Stanford Encyclopedia of Philosophy Copyright C 2012 by the Publisher Spring of 1813, the Four Met for What They Called "Philosophical

Total Page:16

File Type:pdf, Size:1020Kb

Stanford Encyclopedia of Philosophy Copyright C 2012 by the Publisher Spring of 1813, the Four Met for What They Called pdf version of the entry William Whewell http://plato.stanford.edu/archives/win2012/entries/whewell/ William Whewell from the Winter 2012 Edition of the First published Sat Dec 23, 2000; substantive revision Mon Nov 12, 2012 Stanford Encyclopedia William Whewell (1794–1866) was one of the most important and influential figures in nineteenth-century Britain. Whewell, a polymath, of Philosophy wrote extensively on numerous subjects, including mechanics, mineralogy, geology, astronomy, political economy, theology, educational reform, international law, and architecture, as well as the works that remain the most well-known today in philosophy of science, history of science, and moral philosophy. He was one of the founding members and Edward N. Zalta Uri Nodelman Colin Allen John Perry a president of the British Association for the Advancement of Science, a Principal Editor Senior Editor Associate Editor Faculty Sponsor fellow of the Royal Society, president of the Geological Society, and Editorial Board longtime Master of Trinity College, Cambridge. In his own time his http://plato.stanford.edu/board.html influence was acknowledged by the major scientists of the day, such as Library of Congress Catalog Data John Herschel, Charles Darwin, Charles Lyell and Michael Faraday, who ISSN: 1095-5054 frequently turned to Whewell for philosophical and scientific advice, and, Notice: This PDF version was distributed by request to mem- interestingly, for terminological assistance. Whewell invented the terms bers of the Friends of the SEP Society and by courtesy to SEP “anode,” “cathode,” and “ion” for Faraday. In response to a challenge by content contributors. It is solely for their fair use. Unauthorized the poet S.T. Coleridge in 1833, Whewell invented the English word distribution is prohibited. To learn how to join the Friends of the “scientist;” before this time the only terms in use were “natural SEP Society and obtain authorized PDF versions of SEP entries, philosopher” and “man of science”. Whewell was greatly influenced by please visit https://leibniz.stanford.edu/friends/ . his association with three of his fellow students at Cambridge: Charles Babbage, John Herschel, and Richard Jones. Over the winter of 1812 and Stanford Encyclopedia of Philosophy Copyright c 2012 by the publisher spring of 1813, the four met for what they called "Philosophical The Metaphysics Research Lab Breakfasts" at which they discussed induction and scientific method, Center for the Study of Language and Information Stanford University, Stanford, CA 94305 among other topics (see Snyder, 2011). William Whewell Copyright c 2012 by the author Whewell is most known today for his massive works on the history and Laura J. Snyder philosophy of science. His philosophy of science was attacked by John All rights reserved. Stuart Mill in his System of Logic, causing an interesting and fruitful Copyright policy: https://leibniz.stanford.edu/friends/info/copyright/ debate between them over the nature of inductive reasoning in science, 1 William Whewell Laura J. Snyder moral philosophy, and political economy (for a detailed discussion of this allow him to attend the Heversham Grammar School in Westmorland, debate, see Snyder 2006). It is in the context of the debate over some twelve miles to the north, where he would be able to qualify for a philosophy of science that Whewell's philosophy was rediscovered in the closed exhibition to Trinity College, Cambridge. In the 19th century and 20th century by critics of logical positivism. In this entry, we shall focus earlier, these “closed exhibitions” or scholarships were set aside for the on the most important philosophical aspects of Whewell's works: his children of working class parents, to allow for some social mobility. philosophy of science, including his views of induction, confirmation, and Whewell studied at Haversham Grammar for two years, and received necessary truth; his view of the relation between scientific practice, private coaching in mathematics. Although he did win the exhibition it history of science, and philosophy of science; and his moral philosophy. did not provide full resources for a boy of his family's means to attend We shall spend the most time on his view of induction, as this is the most Cambridge; so money had to be raised in a public subscription to interesting and important part of his philosophy as well as the most supplement the scholarship money. misinterpreted. He thus came up to Trinity in 1812 as a “sub-sizar” (scholarship student). 