Elastic Scattering of Electrons and Positrons

Total Page:16

File Type:pdf, Size:1020Kb

Elastic Scattering of Electrons and Positrons VI. simpozij HDZZ, Stubičke Toplice HR0500032 ELASTIC SCATTERING OF ELECTRONS AND POSITRONS Ines Krajcar Bronić Ruder Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia e-mail: [email protected] INTRODUCTION Electrons and positrons interact with matter through several competing mechanisms, elastic and inelastic scattering being the most abundant. Elastic scattering is considered as the non-radiative interaction between the projectile electron or positron and a target atom/molecule in which the internal energy of the target is not changed. In measurements of electron scattering by molecules, pure elastic scattering cannot be resolved from low-energy vibrational or rotational excitations; and the term quasi-elastic scattering is used. Elastic scattering has a prominent influence on the transport of fast electrons and positrons in matter. In elastic collisions, these particles may undergo large deflections and, as a result, the space distribution of dose from electrons and positrons depends strongly on the elastic scattering properties of the medium. The demand for accurate cross sections of electron and positron interactions with different atoms and molecular systems has been growing rapidly in the applied science community. In particular detailed information on elastic scattering of these particles by molecules is required for Monte Carlo simulations in microdosimetry, radiation dosimetry, nuclear medicine, radiation therapy, radiation protection, atmospheric and plasma physics, various electron-spectrotroscopic techniques, etc. A similar need arises in modeling the energy deposition associated with the interaction of any form of ionising radiation with matter. REPORT COMMITTEE International Commission for Radiation Units and Measurements (ICRU), having headquarters in Bethesda, MD, USA, formed in 2000 a Report Committee that should prepare a new ICRU Report on "Elastic Scattering of Electrons and Positrons" (ESEP). The report should constitute a synthesis of the leading scientific thinking on matters of radiation quantities, units and measurements techniques and provide recommendations that represent an international consensus on these matters [1]. The ICRU sponsors for this activity are Dr. Mitio Inokuti (Argonne National Laboratory, USA, and ICRU) and Mr. Steven M. Seltzer (National Institute of Standards and Technology, USA). Dr. Francesc Salvat (Faculty of Physics, University of Barcelona, Spain) has been appointed as the Chairman of the ESEP Report Committee. The members are Dr. Martin J. Berger (Bethesda, MD, USA, U12004), Prof. Dr. Aleksander Jablonski (Institute of Physical Chemistry, 78 VI. simpozij HDZZ, Stubičke Toplice, 2005. Polish Academy of Sciences, Warszawa, Poland), Dr. Ines Krajcar Bronić (Rudjer Bošković Institute, Zagreb, Croatia), Dr. James Mitroy (Faculty of Science, Northern Territory University, Darwin, Australia), Dr. Cedric J. Powell (NIST, USA) and Dr. Leon Sanche (Faculty of Medicine, University of Sherbrooke, Canada). The first meeting of the Report Committee was held in ICRU Headquarters in Bethesda, MD, in April 2000. The objectives and scopes of the report have been elaborated and the outline of the report was discussed. Each Report Committee member received specific tasks and duties. On the second meeting in Bethesda in December 2001, the individual contributions were presented and discussed. The next meeting of the Report Committee was held in Barcelona, Spain, in June 2003. The Report has been presented in its final form, and the discussion was directed into making the report more consistent and homogeneous. OUTLINE OF THE REPORT The ESEP Report consists of the following chapters: 1. Introduction (including nomenclature, application of data to be given in the Report, and scope of the report); 2. Experimental methods (measurement techniques of differential cross sections (DCS), integral elastic (ae|) and momentum transfer (amt) cross sections; for gases, liquids and solids); 3. Theoretical background (fundamentals of scattering theory, quantum theory, approximation methods, elastic scattering by molecules, scattering in the condensed phase, positron scattering); 4. Calculations for atoms (numerical calculation methods, properties of the phase shifts, DCS for atoms, high-energy factorization) for energies above 100 eV; 5. Experimental data (comparison of theoretical with experimental data, atomic and molecular gases, condensed phases); 6. Multiple-scattering angular deflections. Two appendices contain details on the theory of relativistic kinematics and the Dirac equation. Bibliography contains more than 300 relevant references. The CD ROM with the original software for calculating DCS will be distributed with the Report. For the calculation