Decapoda , Xanthidae

Total Page:16

File Type:pdf, Size:1020Kb

Decapoda , Xanthidae CRUSTACEAN RESEARCH,NO. 38: 64-69,2009 Redescription of the first zoea of Zosimus αeneus (Linnaeus,1758) (Decapoda,Xanthidae) Hironori Tanaka,Toshiro Saruwatari and Takashi Minami Abstrαct.-The first zoea of the provide more detailed illustrations to poisonous xanthid crab Zosimus distinguish the first zoea of Z. aeneus from αeneus (Linnaeus,1758) is described related genera and make comparisons within and illustrated based on laboratory- this subfamily Zosiminae. reared specimens. Comparisons with previous descriptions of the first zoea from Japan,revealed a number of Material and Methods deficiencies in the earlier study. The An ovigerous female Z. aeneus was first zoea of Z. αeneus is redescribed collected from the Lovina beach,Bari , and illustrated here in detail.The up- Singaraja,Republic of Indonesia on 4March dated morphological characters of the 2004. Newly hatched zoeae were preserved first zoea are used to make adetailed in 5%buffered formalin and later transferred comparison between other known to 80% alcohol for preservation. Dissection species of the subfamily Zosiminae,and was conducted using fine insect pins under to identify generic diagnostic larval aNikon SMZ-1000 stereomicroscope. characters of the subfamily. Observations,measurements and drawings were made under aNikon E c1 ipse E400 microscope equipped with adrawing Introduction tube. Setal counts on appendages and The genus Zosimus currently contains measurements were based on amean of seven species in the subfamily Zosiminae 10 specimens. Measurements taken for (Ng et al. ,2008). The only known larval dimensions of zoea are as follows. CL: development of 加 y Zosimus species is 出atby carapace length from the base of the Tanaka (1999) on Z. aeneus,who described rostral spine to the posterior margin of the the first to fourth zoeal stages. However, carapace. RDD: distance between the tips when the first zoeal description of Z. aeneus of dorsal and rostral spines. The values by Tanaka (1999) is compared with other are shown as mean :t SD,and their range known zoea descriptions in the subfamily in parentheses in the text. In this paper, Zosiminae,the coxa of the maxillule scored recommendations by Clark et al. (1 998) 6setae by Tanaka (1999) while all zosimine for standardization in larval descriptions zoeas examined by Clark et al. (2004) were used. The specimens used in this scored 7setae for this character (Clark & study,including the ovigerous female,are Paula,2003; Clark et al. ,2004) .The new deposited and registered in the Ibaraki sample,along with the analysis and the re- Nature Museum (INM・1-041799-041800). examination revealed that there are several improvements that could be made. Thepurpose of this study is to redescribe the first zoea of Z. aeneus,correct shortcomings in the previous description , REDESCRIITION OFTHE FIRST ZOEA OFZOSIMUS AENEUS 65 setae; basis with 4setae arranged 1+1+1+1; Results endopod 3・segmented,with setation of 1 , ,1 6 (3 subterminal and 3terminal); exopod Zosimus αeneus (Linnaeus,1758) incompletely 2・segmented,with 4plumose (Fig.1) natatory setae. First zoea Abdomen (Fig. 1K): 5somites plus Size: CL =0.57 :1: 0.02 mm(0.5 5-0.60 mm), bifurcated telson; somite 2with apair of RDD =1. 37:1: 0.03 mm(1. 35-1. 