1. Biography In 1814 he won the Chancellor's prize for his epic poem “Boadicea,” in 2. Philosophy of Science: Induction this way following in the footsteps of his mother, who had published 3. Philosophy of Science: Confirmation poems in the local papers. Yet he did not neglect the mathematical side of 4. Philosophy of Science: Necessary Truth his training; in 1816 he proved his mathematical prowess by placing as 5. The Relation Between Scientific Practice, History of Science, and both second Wrangler and second Smith's Prize man. The following year Philosophy of Science he won a college fellowship. He was elected to the Royal Society in 1820, 6. Moral Philosophy and ordained a priest (as required for Trinity Fellows) in 1825. He took up Bibliography the Chair in Mineralogy in 1828, and resigned it in 1832. In 1838 Primary Literature: Major Works by Whewell Whewell became Professor of Moral Philosophy. Almost immediately Secondary Literature after his marriage to Cordelia Marshall on 12 October 1841, he was Academic Tools named Master of Trinity College upon the recommendation of the Prime Other Internet Resources Minister Robert Peel. He was Vice-Chancellor of the University in 1842 Related Entries and again in 1855. In 1848 he played a large role in establishing the Natural and Moral Sciences Triposes at the University. His first wife died in 1855, and he remarried Lady Affleck, the sister of his friend Robert 1. Biography Ellis; Lady Affleck died in 1865. Whewell left no descendents when he died, after being thrown from his horse, on 6 March 1866. (More details Whewell was born in 1794, the eldest child of a master-carpenter in about Whewell's life and times can be found in Snyder 2011.) Lancaster. The headmaster of his local grammar school, a parish priest, recognized Whewell's intellectual abilities and persuaded his father to 2. Philosophy of Science: Induction 2 Stanford Encyclopedia of Philosophy Winter 2012 Edition 3 William Whewell Laura J. Snyder Fundamental Idea has certain “conceptions” included within it; these According to Whewell, all knowledge has both an ideal, or subjective conceptions are “special modifications” of the Idea applied to particular dimension, as well as an objective dimension. He called this the types of circumstances (1858b, 187). For example, the conception of “fundamental antithesis” of knowledge. Whewell explained that “in every force is a modification of the Idea of Cause, applied to the particular case act of knowledge … there are two opposite elements, which we may call of motion (see 1858a, I, 184–5 and 236). Ideas and Perceptions” (1860a, 307). He criticized Kant and the German Idealists for their exclusive focus on the ideal or subjective element, and Thus far, this discussion of the Fundamental Ideas may suggest that they Locke and the “Sensationalist School” for their exclusive focus on the are similar to Kant's forms of intuition, and indeed there are some empirical, objective element. Like Francis Bacon, Whewell claimed to be similarities. Because of this, some commentators argue that Whewell's seeking a “middle way” between pure rationalism and ultra-empiricism. epistemology is a type of Kantianism (see, e.g., Butts 1973, and Buchdahl Whewell believed that gaining knowledge requires attention to both ideal 1991). However, this interpretation ignores several crucial differences and empirical elements, to ideas as well as sensations. These ideas, which between the two views. Whewell did not follow Kant in drawing a he called “Fundamental Ideas,” are “supplied by the mind itself”—they distinction between “precepts,” or forms of intuition, such as Space and are not (as Mill and Herschel protested) merely received from our Time, and the categories, or forms of thought, in which Kant included the observations of the world. Whewell explained that the Fundamental Ideas concepts of Cause and Substance. Moreover, Whewell included as are “not a consequence of experience, but a result of the particular Fundamental Ideas many ideas which function not as conditions of constitution and activity of the mind, which is independent of all experience but as conditions for having knowledge within their respective experience in its origin, though constantly combined with experience in sciences: although it is certainly possible to have experience of the world its exercise” (1858a, I, 91). Consequently, the mind is an active without having a distinct idea of, say, Chemical Affinity, we could not participant in our attempts to gain knowledge of the world, not merely a have any knowledge of certain chemical processes without it. Unlike passive recipient of sense data. Ideas such as Space, Time, Cause, and Kant, Whewell did not attempt to give an exhaustive list of these Resemblance provide a structure or form for the multitude of sensations Fundamental Ideas; indeed, he believed that there are others which will we experience. The Ideas provide a structure by expressing the general emerge in the course of the development of science. Moreover, and relations that exist between our sensations (1847, I, 25). Thus, the Idea of perhaps most importantly for his philosophy of science, Whewell rejected Space allows us to apprehend objects as having form, magnitude, and Kant's claim that we can only have knowledge of our “categorized position. Whewell held, then, that observation is “idea-laden;” all experience.” The Fundamental Ideas, on Whewell's view, accurately observation, he noted, involves “unconscious inference” using the represent objective features of the world, independent of the processes of Fundamental Ideas (see 1858a, I, 46).