of DCSs for free atoms the central optical model potential is used [2]. The type of the incident particle and its energy, the target atom, and the choice of the model can be chosen by the user. A program for calculation DCSs for electron or positron scattering by molecules according to the independent atom approximation will be also available [3]. EXPERIMENTAL TECHNIQUES The experimental techniques used to study electron collisions with atoms and molecules can be broadly classified into two groups: beam experiments (where 19 VI. simpozij HDZZ, Stubičke Toplice, 2005. single collisions between individual scattering partners are examined), and swarm experiments (where the derived quantities are extracted from observation of the collective motion of a large number of charged particles, electron swarms). The two techniques are complementary, although often viewed as competitive. The swarm experiments yield absolute values of the elastic momentum transfer cross section amt, while beam experiments of direct attenuation give the elastic cross section, aei, (or total cross section, at), and the crossed-beam experiments provide the elastic differential cross section, DCS or da/dQ. The beam method is applicable to a wide range of energies, except very low energies, and the measurements are straightforward to interpret. However, the problems are: preparation of electron beams with very low energy, limited angular range accessible to measurement, the need of measurements with standard gases to derive absolute data. The swarm method is experimentally easier, and is particularly reliable at low energies (<1 eV), but requires a delicate numerical analysis to derive absolute values of the sought cross sections from the measured transport parameters. DATA EXAMPLES A large part of the available experimental data pertain to atomic gases, particularly to a limited group of atoms such as hydrogen, the rare gases, the alkalis and the earth alkalis, and some metals. Only a small set of cross-section data is available for more than half of the atoms in the period table, and data for molecules are even more limited. Experimental studies of positron collision have been performed by a limited number of groups. Elastic DCS for electron collisions with argon are presented in Figure 1. Differences between the measured data from different sources [4-14] indicate the magnitude of the uncertainty of experimental data. The calculated DCS (by using the software attached to the Report) exhibit nearly the same minimum at nearly the same angles as the measured DCS. However, the static-exchange potential used in calculation (dashed curves) overestimates the DCS at intermediate and large angles (more at lower energies) because the model neglects the absorption, i.e., the loss of electrons in open inelastic channels. At small scattering angles, and especially for low-energy electrons and positrons, this model underestimates DCS, because it neglects atomic polarizability. Thus, the validity of the static-field approximation is limited to energies above about few keV. The elastic, total scattering and momentum transfer cross sections for electrons in xenon are shown in Figure 2., and compared with the total cross section for positrons. Total cross sections are approximately equal to elastic cross sections at energies below about 10 eV, where no inelastic collisions take place. The a, for positrons and electrons have different energy dependences below 100 eV, but at higher energies the two values approach each other. The crmt in xenon, as 80 VI. simpozij HDZZ, Stubičke Toplice, 2005. well as in argon and krypton, exhibit a pronounced feature below 1 eV, namely a minimum in amt known as the Ramsauer-Townsend (RT) minimum). Different sets of crmt experimental data generally agree very well at all energies, except around the RT minimum. C Ciiipta and Rocs (I 975) o--»Ar(/ IS) v Williams and Willis < I 975b) DuHoisand Rudd (1970) |M-'* /:" 300 eV •; • Janson el ul. (1976) • Vuskovk- and Kurcpa (1976) X Srivaslava ol al. (1981) CJ Wagenaar el :il. (I 986) O C'vcjanovic and Crowe ( H llroml-vri; (1 974) o-lft X Wi 11 iciin.s and Willis f 1 975 i ~- • Jansenet al.( 1976) : Ai <Z IS) 6 i i lOOoV O |, n 1 1 150 180 60 90 120 150 ISO u e (Joii) • • 1 • • 1 i i • • 1 • • i I • • c —> Ar(Z IS) •» Ar (Z IS) 1...-" /;••••••- 500 eV 800 cV Bromherg (1 974) + Urombery (1974). 700 cV 1 DuBois and Rudd (1976) A IXiRois and Rudd (1 976) \ I.,- * r • Jansenel al. ( 1976) : n ot al. (1976). 750 eV X Iga otal. (1987) I - : \ It' l7 i ^—'"'ATE II-'" i | i 1 1 t • 1 III" <M <><) I2O 150 180 60 90 120 150 ISO 0 (cleg) 9 klog) Figure 1. Differential cross sections for elastic scattering of electrons by argon. Symbols: experimental data, static-field approximation, optical model calculations. 81 VI. simpozij HDZZ,
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Part B. Radiation Sources Radiation Safety