40 mm),10 dorsolateral processesdirected laterally ; speclmens. somite 3wi 出 a pair of dorsolateral processes Carapace (Fig. 1A-C): dorsal spine directed posteriorly; somites 3-5 with curved distally,slightly longer than rostral posterolateral spinous processes; somites 2-5 spine; rostral spine straight,nearly as long with apair of posterodorsal setae; pleopod as protopod of antenna,distally spinulate; budsabsen t. lateral spines much shorter than other Telson (Fig. 1K,L): each fork long, spines; apair of posterodorsal setae; ventral gradually curved dorsally,not spinulated; 2 margin without setae; eyes sessile. pairs of lateral spines,anterior long,posterior Antennule (Fig. 1D): uniramous, short; apair of dorsal spi nes posterior to endopod absent; exopod unsegmented with level of lateral small pair; posterior margin 2long ,2 shorter terminal aesthetascs,1 with 3pairs of stout spinulate setae. short terminal seta. Antenna (Fig. 1E): protopodal process distally multispinulate ,approximately equal Discussion in length to rostral spine; endopod reduced τb e previous description of the first zoea to small spine (1E,smaller arrow); exopod of Z. aeneus by Tanaka (1999) overlooked ca. 21% length of protopod,with 3unequal severalcharacters. Comparisons with setae (1 long subterminal,2 unequal the zoea of the present study revealed terminal) Oarger arrow). differences in several characters (Table Mandibles (Fig. 1F): asymmetrical, 1).τbese include: the presence of apair of incisor process with distinct largeteeth ,and dorsal setae of carapace ,出 e spinules on the small teeth on molar process; palp absen t. rostral spine,the terminal setation of the Maxillule (Fig. 1G): coxal endite with 7 anntenule,the endopod spine of antenna, setae; basial endite with 2setal processes, coxal and basial setation of the maxillule , 2cuspidate spines and 3setae; endopod coxal seta of the first maxilliped and the 2・segmented,proximal segment with 1seta; lateral spine of the telson. distal segment with 6(2 subterminal +4 In the xanthid subfamily Zosiminae,nine terminal) setae. genera are currently assigned: Atergαtis , Maxilla (Fig. 1H): coxal endite bilobed Atergatopsis ,Lophozozymus ,Paraterg α,tis , with 4+4 setae; basial endite bilob ed Platypodia ,Pulcratis ,Platypodiell α,Zosimus with 5+4 setae; endopod bilobed ,with and Zozymodes (see Guinot,1967; Serene, 3+5 (2 subterminal +3 terminal) setae; 1984; Ng & Huang,1997; Ng et al. ,2008). scaphognathite margin with 4plumose setae Although this subfamily contains alarge and 110ng stout distal process. number of species,the larval development First maxilliped (Fig. 11): coxa with 1 has been documented only in nine plumose seta; basis with 10 plumose setae species:Atergatis βoridus ,A. reticulatus , arranged 2+2+3+3; endopod 5-segmented, A. subdentatus,Atergatopsis germaini, with setation of 3,2,1,2,5(1 subterminal Loρhozozymus ρictor ,Platypodia eydouxi , and 4terminal); exopod incompletely Platypodiella spectabilis ,Zosimus aeneus and 2・segmented,with 4plumose natatory setae. Zozymodes xanthoides (see Terada,1980; Second maxilliped (Fig. 1]): coxa without Clark & Ng,1998; Tanaka,1999; Fransozo et 66 H. TANAKAET AL. L Fig. 1. Zosimus aeneus (Li nnaeus,1758): first zoea; A ,lateral view of carapace; B ,anterior view of carapace; C ,rostral spine; D ,antennule; E ,antenna; F,mandibles; G ,maxillule; H ,maxilla; 1,first maxilliped; J,second maxilliped; K, dorsal view of abdomen; L,dorsal view of telson. Scale: 0.1mm. REDESCRIPTION OFTHE FIRST ZOEA OFZOSIMUS AENEUS 67 Table 1. Acomparison between the first zoea of Zosimus aeneus described by Tanaka (1999) and 出 is present study. Characters Tanaka (1999) present study Carapace: pair of dorsal setae ND present spinules on rostral spine ND present Antennule: aesthetascs and seta 3a 4a+1 Antenna: endopod spine ND present Maxillule coxal endite 6 7 basial endite 5 5and 2setal processes First maxilliped: coxa ND 1 Telson: lateral corner 2sp +1 2sp (11arge +1 smaller sp) a: aesthetasc ,sp: spine ,ND :no data . α1. ,2001; Tanaka & Konishi,2001; Clark & & Paula,2003; Clark et al. ,2004). Paula,2003; Clark et al. ,2004). However,it became clear that the coxal However,current taxonomy of Zosiminae maxil1 ule has 7,not 6setae ,and the first based on adult and first stage zoeal zoea of Z. aeneus shows numerous features morphological characters is problematic in common with Zosiminae first zoeas (see Clark et al. ,2004) ,with Nget al. (2008: described to date. 193. 