker, James R. Winton To cite this version: Peter J. Walker, James R. Winton. Emerging viral diseases of fish and shrimp. Veterinary Research, BioMed Central, 2010, 41 (6), 10.1051/vetres/2010022. hal-00903183 HAL Id: hal-00903183 https://hal.archives-ouvertes.fr/hal-00903183 Submitted on 1 Jan 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Vet. Res. (2010) 41:51 www.vetres.org DOI: 10.1051/vetres/2010022 Ó INRA, EDP Sciences, 2010 Review article Emerging viral diseases of fish and shrimp 1 2 Peter J. WALKER *, James R. WINTON 1 CSIRO Livestock Industries, Australian Animal Health Laboratory (AAHL), 5 Portarlington Road, Geelong, Victoria, Australia 2 USGS Western Fisheries Research Center, 6505 NE 65th Street, Seattle, Washington, USA (Received 7 December 2009; accepted 19 April 2010) Abstract – The rise of aquaculture has been one of the most profound changes in global food production of the past 100 years. Driven by population growth, rising demand for seafood and a levelling of production from capture fisheries, the practice of farming aquatic animals has expanded rapidly to become a major global industry.
    [Show full text]
  • Viral Nanoparticles and Virus-Like Particles: Platforms for Contemporary Vaccine Design Emily M
    Advanced Review Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design Emily M. Plummer1,2 and Marianne Manchester2∗ Current vaccines that provide protection against infectious diseases have primarily relied on attenuated or inactivated pathogens. Virus-like particles (VLPs), comprised of capsid proteins that can initiate an immune response but do not include the genetic material required for replication, promote immunogenicity and have been developed and approved as vaccines in some cases. In addition, many of these VLPs can be used as molecular platforms for genetic fusion or chemical attachment of heterologous antigenic epitopes. This approach has been shown to provide protective immunity against the foreign epitopes in many cases. A variety of VLPs and virus-based nanoparticles are being developed for use as vaccines and epitope platforms. These particles have the potential to increase efficacy of current vaccines as well as treat diseases for which no effective vaccines are available. 2010 John Wiley & Sons, Inc. WIREs Nanomed Nanobiotechnol 2011 3 174–196 DOI: 10.1002/wnan.119 INTRODUCTION are normally associated with virus infection. PAMPs can be recognized by Toll-like receptors (TLRs) and he goal of vaccination is to initiate a strong other pattern-recognition receptors (PRRs) which Timmune response that leads to the development are present on the surface of host cells.4 The of lasting and protective immunity. Vaccines against intrinsic properties of multivalent display and highly pathogens are the most common, but approaches to ordered structure present in many pathogens also develop vaccines against cancer cells, host proteins, or 1,2 facilitate recognition by PAMPs, resulting in increased small molecule drugs have been developed as well.
    [Show full text]
  • Betanodavirus and VER Disease: a 30-Year Research Review
    pathogens Review Betanodavirus and VER Disease: A 30-year Research Review Isabel Bandín * and Sandra Souto Departamento de Microbioloxía e Parasitoloxía-Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; [email protected] * Correspondence: [email protected] Received: 20 December 2019; Accepted: 4 February 2020; Published: 9 February 2020 Abstract: The outbreaks of viral encephalopathy and retinopathy (VER), caused by nervous necrosis virus (NNV), represent one of the main infectious threats for marine aquaculture worldwide. Since the first description of the disease at the end of the 1980s, a considerable amount of research has gone into understanding the mechanisms involved in fish infection, developing reliable diagnostic methods, and control measures, and several comprehensive reviews have been published to date. This review focuses on host–virus interaction and epidemiological aspects, comprising viral distribution and transmission as well as the continuously increasing host range (177 susceptible marine species and epizootic outbreaks reported in 62 of them), with special emphasis on genotypes and the effect of global warming on NNV infection, but also including the latest findings in the NNV life cycle and virulence as well as diagnostic methods and VER disease control. Keywords: nervous necrosis virus (NNV); viral encephalopathy and retinopathy (VER); virus–host interaction; epizootiology; diagnostics; control 1. Introduction Nervous necrosis virus (NNV) is the causative agent of viral encephalopathy and retinopathy (VER), otherwise known as viral nervous necrosis (VNN). The disease was first described at the end of the 1980s in Australia and in the Caribbean [1–3], and has since caused a great deal of mortalities and serious economic losses in a variety of reared marine fish species, but also in freshwater species worldwide.