Recommended publications
  • 1 When Induction Was About Concepts John P. Mccaskey
    When Induction Was About Concepts John P. McCaskey Stanford University The philosophy professor says, ―This swan is white. That swan is white. And so is the other,‖ and asks, ―May we legitimately infer that all swans are white?‖ In this way the students are introduced to induction or, as we seem always to call it, the ―problem‖ of induction. Deduction presents no real problem, we say, but induction brings no end of trouble. It is stubborn, recalcitrant, rebellious. We can almost hear Henry Higgins singing, ―Why can‘t a woman be more like a man?‖ or ―Why can‘t induction be more like deduction? / Deduction is so honest, so thoroughly square / eternally noble, historically fair. / Why can‘t induction be more like deduction ?‖ Higgins does not sing that, but Nicholas Rescher, for example, says, ―An inductive inference can always be looked upon as an aspiring but failed deductive inference.‖1 Rescher speaks for virtually all epistemologists of the last hundred years. But this position was not always so common. There were times when induction was not thought to be a problematic sort of inference. In fact, there were times induction was not thought to be primarily about propositional inference at all. Induction was about forming sound concepts and good definitions. This essay recalls those times. Recalling them is important for three reasons. First, doing so will help check our temptation to think our predecessors were too naïve, careless, or stupid to see the obvious. ―How could Francis Bacon have thought his method of induction would lead to certainty?!‖ ―How could William Whewell not have appreciated Hume‘s challenge to induction?!‖ ―How could Aristotle have thought all induction reduces to complete enumeration?!‖ But these men were not stupid.
    [Show full text]
  • Chapter Ten William Whewell: Lyell's Labours And
    CHAPTER TEN WILLIAM WHEWELL: LYELL'S LABOURS AND IDEAS Although Lyell and Sedgwick are usually seen as champions of antagonistic theories of geology, they actually share more in their scientific outlooks than is often supposed. Their religious suppositions are very much the same and, as honest scientists and believers, both join in a battle to "free the science from Moses." Even their respective defences of uniformity and catastrophism seem at times to merge so much as hardly to merit the name of controversy. Such seems to be the conclusion of the philosopher of science William Whewell. Lyell's research was a major influence on Whewell's geological thinking. He reviewed the first and the second volume of Principles, and, although not disposed to accept the theory of uniformity, he discusses Lyell as no other scientist in the long sections on geology in both the History of the Inductive Sciences (1837) and its sequel the Philosophy of the Inductive Sciences ( 1840). William Whewell, son of a Lancashire carpenter, born in 1794, was Lyell's senior by only three years. He was not an original contributor to the science of geology, but his extensive knowledge of the physical sciences included geology. Much practical geology he no doubt picked up during the many field tours with Sedgwick.1 Whewell's entrance in 1811 at Trinity College, Cambridge, as a sizar, was followed by a long and successful career there, which culminated in his nomination to the influential post of Master of Trinity after Christopher Wordsworth's resignation in 1842. As a fellow of Trinity he had to take clerical orders, but he showed none of the reluctance to theological studies that Sedgwick felt, and his learning in this field led to the prestigious appointment of Professor of Moral Philosophy in 1838.