194) commenting that the subfamily The earlier larval descriptions and is probably not anatural grouping. With illustrations of A. reticulatus by Terada respect to the larval characters,the actaeine, (1 980) are inadequate for modern Actaeodes tomentosus seems to be better morphological comparative work. The placed within the Zosiminae rather than present redescription of the first zoeal stage Actaeinae,at least on the basis of the of Z. aeneus introduces awhole new set presence of three setae on the antennal of morphological characters for detailed exopod and similar lateral spines on the comparisons with other members of the telson fork. Thefirst zoeal description of Z. subfamily Zosiminae (Table 2). Wemade aeneus by Tanaka (1999) is compared with the same comparisons of larval characters other known members of the subfamily as made in Clark et al. (2004) and it was Zosiminae,and coxa of the maxillule scored found that the antennal protopod/ exopod 6setae by Tanaka (1999) while all zosimine percentage is 21%,which is remarkably high, zoeas examined by Clark et al. (2004) scored and at present Zosimus is different from 7setae for this character. The zoeas of L. other genera in the subfamily Zosiminae. pictor are also rather aberrant from what is There is apossibility that accumulated data known for other zosimines since the rostral on the antennal protopod/ exopod ratio in spine is without distal spinulation,the lateral other genera willlead to the better evolution carapace spines are lightly spinulate,the of the taxonomy of Atergatoposis and antennal protopod is smooth and not armed Actaeodes of the Zosiminae. with spinules,and the telson fork has two Further studies of larval development fine lateral spines (Clark & Ng,1998; Clark are clearly necessary,and there is a g Table2 .A comparison of larval
Recommended publications
  • The Mediterranean Decapod and Stomatopod Crustacea in A
    ANNALES DU MUSEUM D'HISTOIRE NATURELLE DE NICE Tome V, 1977, pp. 37-88. THE MEDITERRANEAN DECAPOD AND STOMATOPOD CRUSTACEA IN A. RISSO'S PUBLISHED WORKS AND MANUSCRIPTS by L. B. HOLTHUIS Rijksmuseum van Natuurlijke Historie, Leiden, Netherlands CONTENTS Risso's 1841 and 1844 guides, which contain a simple unannotated list of Crustacea found near Nice. 1. Introduction 37 Most of Risso's descriptions are quite satisfactory 2. The importance and quality of Risso's carcino- and several species were figured by him. This caused logical work 38 that most of his names were immediately accepted by 3. List of Decapod and Stomatopod species in Risso's his contemporaries and a great number of them is dealt publications and manuscripts 40 with in handbooks like H. Milne Edwards (1834-1840) Penaeidea 40 "Histoire naturelle des Crustaces", and Heller's (1863) Stenopodidea 46 "Die Crustaceen des siidlichen Europa". This made that Caridea 46 Risso's names at present are widely accepted, and that Macrura Reptantia 55 his works are fundamental for a study of Mediterranean Anomura 58 Brachyura 62 Decapods. Stomatopoda 76 Although most of Risso's descriptions are readily 4. New genera proposed by Risso (published and recognizable, there is a number that have caused later unpublished) 76 authors much difficulty. In these cases the descriptions 5. List of Risso's manuscripts dealing with Decapod were not sufficiently complete or partly erroneous, and Stomatopod Crustacea 77 the names given by Risso were either interpreted in 6. Literature 7S different ways and so caused confusion, or were entirely ignored. It is a very fortunate circumstance that many of 1.