    [Show full text]
  • Fecal Virome Analysis of Three Carnivores Reveals a Novel
    Conceição-Neto et al. Virology Journal (2015) 12:79 DOI 10.1186/s12985-015-0305-5 RESEARCH Open Access Fecal virome analysis of three carnivores reveals a novel nodavirus and multiple gemycircularviruses Nádia Conceição-Neto1, Mark Zeller1, Elisabeth Heylen1, Hanne Lefrère1, João Rodrigo Mesquita2 and Jelle Matthijnssens1* Abstract Background: More knowledge about viral populations in wild animals is needed in order to better understand and assess the risk of zoonotic diseases. In this study we performed viral metagenomic analysis of fecal samples from three healthy carnivores: a badger (Meles meles), a mongoose (Herpestes ichneumon) and an otter (Lutra lutra)fromPortugal. Results: We detected the presence of novel highly divergent viruses in the fecal material of the carnivores analyzed, such as five gemycircularviruses. Four of these gemycircularviruses were found in the mongoose and one in the badger. In addition we also identified an RNA-dependent RNA polymerase gene from a putative novel member of the Nodaviridae family in the fecal material of the otter. Conclusions: Together these results underline that many novel viruses are yet to be discovered and that fecal associated viruses are not always related to disease. Our study expands the knowledge of viral species present in the gut, although the interpretation of the true host species of such novel viruses needs to be reviewed with great caution. Keywords: Virome, Gemycircularvirus, Metagenomics, viral discovery Background coronavirus pandemic originated from wildlife, where With the advent of next generation sequencing tech- bats where identified as the reservoir and civets as an niques, samples from a wide range of animal species intermediate host [7, 8].
    [Show full text]
  • Understanding the Interaction Between Betanodavirus and Its Host for the Development of Prophylactic Measures for Viral Encephalopathy and Retinopathy
    Fish & Shellfish Immunology 53 (2016) 35e49 Contents lists available at ScienceDirect Fish & Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy * Janina Z. Costa , Kim D. Thompson Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland, EH26 0PZ, United Kingdom article info abstract Article history: Over the last three decades, the causative agent of viral encephalopathy and retinopathy (VER) disease Received 27 January 2016 has become a serious problem of marine finfish aquaculture, and more recently the disease has also been Received in revised form associated with farmed freshwater fish. The virus has been classified as a Betanodavirus within the family 4 March 2016 Nodaviridae, and the fact that Betanodaviruses are known to affect more than 120 different farmed and Accepted 15 March 2016 wild fish and invertebrate species, highlights the risk that Betanodaviruses pose to global aquaculture Available online 17 March 2016 production. Betanodaviruses have been clustered into four genotypes, based on the RNA sequence of the T4 var- Keywords: fi fi Betanodavirus iable region of their capsid protein, and are named after the sh species from which they were rst Viral encephalopathy and retinopathy derived i.e. Striped Jack nervous necrosis virus (SJNNV), Tiger puffer nervous necrosis virus (TPNNV), VER Barfin flounder nervous necrosis virus (BFNNV) and Red-spotted grouper nervous necrosis virus Viral characterisation (RGNNV), while an additional genotype turbot betanodavirus strain (TNV) has also been proposed. Vaccines However, these genotypes tend to be associated with a particular water temperature range rather than Disease control being species-specific.