    [Show full text]
  • E D I T O R I a L
    E D I T O R I A L “RETRO-PROGRESSING” As one browses through the history section of a library, one of the volumes that is likely to catch one’s attention is The Discoverers by Daniel Boorstin.1 It is an impressive, 700-page volume. Published in 1983, it chronicles in a semi-popular style selected aspects of man’s discoveries. Two chapters entitled “The Prison of Christian Dogma” and “A Flat Earth Returns” deal with the outlandish con- cept of an earth that is flat instead of spherical. Boorstin has impressive academic credentials from Harvard and Yale, and has held prestigious positions such as the Librarian of Congress, Director of the National Museum of History and Tech- nology, and Senior Historian of the Smithsonian Institution. In The Discoverers he reflects the popular view that the ancient Greeks, including Aristotle and Plato, believed Earth to be a sphere; however, after the rise of Christianity a period of “scholarly amnesia” set in which lasted from around 300 to 1300 A.D. During this time, according to Boorstin, “Christian faith and dogma replaced the useful [spherical] image of the world that had been so slowly, so painfully, and so scrupulously drawn by ancient geographers.” The “spherical” view was replaced by the concept of a flat earth, which Boorstin characterizes as “pious caricatures.”2 Boorstin bolsters his case by mentioning a couple of minor writers — Lactantius and Cosmas — who believed in a flat earth and lived during this “dark age.” He also implicates the powerful authority of St. Augustine of Hippo (354-430), who “heartily agreed” that antipodes “could not exist.”3 Antipodes represented lands on the opposite side of a spherical earth where trees and men, if present, would be upside down, with their feet above their heads; hence, the “antipodes” (opposite-feet) designation.
    [Show full text]
  • “The Sixth Sense”: Towards a History of Muscular Sensation
    Gesnerus 68/1 (2011) 218–71 “The Sixth Sense”: Towards a History of Muscular Sensation Roger Smith* Summary This paper outlines the history of knowledge about the muscular sense and provides a bibliographic resource for further research. A range of different topics, questions and approaches have interrelated throughout this history, and the discussion clarifies this rather than presenting detailed research in any one area. Part I relates the origin of belief in a muscular sense to empiricist accounts of the contribution of the senses to knowledge from Locke, via the idéologues and other authors, to the second half of the nine- teenth century. Analysis paid much attention to touch, first in the context of the theory of vision and then in its own right, which led to naming a distinct muscular sense. From 1800 to the present, there was much debate, the main lines of which this paper introduces, about the nature and function of what turned out to be a complex sense. A number of influential psycho-physiolo- gists, notably Alexander Bain and Herbert Spencer, thought this sense the most primitive and primary of all, the origin of knowledge of world, causa- tion and self as an active subject. Part II relates accounts of the muscular sense to the development of nervous physiology and of psychology. In the decades before 1900, the developing separation of philosophy, psychology and physiology as specialised disciplines divided up questions which earlier writers had discussed under the umbrella heading of muscular * The stimulus for writing up this paper, which I had long put off because I hoped to do some- thing more rounded, came from the participants, and especially from the organisers, Vincent Barras and Guillemette Bolens, of a project ‘L’intelligence kinesthésique et le savoir sensori- moteur: entre arts et sciences’, at a conference of World Knowledge Dialogue, ‘Interdisci- plinarity in action: a p ractical experience of interdisciplinary research’, Villars-sur-Ollon, Switzerland, 10–14 October 2010.