    [Show full text]
  • A New Classification of the Xanthoidea Sensu Lato
    Contributions to Zoology, 75 (1/2) 23-73 (2006) A new classifi cation of the Xanthoidea sensu lato (Crustacea: Decapoda: Brachyura) based on phylogenetic analysis and traditional systematics and evaluation of all fossil Xanthoidea sensu lato Hiroaki Karasawa1, Carrie E. Schweitzer2 1Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Gifu 509-6132, Japan, e-mail: GHA06103@nifty. com; 2Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, USA, e-mail: [email protected] Key words: Crustacea, Decapoda, Brachyura, Xanthoidea, Portunidae, systematics, phylogeny Abstract Family Pilumnidae ............................................................. 47 Family Pseudorhombilidae ............................................... 49 A phylogenetic analysis was conducted including representatives Family Trapeziidae ............................................................. 49 from all recognized extant and extinct families of the Xanthoidea Family Xanthidae ............................................................... 50 sensu lato, resulting in one new family, Hypothalassiidae. Four Superfamily Xanthoidea incertae sedis ............................... 50 xanthoid families are elevated to superfamily status, resulting in Superfamily Eriphioidea ......................................................... 51 Carpilioidea, Pilumnoidoidea, Eriphioidea, Progeryonoidea, and Family Platyxanthidae ....................................................... 52 Goneplacoidea, and numerous subfamilies are elevated
    [Show full text]
  • Crustacea, Copepoda, Harpacticoida): Proposed Emendation of Spelling to ZOSIMEIDAE to Remove Homonymy with ZOSIMINAE Alcock, 1898 (Crustacea, Decapoda, XANTHIDAE)
    24 Bulletin of Zoological Nomenclature 66(1) March 2009 Case 3467 ZOSIMIDAE Seifried, 2003 (Crustacea, Copepoda, Harpacticoida): proposed emendation of spelling to ZOSIMEIDAE to remove homonymy with ZOSIMINAE Alcock, 1898 (Crustacea, Decapoda, XANTHIDAE) Rony Huys and Paul F. Clark Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, U.K. (e-mail: [email protected] and [email protected]) Abstract. The purpose of this application, under Articles 29 and 55.3.1 of the Code, is to remove homonymy between the family-group names ZOSIMINAE Alcock, 1898 (Crustacea, Decapoda) and ZOSIMIDAE Seifried, 2003 (Crustacea, Copepoda) by changing the spelling of the junior homonym. It is proposed that the entire name Zosime Boeck, 1873 (Copepoda) be used to form ZOSIMEIDAE, leaving the stem of the senior homonym (based on the name Zosimus A.-G. Desmarest, 1823; Decapoda) unchanged. Zosimus A.-G. Desmarest, 1823 and Zosime Boeck, 1873 are respectively the type genera of ZOSIMINAE Alcock, 1898 (Decapoda) and ZOSIMIDAE Seifried, 2003 (Copepoda). Keywords. Nomenclature; taxonomy; Crustacea; Decapoda; Copepoda; Harpacti- coida; XANTHIDAE; ZOSIMEIDAE; ZOSIMIDAE; ZOSIMINAE; Zosime; Zosimus; Zosime typica; cosmopolitan. 1. Leach (1818) introduced the French vernacular names ‘Carpile’, ‘Clodorée’ (sic) and ‘Zosime’ for three genera of decapod crustaceans but did not include a descrip- tion, definition or indication of the taxa they denoted (Leach, 1818, pp. 74–75). Under Article 12 Leach’s names are nomina nuda and must be considered unavailable. 2. A.-G. Desmarest (1823, p. 228) latinised Leach’s (1818) vernacular names in a footnote to his text dealing with the genus Cancer, naming them Carpilius, Clorodius and Zosimus, respectively.
    [Show full text]
  • Aterglαtis Floridus (Linnaeus) - Advantages of Possessing To玄ins?
