Boron Isotope Composition of Coexisting Tourmaline and Hambergite in Alkaline and Granitic Pegmatites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Examples from NYF Pegmatites of the Třebíč Pluton, Czech Republic
Journal of Geosciences, 65 (2020), 153–172 DOI: 10.3190/jgeosci.307 Original paper Beryllium minerals as monitors of geochemical evolution from magmatic to hydrothermal stage; examples from NYF pegmatites of the Třebíč Pluton, Czech Republic Adam ZACHAŘ*, Milan NOVÁK, Radek ŠKODA Department of Geological Sciences, Faculty of Sciences, Masaryk University, Kotlářská 2, Brno 611 37, Czech Republic; [email protected] * Corresponding author Mineral assemblages of primary and secondary Be-minerals were examined in intraplutonic euxenite-type NYF peg- matites of the Třebíč Pluton, Moldanubian Zone occurring between Třebíč and Vladislav south of the Třebíč fault. Primary magmatic Be-minerals crystallized mainly in massive pegmatite (paragenetic type I) including common beryl I, helvite-danalite I, and a rare phenakite I. Rare primary hydrothermal beryl II and phenakite II occur in miarolitic pockets (paragenetic type II). Secondary hydrothermal Be-minerals replaced primary precursors or filled fractures and secondary cavities, or they are associated with ,,adularia” and quartz (paragenetic type III). They include minerals of bohseite-ba- venite series, less abundant beryl III, bazzite III, helvite-danalite III, milarite-agakhanovite-(Y) III, phenakite III, and datolite-hingganite-(Y) III. Chemical composition of the individual minerals is characterized by elevated contents of Na, Cs, Mg, Fe, Sc in beryl I and II; Na, Ca, Mg, Fe, Al in bazzite III; REE in milarite-agakhanovite-(Y) III; variations in Fe/Mn in helvite-danalite and high variation of Al in bohseite-bavenite series. Replacement reactions of primary Be- -minerals are commonly complex and the sequence of crystallization of secondary Be-minerals is not defined; minerals of bohseite-bavenite series are mostly the latest. -
Online Determination of Boron Isotope Ratio in Boron Trifluoride By
applied sciences Article Online Determination of Boron Isotope Ratio in Boron Trifluoride by Infrared Spectroscopy Weijiang Zhang, Yin Tang and Jiao Xu * School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China; [email protected] (W.Z.); [email protected] (Y.T.) * Correspondence: [email protected]; Tel.: +86-022-27402028 Received: 17 September 2018; Accepted: 3 December 2018; Published: 6 December 2018 Abstract: Enriched boron-10 and its related compounds have great application prospects, especially in the nuclear industry. The chemical exchange rectification method is one of the most important ways to separate the 10B and 11B isotope. However, a real-time monitoring method is needed because this separation process is difficult to characterize. Infrared spectroscopy was applied in the separation device to realize the online determination of the boron isotope ratio in boron trifluoride (BF3). The possibility of determining the isotope ratio via the 2ν3 band was explored. A correction factor was introduced to eliminate the difference between the ratio of peak areas and the true value of the boron isotope ratio. It was experimentally found that the influences of pressure and temperature could be ignored. The results showed that the infrared method has enough precision and stability for real-time, in situ determination of the boron isotope ratio. The instability point of the isotope ratio can be detected with the assistance of the online determination method and provides a reference for the production of boron isotope. Keywords: isotope; boron; infrared spectroscopy; online determination 1. Introduction Boron in naturally occurring compounds is composed of two isotopes, one of mass 10 and the other of mass 11. -
12 Natural Isotopes of Elements Other Than H, C, O