    [Show full text]
  • Copyrighted Material
    9781405175432_1_pre.qxd 2/10/09 14:00 Page vii Contents List of Figures and Table xii Notes on Editors xiii Personal Acknowledgments xiv Text Acknowledgments xv Volume Introduction 1 Part I Introduction 5 Unit 1 The Ancient and Medieval Periods 13 1.1 Atoms and Empty Space 21 Diogenes Laertius 1.2 Letter to Herodotus 22 Epicurus 1.3 The Paradoxes of Motion 24 Zeno 1.4 Plato’s Cosmology 26 Plato 1.5 The StructureCOPYRIGHTED and Motion of the Heavenly SpheresMATERIAL 31 Aristotle 1.6 Change, Natures, and Causes 34 Aristotle 1.7 Scientific Inference and the Knowledge of Essential Natures 44 Aristotle 1.8 The Cosmos and the Shape and Size of the Earth 49 Aristotle 1.9 The Divisions of Nature and the Divisions of Knowledge 57 Aristotle 1.10 On Methods of Inference 62 Philodemus 9781405175432_1_pre.qxd 2/10/09 14:00 Page viii viii contents 1.11 The Explanatory Power of Atomism 64 Lucretius 1.12 The Earth: Its Size, Shape, and Immobility 70 Claudius Ptolemy 1.13 The Weaknesses of the Hypotheses 74 Proclus 1.14 Projectile Motion 76 John Philoponus 1.15 Free Fall 79 John Philoponus 1.16 Against the Reality of Epicycles and Eccentrics 82 Moses Maimonides 1.17 Impetus and Its Applications 86 Jean Buridan 1.18 The Possibility of a Rotating Earth 91 Nicole Oresme Unit 2 The Scientific Revolution 95 2.1 The Nature and Grounds of the Copernican System 108 Georg Joachim Rheticus 2.2 The Unsigned Letter 110 Andreas Osiander 2.3 The Motion of the Earth 112 Nicholas Copernicus 2.4 The New Star 120 Tycho Brahe 2.5 A Man Ahead of His Time 123 Johannes Kepler
    [Show full text]
  • Weaver, Hamilton, Hamiltonian Mechanics, and Causation
    Weaver, Hamilton, Hamiltonian Mechanics, and Causation Hamilton, Hamiltonian Mechanics, and Causation Christopher Gregory Weaver Assistant Professor of Philosophy, Department of Philosophya Affiliate Assistant Professor of Physics, Department of Physicsb Core Faculty in the Illinois Center for Advanced Studies of the Universeb University of Illinois at Urbana-Champaign aDepartment of Philosophy 200 Gregory Hall 810 South Wright ST MC-468 Urbana, IL 61801 bDepartment of Physics 1110 West Green ST Urbana, IL 61801 Abstract: I show how Hamilton’s philosophical commitments led him to a causal interpretation of classical mechanics. I argue that Hamilton’s metaphysics of causation was injected into his dynamics by way of a causal interpretation of force. I then detail how forces remain indispensable to both Hamilton’s formulation of classical mechanics and what we now call Hamiltonian mechanics (i.e., the modern formulation). On this point, my efforts primarily consist of showing that the orthodox interpretation of potential energy is the interpretation found in Hamilton’s work. Hamilton called the potential energy function the force-function because he believed that it represents forces at work in the world. Multifarious non-historical arguments for this orthodox interpretation of potential energy are provided, and matters are concluded by showing that in classical Hamiltonian mechanics, facts about the potential energies of systems are grounded in facts about forces. Thus, if one can tolerate the view that forces are causes of motions, then Hamilton provides one with a road map for transporting causation into one of the most mathematically sophisticated formulations of classical mechanics, viz., Hamiltonian mechanics. Acknowledgements: An earlier draft of this paper was presented at an online meeting of the California Institute of Technology’s philosophy of physics reading group on November 4th, 2020.
    [Show full text]
  • Relativism-Relativity
    Relativism-Relativity Relativism-Relativity: An Interdisciplinary Perspective on a Modern Concept By Maria-Ana Tupan and Marin Cilea Relativism-Relativity: An Interdisciplinary Perspective on a Modern Concept, by Maria-Ana Tupan and Marin Cilea This book first published 2013 Cambridge Scholars Publishing 12 Back Chapman Street, Newcastle upon Tyne, NE6 2XX, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2013 by Maria-Ana Tupan and Marin Cilea All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-4438-4744-5, ISBN (13): 978-1-4438-4744-5 CONTENTS List of Figures............................................................................................ vii Author’s Argument ...................................................................................... 1 Chapter I ...................................................................................................... 7 The Time and Space of Modernity I.1. Newton and absolute time and space ............................................... 7 I.2: Leibniz and relative time and space ................................................. 9 I.3. Relativity in the twentieth century ................................................. 12 Chapter II ..................................................................................................