    CRUSTACEAN RESEARCH,NO. 24: 137-145,1995 Limb loss in the poisonous crab Aterglαtis floridus (Linnaeus) - advantages of possessing to玄ins? Christopher P. Norman Abstract. - To determine the effec. 1969; Konosu et α1 . ,1969; Yasumura et tiveness of possessing to玄ins as adefense α1 . ,1986). In Japan,three species,all mechanism in crabs,the level of limb loss xanthids [Atergαtis βoridus (Linnaeus, was examined in a poisonous crab 1767),Zosimus aeneus (Linnaeus,1758) Atergatis floridus. Crabs were col1 ected and P1αtypodiαgrαnu10sα( R u p p e l l , individua11yusing SCUBAbetween June 1830)] are reported as highly toxic 1990 and December 1992. The sex ratio (Hashimoto et α1 . ,1967; Konosu et α1 . , approximated 1: 1. Significant levels of 1969). Thedistribution of Z. aeneus and limb loss were observed in both males P.grα,nu10sαi s largely restricted to coral and females,but limb loss 仕equency d品 habitats,however A. βoridus,a rock reef fered between se玄es. Higher 仕equencies dwelling species,is broadly distributed in of limb loss were found in males (4 1. 3% Japan along the southern (temperate) with limb loss) than females (18.4%). Site coastline of Honshu and Shikoku and of loss also differed between sexes,with Kyushu (Sakai,1976). Atergatis floridus males having ahigher loss of the walking also has abroad geographical range legs 1,3and 4than the chelipeds and leg throughout the Indo-Pacific 企omJapan 2(P<O.OI). Females have amore random and the Red Sea to northern Australia pattern of limb loss. In conclusion,A and 仕omTahiti 田 ld Hawaii to the South flo 吋dus was found to have asimilar de.
    [Show full text]
  • 2. Family Xanthidae**
    J. Mar. biol Ass. India, 1962, 4 (1): 121-15Q ON DECAPODA BRACHYURA FROM THE ANDAMAN AND NICOBAR ISLANDS : 2. FAMILY XANTHIDAE** By C. SANKARANKUTTY Central Marine Fisheries Research Institute THE present paper is the second in the series on Decapoda Brachyura frqm the Andaman and Nicobar Islands and reports 43 species and 2 varieties belonging to 22 genera of which genus Jonesius is new to science apart from 7 new records for the region. Heller (1868) reported 12 species of xanthid crabs from Nicobars. Later Alcock (1898) recorded 85 species and 3 varieties belonging to 33 genera including 8 species already reported by Heller. Since the first male pleopod is known to distinguish the closely related species, the same is illustrated wherever male specimens were available in the collection. Description of the first male pleopod is given for those which were not earlier des­ cribed by Chopra (1935), Chopra and Das (1937), and Chhapghar (1957). Detailed descriptions of Zozymodes pumilus (Jacquinot) and Pilumnus heterdon Sakai axe also given, both of them being additions to the faunistic fist of India. List of species reported in this paper, (an asterisk in front of the nsune in­ dicates new record). 1. Carpilodes tristis (Dana). 2. C. rugatus (Dana). 3. Atergatis dilatatus De Haan. 4. i4.^onfi?MJ (Rumph). 5. *Atergatopsis signata (Adams and White). 6. *Platypodia granulosa (Ruppell). 7. Zozymus aeneus (Linnaeus). 8. *Zozymodes pumilus Q&cqmioi). 9. Leptodius sanguineus (Milne-Edwards). 10. L. nudipes (Dana). 11. L. cavipes (Dana). 12. L. exaratus (MiliSe-Edwards). 13. Etisus dentatus (Herbst), 14. E. laevimanus Randall.
    [Show full text]
  • Toxicity Assessment of the Xanthid Crab Demania Cultripes from Cebu Island, Philippines
    Hindawi Publishing Corporation Journal of Toxicology Volume 2010, Article ID 172367, 7 pages doi:10.1155/2010/172367 Research Article Toxicity Assessment of the Xanthid Crab Demania cultripes from Cebu Island, Philippines Manabu Asakawa,1 Gloria Gomez-Delan,2 Shintaro Tsuruda,1 Michitaka Shimomura,3 Yasuo Shida, 4 Shigeto Taniyama,5 Mercy Barte-Quilantang,6 and Jo Shindo7 1 Department of Bioresource Science and Technology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2 Cebu Technological University-Carmen Campus, 6005 Cebu, Philippines 3 Kitakyushu Museum of Natural History & Human History, Kitakyushu 805-0071, Japan 4 Tokyo College of Pharmacy, Hachioji, Tokyo 192-0392, Japan 5 Graduate School of Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan 6 College of Fisheries and Ocean Sciences, University of the Philippines in the Visayas, Iloilo 5023, Philippines 7 Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan Correspondence should be addressed to Manabu Asakawa, [email protected] Received 15 March 2010; Revised 6 July 2010; Accepted 28 October 2010 Academic Editor: Virginia Moser Copyright © 2010 Manabu Asakawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Several cases of poisoning resulting in human fatalities and stemming from the ingestion of coral reef crabs have been reported from the Indo-Pacific region. We assessed the toxicity of the unidentified xanthid crab collected from the Camotes Sea off the eastern coast of Cebu Island, central Visayas region of Philippines from the food hygienic point of view.