    [Show full text]
  • Fin Fish Farming Significant Diseases & Trends
    Fin Fish Farming Significant Diseases & Trends Leo Foyle MRCVS, Department of Veterinary Pathology, College of Natural Sciences, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin Dublin, September 21st, 2005 Overview • Putting aquaculture into context • Diseases of major economic importance • Impact of vaccination on disease profiles • Emerging trends in aquaculture Fisheries / aquaculture • Aquaculture’s potential • “Green” revolution • Emerging trend towards high value carnivores (“piscivores”) • Industrial scale, multinationals • Some sections due for reform Fisheries / aquaculture • Global fisheries production: 130 million tonnes 2001 (double that of 1970) † • Capture fisheries grew 1.2% p.a. • Currently 16% of animal protein consumed by the global population is derived from fish • 1 billion + people depend on fish as their main source of animal protein † FAOSTAT, 2001 Fisheries / aquaculture • c. “47% of main stocks…fully exploited…producing catches that have reached, or very close to their maximum sustainable limits” † • Additional means… † FAO, 2002. The State of world Fisheries and Aquaculture Aquaculture • 4,000 years? • 1960’s – Asia 3.9 • Aquaculture grew 9.1% p.a. (39.8 100 27.3 million tonnes 2002) 80 60 • Higher than other food production 96.1 † 40 72.7 systems Percentage 20 0 • USA – aquaculture exceeds 1970 2000 combined production lamb, Capture fisheries Aquaculture mutton and veal † FAO, 2003 Aquaculture • Majority of aquaculture growth – Chinese (>70% in 2002) • More moderate growth† Period 1970-1980 1980-1990 1990-2000 Growth rate 6.8% 6.7% 5.4% • Ye forecast: if 1996 per capita consumption remains static, population growth alone pushes demand over the available 99 million tonnes to 126 million tonnes2.
    [Show full text]
  • Detection of Betanodavirus in Wild Caught Fry Milk Fish, Chanos Chanos, (Lacepeds 1803)
    Indian Journal of Geo Marine Sciences Vol. 47 (08), August 2018, pp. 1620-1624 Detection of betanodavirus in wild caught fry milk fish, Chanos chanos, (Lacepeds 1803) 1S.N.Sethi*, 1K.Vinod , 1N.Rudhramurthy ,2M. R. Kokane & 3P.Pattnaik 1Madras Research Centre of CMFRI, Molluscan Fisheries Division, 75, R. A. Puram, Chennai-28, India 2Central Institute of Fisheries Nautical and Engineering Training, Royapuram, Chennai, India 3 Visakhapatnam Research Centre of CMFRI, Molluscan Fisheries Division, Visakhapatnam-03, A.P., India [Email: [email protected]] Received 16 August 2016; revised 28 November 2016 Betanoda virus was detected in wild caught milk fish fry (Chanos chanos) exhibiting Beta noda virus was detected in wild caught milk fish fry (Chanos chanos) showing typical clinical symptoms and signs of viral nervous necrosis (VNN)/ Viral encephalopathy and retinopathy, (VER) from the bank of Matchlipattinam, Andhra Pradesh, India during March 2014. Mortality of these fry was observed within a few days after stocking and attained 100 % in next few days. The larvae infected by the virus showed typical swimming behavior which included positioning in a vertical manner with a whirling type movement; sinking to the bottom, darting or swimming in a corkscrew fashion; belly-up at rest, abnormal body coloration (pale or dark) and over inflation of swim bladder. Severe pathological changes in the form of vacuolation and necrosis in brain and other organs such as spinal cord, and retina of the eyes further confirmed the infection by this virus. The earliest occurrence of diseases was less than 30 days of post-hatch, less than 35 mm total length.
    [Show full text]
  • Evaluation of Flinders Technology Associates Cards As a Non-Lethal
    rren : Cu t R y es g e lo a o r r c i h V Virology: Current Research Kirti et al., Virol Curr Res 2019, 3:1 Research Open Access Evaluation of Flinders Technology Associates Cards as a Non-lethal Sampling Device for Molecular Diagnosis of Betanodavirus in Asian Seabass, Lates calcarifer (Bloch, 1790) K Kirti, P Ezhil Praveena, T Bhuvaneswari and KP Jithendran* Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India *Corresponding author: KP Jithendran, Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai, Tamil Nadu, India, E- mail: [email protected] Received date: December 10, 2018; Accepted date: January 05, 2019; Published date: January 21, 2019 Copyright: ©2019 Kirti K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract This study aimed to evaluate the utility and efficiency of the Flinders Technology Associates (FTA®) Elute Card (Whatman®) as a sampling device and storage platform for RNA from Betanodavirus infected biological sample (viz., cell culture supernatant). The retrieval of target RNA from FTA Elute Card discs with a diameter ranging from 1.2 - 2 mm was found to be satisfactory for detection of Betanodavirus by reverse transcription-nested polymerase chain reaction (RT-nPCR). The viral RNA on the cards could be detected by RT-nPCR for a minimum period of 30 days of storage at 4°C, though at lower efficiency after 21 days of storage.