    [Show full text]
  • “Nothing to Invite Or to Reward a Separate Examination”: Sidgwick and Whewell
    Etica & Politica / Ethics & Politics, X, 2008, 2, pp. 137-184 “Nothing to invite or to reward a separate examination”: Sidgwick and Whewell Sergio Cremaschi Dipartimento di Studi Umanistici Università del Piemonte orientale [email protected] ABSTRACT In this paper I discuss Sidgwick’s reaction to Whewell’s moral philosophy. I show how, to Sidgwick’s eyes, Whewell’s philosophy looked as an emblem of the set of be- liefs, primarily religious, into which he had been socialised, and that his reaction was over-determined by both his own ambivalent feelings to his own Anglican upbringing and his subtle rhetorical strategy practised by presenting new shocking ideas hidden between an amount of platitudes and playing the neutral observer or the ‘philosopher of morality’ instead than acting the part of the preacher of a new morality. Then I discuss Sidgwick’s assessment of Whewell’s doctrine as an idle systematisation of re- ceived opinion and the reasons why in the Methods he feels entitled to dismiss histori- cally given intuitionism as ‘dogmatic intuitionism’ without detailed criticism and dis- cusses instead a so-called ‘intuitional method’ as one of the procedures allegedly used by common sense. Besides, I show how individual instances of detailed criticism to Whewell’s doctrines are meant to be not ‘real’ criticism of a rival outlook but instead illustrations of the limits of ‘common-sense morality’. My final claims are: first, Sidg- wick ends with a short-circuit between a inner dialectic of his own argument and dis- cussion of rival doctrines; second, the weight of Whewell’s legacy in Sidgwick’s ethics has been heavily underemphasized.
    [Show full text]
  • The Darwinian Revolution: Rethinking Its Meaning and Significance
    The Darwinian revolution: Rethinking its meaning and significance Michael Ruse1 Department of Philosophy, Florida State University, Tallahassee, FL 32306 The Darwinian revolution is generally taken to be one of the key (a perhaps undeserved) reputation of a 3-h sermon by a Pres- events in the history of Western science. In recent years, however, byterian minister on a wet Sunday in Scotland. the very notion of a scientific revolution has come under attack, Against this, however, one can point out that the history of and in the specific case of Charles Darwin and his Origin of Species science as a professional discipline is little more than 50 years old there are serious questions about the nature of the change (if there and that you have to start somewhere. In the case of Darwin, was such) and the specifically Darwinian input. This article consid- even 30 years ago there was no real synthesis. The tragedy would ers these issues by addressing these questions: Was there a have been if historians of science had stopped there and gone no Darwinian revolution? That is, was there a revolution at all? Was further. But this is clearly not true. In the past 30 years or more, there a Darwinian revolution? That is, what was the specific staying just with the history of evolutionary thinking, there has contribution of Charles Darwin? Was there a Darwinian revolu- been a huge amount of work on people before and after Darwin, tion? That is, what was the conceptual nature of what occurred on and on his contemporaries like Thomas Henry Huxley [for and around the publication of the Origin? I argue that there was instance, Desmond (4)].
    [Show full text]
  • D'alembert and the Vis Controversy Viva
    CAROL YN IL TIS D'ALEMBERT AND THE VIS VIVA CONTROVERSY THE usual date cited for the conclusion of the controversy over the measure of force is i743, the year of publication of Jean d'Alembert's Traitg de Dynamique.1 The controversy, however, lingered on for many years after this date. A recent study by L. L. Laudan has documented its existence through the remainder of the eighteenth century.2 This and other articles have questioned the priority of d'Alembert's solution of the controversy.3 However, none of these analyses has pointed out that there are significant differences between d'Alembert's discussions of the con- troversy in the first edition of the Trait~ de Dynamique of 1743 and in the revised second edition of 1758. The crucial argument that vis viva is the measure of a force acting through a distance while momentum is the measure of a force acting through a time was not given until 1758. As Pierre Costabel has shown, this argument had already been presented by Roger Boscovich in 1745.4 The 1743 edition of the Traitg goes only as far as distinguishing dead from living forces and characterizing the controversy as a dispute over words. As Thomas Hankins has pointed out, 'sGravesande called it a verbal debate as early as 1729 .5 The intention of this paper is to discuss the differences between the two editions of d'Alembert's Traitg as regards the controversy over living force. The first edition of 1743 accepts two valid measures of force: (a) the measure mdv for the case of equilibrium (i.e., dead force), which d'Alem- bert equates misleadingly with quantity of motion, and (b) the measure my2 (living force) for the case of retarded motion where the 'number of obstacles overcome' is as the square of the velocity.