    [Show full text]
  • Co-Occurrence of Tetrodotoxin and Saxitoxins and Their Intra-Body Distribution in the Pufferfish Canthigaster Valentini
    toxins Article Co-Occurrence of Tetrodotoxin and Saxitoxins and Their Intra-Body Distribution in the Pufferfish Canthigaster valentini Hongchen Zhu 1, Takayuki Sonoyama 2, Misako Yamada 1, Wei Gao 1, Ryohei Tatsuno 3, Tomohiro Takatani 1 and Osamu Arakawa 1,* 1 Graduate School of Fisheries and Environmental Sciences, Nagasaki University. 1-14, Bunkyo-machi, Nagasaki, Nagasaki 852-8521, Japan; [email protected] (H.Z.); [email protected] (M.Y.); [email protected] (W.G.); [email protected] (T.T.) 2 Shimonoseki Marine Science Museum. 6-1, Arcaport, Shimonoseki, Yamaguchi 750-0036, Japan; [email protected] 3 Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agency. 2-7-1, Nagatahonmachi, Shimonoseki, Yamaguchi 759-6595, Japan; tatsuno@fish-u.ac.jp * Correspondence: [email protected]; Tel.: +81-95-819-2844 Received: 9 June 2020; Accepted: 2 July 2020; Published: 3 July 2020 Abstract: Pufferfish of the family Tetraodontidae possess tetrodotoxin (TTX) and/or saxitoxins (STXs), but the toxin ratio differs, depending on the genus or species. In the present study, to clarify the distribution profile of TTX and STXs in Tetraodontidae, we investigated the composition and intra-body distribution of the toxins in Canthigaster valentini. C. valentini specimens (four male and six female) were collected from Amami-Oshima Island, Kagoshima Prefecture, Japan, and the toxins were extracted from the muscle, liver, intestine, gallbladder, gonads, and skin. Analysis of the extracts for TTX by liquid chromatography tandem mass spectrometry and of STXs by high-performance liquid chromatography with post-column fluorescence derivatization revealed TTX, as well as a large amount of STXs, with neoSTX as the main component and dicarbamoylSTX and STX itself as minor components, in the skin and ovary.
    [Show full text]
  • Crabs, Holothurians, Sharks, Batoid Fishes, Chimaeras, Bony Fishes, Estuarine Crocodiles, Sea Turtles, Sea Snakes, and Marine Mammals
    FAOSPECIESIDENTIFICATIONGUIDEFOR FISHERYPURPOSES ISSN1020-6868 THELIVINGMARINERESOURCES OF THE WESTERNCENTRAL PACIFIC Volume2.Cephalopods,crustaceans,holothuriansandsharks FAO SPECIES IDENTIFICATION GUIDE FOR FISHERY PURPOSES THE LIVING MARINE RESOURCES OF THE WESTERN CENTRAL PACIFIC VOLUME 2 Cephalopods, crustaceans, holothurians and sharks edited by Kent E. Carpenter Department of Biological Sciences Old Dominion University Norfolk, Virginia, USA and Volker H. Niem Marine Resources Service Species Identification and Data Programme FAO Fisheries Department with the support of the South Pacific Forum Fisheries Agency (FFA) and the Norwegian Agency for International Development (NORAD) FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1998 ii The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. M-40 ISBN 92-5-104051-6 All rights reserved. No part of this publication may be reproduced by any means without the prior written permission of the copyright owner. Applications for such permissions, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, via delle Terme di Caracalla, 00100 Rome, Italy. © FAO 1998 iii Carpenter, K.E.; Niem, V.H. (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 2. Cephalopods, crustaceans, holothuri- ans and sharks. Rome, FAO. 1998. 687-1396 p.