12 NATURAL ISOTOPES OF ELEMENTS OTHER THAN H, C, O In this chapter we are dealing with the less common applications of natural isotopes. Our discussions will be restricted to their origin and isotopic abundances and the main characteristics. Only brief indications are given about possible applications. More details are presented in the other volumes of this series. A few isotopes are mentioned only briefly, as they are of little relevance to water studies. Based on their half-life, the isotopes concerned can be subdivided: 1) stable isotopes of some elements (He, Li, B, N, S, Cl), of which the abundance variations point to certain geochemical and hydrogeological processes, and which can be applied as tracers in the hydrological systems, 2) radioactive isotopes with half-lives exceeding the age of the universe (232Th, 235U, 238U), 3) radioactive isotopes with shorter half-lives, mainly daughter nuclides of the previous catagory of isotopes, 4) radioactive isotopes with shorter half-lives that are of cosmogenic origin, i.e. that are being produced in the atmosphere by interactions of cosmic radiation particles with atmospheric molecules (7Be, 10Be, 26Al, 32Si, 36Cl, 36Ar, 39Ar, 81Kr, 85Kr, 129I) (Lal and Peters, 1967). The isotopes can also be distinguished by their chemical characteristics: 1) the isotopes of noble gases (He, Ar, Kr) play an important role, because of their solubility in water and because of their chemically inert and thus conservative character. Table 12.1 gives the solubility values in water (data from Benson and Krause, 1976); the table also contains the atmospheric concentrations (Andrews, 1992: error in his Eq.4, where Ti/(T1) should read (Ti/T)1); 2) another category consists of the isotopes of elements that are only slightly soluble and have very low concentrations in water under moderate conditions (Be, Al). -
Gem Crystal Surface Features Spherical Cultured Pearls Aquamarine
Gems&Jeweller y Spring 2012 / Volume 21 / No. 1 Gem crystal Spherical Aquamarine- surface features cultured pearls coloured glass The Gemmological Association of Great Britain MARCUS MCCALLUM FGA PRECIOUS STONES, BEADS & PEARLS A wide range of precious and semi-precious stones, beads and freshwater pearls, personally selected from around the world. Unusual stones a speciality. ROOM 27-31, NEW HOUSE 67-68 HATTON GARDEN, LONDON EC1N 8JY TELEPHONE: +44(0)20 7405 2169 FACSIMILE: +44(0)20 7405 9385 email:[email protected] www.marcusmccallum.com Gems&Jewellery / Spring 2012 / Volume 21 / No. 1 Gem-A CalendarEditorial Gems&Jewellery Winds of change This year is turning in to a busy one for Gem-A. As reported in Gem-A News and Views (page Spring 40), we have a lease renewal on our Greville Street premises which will lead to a thorough refurbishment — something which those of you who know the building will agree is much needed. This will provide an excellent opportunity to reinvigorate both our onsite teaching facilities and the services we can offer members. How can we afford this you may ask, when only a very few years 12 ago the Association was in poor health financially? The fact is that over the last few years we have run a very tight ship knowing we had these costs looming. We have focused on what we are good Contents at and the things which are the core aspects of our business. This has led to the ceasing of loss- making operations, such as the laboratory, and an increase in students and thus revenue from our education, though it must be qualified that this increase is from overseas rather than the UK. -
Stable Isotopic Composition of Boron in Groundwater – Analytical
LLNL‐TR‐498360 LAWRENCE LIVERMORE NATIONAL LABORATORY California GAMA Special Study: Stable isotopic composition of boron in groundwater – analytical method development Gary R. Eppich, Josh B. Wimpenny*, Qingzhu Yin*, and Bradley K. Esser Lawrence Livermore National Laboratory *University of California, Davis October, 2011 Final report for the California State Water Resources Control Board GAMA Special Studies Task 10.4 : Development of New Wastewater Indicator Methods Disclaimer This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. Auspices Statement This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE‐AC52‐07NA27344. GAMA: GROUNDWATER AMBIENT MONITORING & ASSESSMENT PROGRAM SPECIAL STUDY California GAMA Special Study: Stable isotopic composition of boron in groundwater – analytical method development By Gary R. -
Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents by T
U.S. Department of the Interior U.S. Geological Survey Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents by T. B. Coplen', J. A. Hopple', J. K. Bohlke', H. S. Reiser', S. E. Rieder', H. R. o *< A R 1 fi Krouse , K. J. R. Rosman , T. Ding , R. D. Vocke, Jr., K. M. Revesz, A. Lamberty, P. Taylor, and P. De Bievre6 'U.S. Geological Survey, 431 National Center, Reston, Virginia 20192, USA 2The University of Calgary, Calgary, Alberta T2N 1N4, Canada 3Curtin University of Technology, Perth, Western Australia, 6001, Australia Institute of Mineral Deposits, Chinese Academy of Geological Sciences, Beijing, 100037, China National Institute of Standards and Technology, 100 Bureau Drive, Stop 8391, Gaithersburg, Maryland 20899 "institute for Reference Materials and Measurements, Commission of the European Communities Joint Research Centre, B-2440 Geel, Belgium Water-Resources Investigations Report 01-4222 Reston, Virginia 2002 U.S. Department of the Interior GALE A. NORTON, Secretary U.S. Geological Survey Charles G. Groat, Director The use of trade, brand, or product names in this report is for identification purposes only and does not imply endorsement by the U.S. Government. For additional information contact: Chief, Isotope Fractionation Project U.S. Geological Survey Mail Stop 431 - National Center Reston, Virginia 20192 Copies of this report can be purchased from: U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286 CONTENTS Abstract...................................................... -
NUCLEAR GEOMETRY: from HYDROGEN to BORON Alexander I
Materials Physics and Mechanics 45 (2020) 132-149 Received: March 11, 2020 NUCLEAR GEOMETRY: FROM HYDROGEN TO BORON Alexander I. Melker St. Petersburg Academy of Sciences on Strength Problems, Peter the Great St. Petersburg Polytechnic University Polytekhnicheskaya 29, 195251, St. Petersburg, Russian Federation e-mail: [email protected] Abstract. Possible ways of nuclear synthesis in the range from hydrogen to boron are studied. The geometric model of these nuclei is suggested. The basis for this model is the analogy 4 4 between tetrahedral fullerene C4 and helium 2He . It is assumed that a nucleus of helium 2He has the form of a tetrahedron, where: 1) All the apices are equivalent and therefore they are protons, 2) Each neutron in a nucleus decomposes into a proton and three negatively charged particles having the charge ⅓ of that of an electron, 3) Interaction of the negative particles creates a special electronic pattern, which symmetry does not coincide with that of protons one, but determines it. On the basis of the postulates, the structure of other nuclei has been designed using geometric modeling. For hydrogen, deuterium, tritium and helium 3, a point, a linear and a plane structure respectively have been obtained. Helium 4 has tetrahedral symmetry. Then there was transition from three-fold symmetry prisms (lithium 6 and 7) to five-fold symmetry (boron 10 and 11) through four-fold one (beryllium 8, 9, 10). The nuclear electron patterns are more complex; their polyhedrons resemble the electron pairs arrangement at the valence shells of molecules. Keywords: beryllium, boron, deuterium, graph representation, helium, hydrogen, lithium, nuclear electron, nuclear geometry 1. -
FLUORINE in HAMBERGITE] Groncb Swrtzrt, Rov S. Clenxo, Jn., T/. S. L