    [Show full text]
  • SOCIAL EPISTEMOLOGY in INFORMATION STUDIES: a Consolidation Daniel Martínez-Ávila (1), Tarcísio Zandonade (2)
    7 SOCIAL EPISTEMOLOGY IN INFORMATION STUDIES: a consolidation Daniel Martínez-Ávila (1), Tarcísio Zandonade (2) (1) Universidad Carlos III de Madrid, Spain, [email protected]. (2) Universidade de Brasília, Brazil, [email protected] Abstract The present paper aims to provide new details and information on the intellectual context in which social epistemology was born, including aspects such as its theoretical influences, intellectual contexts, and main characteristics. As methodology it presents an analysis of the writings on social epistemology by Jesse Shera and Margaret Egan selected from different and sometimes rare sources and collection. After an the analysis, the paper addresses the relationship between the historical social epistemology proposed by Margaret Egan and Jesse Shera as a discipline to investigate the foundations of librarianship and the contemporary social epistemology proposed by Steve Fuller as a program of a “naturalistic approach to the normative questions surrounding the organization of knowledge processes and products.” Both these proposals are outlined as an interdisciplinary project that is based on both philosophical epistemology and the scientific sociology of knowledge. Keywords: Social epistemology; Jesse Shera; Margaret Egan; Sociology of knowledge 1 Introduction In the second half of the 20th century, when the name Information Science started to be used, Margaret Elizabeth Egan and Jesse Hauk Shera developed their project of “social epistemology” at the University of Chicago Graduate Library School (GLS). This new discipline would deal with the foundations of Librarianship first, and, in a second stage, with the intellectual foundations of Information Science. Although several approaches have been competing in the Library and Information Science (LIS) field, in our view, none of them has provided a better theoretical foundation for LIS than social epistemology.
    [Show full text]
  • Physical Order Vs. Divine Designer: Celestial Mechanics and Natural Theology Struggling for the System of the World
    Physical Order vs. Divine Designer: Celestial Mechanics and Natural Theology Struggling for the System of the World Massimiliano Badino CEHIC – Universitat Autònoma de Barcelona Outline of the Argument The concept of cultural hegemony is notoriously difficult. As it is presented in Gramsci’s original writings, hegemony is a cluster of several ideas, insights, and suggestions (see Adamson, 1980; Bates, 1975; Howson & Smith, 2008; G. A. Williams, 1960). This is hardly surprising. One had to remind that the notion was developed to explain very specific historical processes in post-WWI Europe. Recently, however, the concept of hegemony has enjoyed an increasing popularity as an analytical tool to describe cultural phenomena in contemporary society beyond the historical and theoretical strictures of the Marxist framework (Holub, 1992). My goal in this paper is to explore the possibility of using the concept of hegemony to illuminate the clash between scientific and philosophical theories. Hegemony has to do with a central problem: how ideas influence human social and political life at large. It has thus to do with the effect of systems of thought on our life, but also with the process through which these systems come about (Jackson Lears, 1985). In Gramsci’s work, this phenomenon is interlinked with three main factors. The first factor is the role of intellectuals in the genesis, elaboration, and dissemination of a hegemonic system of thought in society (Q12; Gramsci, 1929-1935, pp. III, 1513-1551). The second factor is the function of education as the site where the struggle between competing hegemonic systems takes place (Entwistle, 1978).
    [Show full text]