    [Show full text]
  • Biology and Toxicity of the Pufferfish Lagocephalus Sceleratus (GMELIN, 1789) from the Gulf of Suez
    Biology and toxicity of the pufferfish Lagocephalus sceleratus (GMELIN, 1789) from the Gulf of Suez Item Type Journal Contribution Authors El-Ganainy, A. A.; Sabrah, M. M.; Zaky, M. A. Citation Egyptian journal of aquatic research, 32(1). p. 283-297 Download date 23/09/2021 15:56:18 Link to Item http://hdl.handle.net/1834/1452 EGYPTIAN JOURNAL OF AQUATIC RESEARCH 1687-4285 VOL. 32 NO. 1, 2006: 283-.297 BIOLOGY AND TOXICITY OF THE PUFFERFISH LAGOCEPHALUS SCELERATUS (GMELIN, 1789) FROM THE GULF OF SUEZ SABRAH, M. M., EL-GANAINY, A.A., ZAKY, M.A. National Institute of Oceanography and Fisheries, B.O. Box 182, Suez, Egypt. E-mail : [email protected] Corresponding author: B.O. Box 182, Suez, Egypt. Keywords: Pufferfish, Age and growth, Reproduction, Toxicity, Gulf of Suez. ABSTRACT Some biological aspects of the pufferfish Lagocephalus sceleratus were studied and correlated with the toxicity of the fish. A sample of 176 fish with total lengths ranging from 18.5 to 78.5 cm were collected from commercial catches at the Attaka fishing harbor between October 2002 and June 2003. Length weight regression parameters for males, females and all individuals were estimated. Modal progression analysis output indicates ten distinct age groups. The parameters of the von Bertalanffy's growth model were L∞ = 81.1 cm and K = 0.26 per year. The overall sex ratio of males to females was 1: 1.3. The spawning takes place during summer and the size at which 50% of fishes are mature is 42.1 cm for males and 43.3 cm for females.
    [Show full text]
  • The Reclassification of Brachyuran Crabs (Crustacea: Decapoda: Brachyura)
    NAT. CROAT. VOL. 14 Suppl. 1 1¿159 ZAGREB June 2005 THE RECLASSIFICATION OF BRACHYURAN CRABS (CRUSTACEA: DECAPODA: BRACHYURA) ZDRAVKO [TEV^I] Laco Sercio 19, HR-52210 Rovinj, Croatia [tev~i}, Z.: The reclassification of brachyuran crabs (Crustacea: Decapoda: Brachyura). Nat. Croat., Vol. 14, Suppl. 1, 1–159, 2005, Zagreb. A reclassification of brachyuran crabs (Crustacea: Decapoda: Brachyura) including a re-ap- praisal of their whole systematics, re-assessment of the systematic status and position of all extant and extinct suprageneric taxa and their redescription, as well as a description of new taxa, has been undertaken. A great number of new higher taxa have been established and the majority of higher taxa have had their systematic status and position changed. Key words: brachyuran crabs, Crustacea, Decapoda, Brachyura, systematics, revision, reclassifi- cation. [tev~i}, Z.: Reklasifikacija kratkorepih rakova (Crustacea: Decapoda: Brachyura). Nat. Croat., Vol. 14, Suppl. 1, 1–159, 2005, Zagreb. Reklasifikacija kratkorepih rakova (Crustacea: Decapoda: Brachyura) odnosi se na preispitivanje cjelokupnog njihovog sustava, uklju~uju}i preispitivanje sistematskog statusa i polo`aja sviju recentnih i izumrlih svojti iznad razine roda kao i njihove ponovne opise. Uspostavljeno je mnogo novih vi{ih svojti, a ve}ini je izmijenjen sistematski status i polo`aj. Klju~ne rije~i: kratkorepi raci, Crustacea, Decapoda, Brachyura, sistematika, revizija, reklasi- fikacija INTRODUCTION Brachyuran crabs (Crustacea: Decapoda: Brachyura) are one of the most diverse animal groups at the infra-order level. They exhibit an outstanding diversity in the numbers of extant and extinct taxa at all categorical levels. Recently, especially dur- ing the past several decades, judging from the number of publications and new taxa described, the knowledge of their systematics has increased rapidly.