THE AMERICAN MINERALOGIST, VOL. .50, JANUARY-FEBRUARY, 1965 FLUORINE IN HAMBERGITE] GroncB Swrtzrt, Rov S. Clenxo, Jn., t/. S. l{otional Museum, W ashington,D. C.; Jonu SrNxeNxes, Scripps Institute of Oceanography,Lin'iz:ersity oJ CaliJornio, La Jolla; aNt HBT.BNW. WonrurNc, [/. S' Geologi,cal S wrttey, Il/ ashi,ngton,D. C. Aesrnecr A chemical analysis of hambergite [Be:(OH, F)(BOt] from the Little Three mine, near Ramona, San Diego County, California, disciosed that the minerai from this Iocality contains 6.0 per cent fluorine. Hambergite from a secondCalifornia localitl., the Himalaya mine near Mesa Grande, contains 0.2 per cent fluorine Fluorine $'as not reported in analyses in the ]iterature of hambergite from Madagascar, Norway, and Kashmir' New analyses of Madagascar and Norway hambergite gave 1 0 and 0 15 per cent fluorine, re- spectively. No material from Kashmir u'as available for study. New data on hambergite from Anjanabanoana, Madagascar, and the Little Three mine, California, follow: Madagascar-BeO 53.6, 8z0136.0,HrO 8.8, F 1.0, iessO-F 0.4, sum 99.0 per cent; orthorhombic,a:9.76+O.Ol, b:12.23+O-01' c:4.43*0.01 A. Cali- fornia-BeO 529,82Ot36.6, HrO 6.7,F 6 0, O=F 2.5, sum 99'4per centlorthorhombic, a:9 78+0.01,b:12.40+0.01 , c:447+0.014; density2.372 (obs) gms/cm3;a:1.543, B:1.580, "r:1 617+0.001,2Y:90o. Crystals from the Little Three mine shou'two new forms, 13401and {341}. -
Mineralogy and Geochemical Evolution of the Little Three
American Mineralogist, Volume 71, pages 406427, 1986 Mineralogy and geochemicalevolution of the Little Three pegmatite-aplite layered intrusive, Ramona,California L. A. SrnnN,t G. E. BnowN, Jn., D. K. Brno, R. H. J*rNs2 Department of Geology, Stanford University, Stanford, California 94305 E. E. Foono Branch of Central Mineral Resources,U.S. Geological Survey, Denver, Colorado 80225 J. E. Snrcr,nv ResearchDepartment, Gemological Institute of America, 1660 Stewart Street,Santa Monica, California 90404 L. B. Sp.c,uLDrNG" JR. P.O. Box 807, Ramona,California 92065 AssrRAcr Severallayered pegmatite-aplite intrusives exposedat the Little Three mine, Ramona, California, U.S.A., display closelyassociated fine-grained to giant-texturedmineral assem- blageswhich are believed to have co-evolved from a hydrous aluminosilicate residual melt with an exsolved supercriticalvapor phase.The asymmetrically zoned intrusive known as the Little Three main dike consists of a basal sodic aplite with overlying quartz-albite- perthite pegmatite and quartz-perthite graphic pegmatite. Muscovite, spessartine,and schorl are subordinate but stable phasesdistributed through both the aplitic footwall and peg- matitic hanging wall. Although the bulk composition of the intrusive lies near the haplo- granite minimum, centrally located pockets concentratethe rarer alkalis (Li, Rb, Cs) and metals (Mn, Nb, Ta, Bi, Ti) of the system, and commonly host a giant-textured suite of minerals including quartz, alkali feldspars, muscovite or F-rich lepidolite, moderately F-rich topaz, and Mn-rich elbaite. Less commonly, pockets contain apatite, microlite- uranmicrolite, and stibio-bismuto-columbite-tantalite.Several ofthe largerand more richly mineralized pockets of the intrusive, which yield particularly high concentrationsof F, B, and Li within the pocket-mineral assemblages,display a marked internal mineral segre- gation and major alkali partitioning which is curiously inconsistent with the overall alkali partitioning of the system. -
Volume 25 / No. 3 / 1996
he Journa TGemmolog Volume 25 No. 3 July 1996 f~J J The Gemmological Association and Gem Testing Laboratory of Great Britain President E.M. Bruton Vice-Presidents AE. Farn, D.G. Kent, RK. Mitchell Honorary Fellows R.T. Liddicoat [nr., E. Miles, K. Nassau Honorary Life Members D.}. Callaghan, E.A Iobbins, H. Tillander Council of Management CR Cavey, T.}. Davidson, N.W. Deeks, RR Harding, 1.Thomson, v.P. Watson Members' Council AJ. Allnutt, P. Dwyer-Hickey, R. Fuller, B. Jackson, J. Kessler, G. Monnickendam, L. Music, J.B. Nelson, K. Penton, P.G. Read, 1. Roberts, R Shepherd, CH. Winter Branch Chairmen Midlands: J.W. Porter North West: 1. Knight Scottish: J. Thomson Examiners AJ. Allnutt, M.Sc., Ph.D., FGS S.M. Anderson, B.SdHonst FGA L. Bartlett, B.Sc., M.Phil., FGA, DGA E.M. Bruton, FGA, DGA CR. Cavey, FGA S. Coelho, B.Sc., FGA, DGA AT. Collins, B.Sc., Ph.D. AG. Good, FGA, DGA CJ.E. Hall, B.Sc.(Hons), FGA G.M. Howe, FGA, DGA G.H. Jones, B.5c., Ph.D., FGA H.L. Plumb, B.Sc., FGA, DGA RD. Ross, B.Sc., FGA DGA P.A. Sadler, B.Sc., FGA, DGA E. Stem, FGA, DGA Prof. 1. Sunagawa, D.Sc. M. Tilley, GG, FGA CM. Woodward, B.5c., FGA DGA The Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8SU Telephone: 0171-404 3334 Fax: 0171-404 8843 j*3fr \ St TGemmologhe Journal of y QAQTT. VOLUME 25 NUMBER 3 JULY 1996 Editor Dr R.R. -