    [Show full text]
  • RNA Viruses in the Sea Andrew S
    REVIEW ARTICLE RNA viruses in the sea Andrew S. Lang1, Matthew L. Rise2, Alexander I. Culley3 & Grieg F. Steward3 1Department of Biology, Memorial University of Newfoundland, St John’s, NL, Canada; 2Ocean Sciences Centre, Memorial University of Newfoundland, St John’s, NL, Canada; and 3Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA Correspondence: Andrew S. Lang, Abstract Department of Biology, Memorial University of Newfoundland, St John’s, NL, Canada A1B Viruses are ubiquitous in the sea and appear to outnumber all other forms of 3X9. Tel.: 11 709 737 7517; fax: 11 709 737 marine life by at least an order of magnitude. Through selective infection, viruses 3018; e-mail: [email protected] influence nutrient cycling, community structure, and evolution in the ocean. Over the past 20 years we have learned a great deal about the diversity and ecology of the Received 31 March 2008; revised 29 July 2008; viruses that constitute the marine virioplankton, but until recently the emphasis accepted 21 August 2008. has been on DNA viruses. Along with expanding knowledge about RNA viruses First published online 26 September 2008. that infect important marine animals, recent isolations of RNA viruses that infect single-celled eukaryotes and molecular analyses of the RNA virioplankton have DOI:10.1111/j.1574-6976.2008.00132.x revealed that marine RNA viruses are novel, widespread, and genetically diverse. Discoveries in marine RNA virology are broadening our understanding of the Editor: Cornelia Buchen-Osmond ¨ biology, ecology, and evolution of viruses, and the epidemiology of viral diseases, Keywords but there is still much that we need to learn about the ecology and diversity of RNA RNA virus; virioplankton; virus diversity; marine viruses before we can fully appreciate their contributions to the dynamics of virus; virus ecology; aquaculture.
    [Show full text]
  • The Boiling Springs Lake Metavirome: Charting the Viral Sequence-Space of an Extreme Environment Microbial Ecosystem
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 3-4-2014 The Boiling Springs Lake Metavirome: Charting the Viral Sequence-Space of an Extreme Environment Microbial Ecosystem Geoffrey Scott Diemer Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Genomics Commons, and the Viruses Commons Let us know how access to this document benefits ou.y Recommended Citation Diemer, Geoffrey Scott, "The Boiling Springs Lake Metavirome: Charting the Viral Sequence-Space of an Extreme Environment Microbial Ecosystem" (2014). Dissertations and Theses. Paper 1640. https://doi.org/10.15760/etd.1639 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. The Boiling Springs Lake Metavirome: Charting the Viral Sequence-Space of an Extreme Environment Microbial Ecosystem by Geoffrey Scott Diemer A dissertation submitted in the partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology Dissertation Committee: Kenneth Stedman, Chair Valerian Dolja Susan Masta John Perona Rahul Raghavan Portland State University 2014 © 2014 Geoffrey Scott Diemer ABSTRACT Viruses are the most abundant organisms on Earth, yet their collective evolutionary history, biodiversity and functional capacity is not well understood. Viral metagenomics offers a potential means of establishing a more comprehensive view of virus diversity and evolution, as vast amounts of new sequence data becomes available for comparative analysis. Metagenomic DNA from virus-sized particles (smaller than 0.2 microns in diameter) was isolated from approximately 20 liters of sediment obtained from Boiling Springs Lake (BSL) and sequenced.
    [Show full text]