    [Show full text]
  • 6. Palytoxin in Two Species of Philippine Crabs
    6. PALYTOXIN IN TWO SPECIES OF PHILIPPINE CRABS Takeshi YASUMOTO and Daisuke YASUMURA Faculty of Agriculture, Tohoku University, Tsutsumi-dori, Amemiyamachi, Sendai, Miyagi 980, Japan Yasushi OHIZUMI and Masami TAKAHASHI Mitsubishi-Kasei Institute for Life Science, 11 Minamiooya, Machida-shi, Tokyo 194, Japan Angel C. ALCALA and Lawton C. ALCALA Department of Zoology, Silliman University, Dumaguete City 6501, The Philippines ABSTRACT Two species of xanthid crab Lophozozymus pictor and Demania a1ca1ai collected on southern Negros, Philippines, were found to be highly lethal by mouse assays. The toxin in both species was indistinguishable from pa1ytoxin, a highly lethal toxin of zoanthids Pa1ythoa spp., in chroma­ tographic properties, lethal potencies and in ultraviolet absorption spectra. INTRODUCTION In tropical Pacific areas widespread rumors exist regarding the occurrence of toxic crabs (KONOSU and HASHIMOTO, 1978). The species most frequently implicated in human intoxication is Zosimus aeneus in which occurrence of saxitoxin analogues (HASHIMOTO, 1979; YASUMOTO et a1., 1981; KOYAMA et a1., 1981; RAJ et a1., 1983) and, more recently, tetrodotoxin (YASUMURA et a1., in press) have been confirmed. However, toxic principles in other crabs implicated in poisoning incidences have remained unidentified. TEH and GARDINER (1974) first reported the presence of a potent toxin in Lophozo­ zymus pictor and suggested the toxin to be different from both saxitoxin and tetrodotoxin on the basis of dose-death time relation ships and gel permeation chromatographic properties. Incidence of human fatalities due to ingestion of this species was reported on Negros Island, Philippines (GONZALES and ALCALA, 1977; ALCALA, 1983). In the same area, a human fatality resulting from ingestion of another species Demania toxica also took place (ALCALA and -45- HALSTEAD, 1970) and a related species Demania a1ca1ai was shown to be highly lethal (CARUMBANA et a1., 1976).
    [Show full text]
  • Paralytic Toxin Profiles of Xanthid Crab Atergatis Floridus Collected on Reefs
    Science Journal of Clinical Medicine 2014; 3(5): 75-81 Published online September 20, 2014 (http://www.sciencepublishinggroup.com/j/sjcm) doi: 10.11648/j.sjcm.20140305.11 ISSN: 2327-2724 (Print); ISSN: 2327-2732 (Online) Paralytic toxin profiles of xanthid crab Atergatis floridus collected on reefs of Ishigaki Island, Okinawa Prefecture, Japan and Camotes Island, Cebu Province, Philippines Manabu Asakawa 1, *, Shintaro Tsuruda 1, Yasuyuki Ishimoto 1, Michitaka Shimomura 2, Kazuo Kishimoto 3, Yasuo Shida 4, Mercy Barte-Quilantang 5, Gloria Gomez-Delan 6 1Department of Biofunctional Science and Technology, Food Science and Biofunctions Division, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2Kitakyushu Museum of Natural History & Human History, Kitakyushu, Fukuoka 805-0071, Japan 3Okinawa Prefectural Fisheries Research and Extention Center, Ishigaki Branch, Ishigaki, Okinawa 907-0453, Japan 4Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan 5Institute of Fish Processing Technology, College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, 5023 Iloilo, Philippines 6 College of Fisheries Technology, Cebu Technological University - Carmen, Cebu Campus, 6005, Cebu, Philippines Email address: [email protected] (M. Asakawa) To cite this article: Manabu Asakawa, Shintaro Tsuruda, Yasuyuki Ishimoto, Michitaka Shimomura, Kazuo Kishimoto, Yasuo Shida, Mercy Barte-Quilantang, Gloria Gomez-Delan. Paralytic
    [Show full text]