W. M. White Geochemistry Chapter 9: Stable Isotopes
W. M. White Geochemistry Chapter 9: Stable Isotopes CHAPTER 9: STABLE ISOTOPE GEOCHEMISTRY 9.1 INTRODUCTION table isotope geochemistry is concerned with variations of the isotopic compositions of elements arising from physicochemical processes rather than nuclear processes. Fractionation* of the iso- S topes of an element might at first seem to be an oxymoron. After all, in the last chapter we saw that the value of radiogenic isotopes was that the various isotopes of an element had identical chemical properties and therefore that isotope ratios such as 87Sr/86Sr are not changed measurably by chemical processes. In this chapter we will find that this is not quite true, and that the very small differences in the chemical behavior of different isotopes of an element can provide a very large amount of useful in- formation about chemical (both geochemical and biochemical) processes. The origins of stable isotope geochemistry are closely tied to the development of modern physics in the first half of the 20th century. The discovery of the neutron in 1932 by H. Urey and the demonstra- tion of variable isotopic compositions of light elements by A. Nier in the 1930’s and 1940’s were the precursors to this development. The real history of stable isotope geochemistry begins in 1947 with the publication of Harold Urey’s paper, “The Thermodynamic Properties of Isotopic Substances”, and Bigeleisen and Mayer’s paper “Calculation of equilibrium constants for isotopic exchange reactions”. Urey not only showed why, on theoretical grounds, isotope fractionations could be expected, but also suggested that these fractionations could provide useful geological information. -
1 Exceptional Chiavennite Associated with Pezzottaite
EXCEPTIONAL CHIAVENNITE ASSOCIATED WITH PEZZOTTAITE FROM THE SAKAVALANA PEGMATITE, AMBATOVITA, MADAGASCAR Federico Pezzotta(1), Alessandro Guastoni(1), Hervé Forner(2), Francesco Demartin(3), Roy Kristiansen(4) (1) Museo di Storia Naturale, Corso Venezia 55, 20121 Milano, Italy (2) TRASPARENCE s.r.l., Ambatomaro, Antananarivo, Madagascar (3) Dep. Chimica Strutturale e Stereochimica Inorganica, Università di Milano, Via G. Venezian 21, 20133 Milano, Italy (4) P.O. Box 32, N-1650 Sellebakk, Norway Abstract: exceptional specimens of chiavennite were recently found, associated with the new mineral pezzottaite, in the Sakavalana pegmatite at Ambatovita, in central-western Madagascar. Chiavennite at Ambatovita formed as a late-stage mineral, after quartz, amazonite, albite, spodumene, Cs-bearing beryl and pezzottaite, liddicoatite, Cs-rich muscovite-lepidolite, danburite and other accessories such as zircon, pyrochlore-group minerals and cassiterite. Chiavennite formed together with hambergite, a late generation of pezzottaite, and some masses of Mn-hydroxides (mainly cryptomelane). Chalcedony formed together and after chiavennite. INTRODUCTION In November 2002, in a wild area in central-western Madagascar close to the village of Ambatovita, 22 km south of Mandrosonoro, local miners discovered in the Sakavalana pegmatite a spectacular, large miarolitic cavity containing large crystals of citrine quartz, green amazonite, albite, green-to pink spodumene, multicolored liddicoatite and raspberry “Cs-rich beryl”, the recently approved new mineral pezzottaite (Laurs et al., 2003). This discovery, documented during the last year by several publications, has been described also in Le Règne Mineral by Warin and Jacques (2003). One of the authors (H.F.), in February 2003, examining some samples collected at Ambatovita, first observed a 5 cm specimen mainly consisting of a brownish-red mineral forming small aggregates of radial crystals, associated with Mn-hydroxides and cementing large fragments of quartz and pezzottaite crystals.