    Part B. Radiation sources Radiation Safety 1. Interaction of electrons-e with the matter −31 me = 9.11×10 kg ; E = m ec2 = 0.511 MeV; qe = -e 2. Interaction of photons-γ with the matter mγ = 0 kg ; E γ = 0 eV; q γ = 0 3. Interaction of neutrons-n with the matter −27 mn = 1.68 × 10 kg ; En = 939.57 MeV; qn = 0 4. Interaction of protons-p with the matter −27 mp = 1.67 × 10 kg ; Ep = 938.27 MeV; qp = +e Note: for any nucleus A: mass number – nucleons number A = Z + N Z: atomic number – proton (charge) number N: neutron number 1 / 35 1. Interaction of electrons with the matter Radiation Safety The physical processes: 1. Ionization losses inelastic collisions with orbital electrons 2. Bremsstrahlung losses inelastic collisions with atomic nuclei 3. Rutherford scattering elastic collisions with atomic nuclei Positrons at nearly rest energy: annihilation emission of two 511 keV photons 2 / 35 1. Interaction of electrons with1.E+02 the matter Radiation Safety ) 1.E+03 -1 Graphite – Z = 6 .g 2 1.E+01 ) Lead – Z = 82 -1 .g 2 1.E+02 1.E+00 1.E+01 1.E-01 1.E+00 collision 1.E-02 radiative collision 1.E-01 stopping pow er (MeV.cm total radiative 1.E-03 stopping pow er (MeV.cm total 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E-02 energy (MeV) 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 Electrons – stopping power 1.E+02 energy (MeV) S 1 dE ) === -1 Copper – Z = 29 ρρρ ρρρ dl .g 2 1.E+01 S 1 dE 1 dE === +++ ρρρ ρρρ dl coll ρρρ dl rad 1 dE 1.E+00 : mass stopping power (MeV.cm 2 g.
    [Show full text]
  • 12 Light Scattering AQ1
    12 Light Scattering AQ1 Lev T. Perelman CONTENTS 12.1 Introduction ......................................................................................................................... 321 12.2 Basic Principles of Light Scattering ....................................................................................323 12.3 Light Scattering Spectroscopy ............................................................................................325 12.4 Early Cancer Detection with Light Scattering Spectroscopy .............................................326 12.5 Confocal Light Absorption and Scattering Spectroscopic Microscopy ............................. 329 12.6 Light Scattering Spectroscopy of Single Nanoparticles ..................................................... 333 12.7 Conclusions ......................................................................................................................... 335 Acknowledgment ........................................................................................................................... 335 References ...................................................................................................................................... 335 12.1 INTRODUCTION Light scattering in biological tissues originates from the tissue inhomogeneities such as cellular organelles, extracellular matrix, blood vessels, etc. This often translates into unique angular, polari- zation, and spectroscopic features of scattered light emerging from tissue and therefore information about tissue
    [Show full text]
  • Solutions 7: Interacting Quantum Field Theory: Λφ4
    QFT PS7 Solutions: Interacting Quantum Field Theory: λφ4 (4/1/19) 1 Solutions 7: Interacting Quantum Field Theory: λφ4 Matrix Elements vs. Green Functions. Physical quantities in QFT are derived from matrix elements M which represent probability amplitudes. Since particles are characterised by having a certain three momentum and a mass, and hence a specified energy, we specify such physical calculations in terms of such \on-shell" values i.e. four-momenta where p2 = m2. For instance the notation in momentum space for a ! scattering in scalar Yukawa theory uses four-momenta labels p1 and p2 flowing into the diagram for initial states, with q1 and q2 flowing out of the diagram for the final states, all of which are on-shell. However most manipulations in QFT, and in particular in this problem sheet, work with Green func- tions not matrix elements. Green functions are defined for arbitrary values of four momenta including unphysical off-shell values where p2 6= m2. So much of the information encoded in a Green function has no obvious physical meaning. Of course to extract the corresponding physical matrix element from the Greens function we would have to apply such physical constraints in order to get the physics of scattering of real physical particles. Alternatively our Green function may be part of an analysis of a much bigger diagram so it represents contributions from virtual particles to some more complicated physical process. ∗1. The full propagator in λφ4 theory Consider a theory of a real scalar field φ 1 1 λ L = (@ φ)(@µφ) − m2φ2 − φ4 (1) 2 µ 2 4! (i) A theory with a gφ3=(3!) interaction term will not have an energy which is bounded below.
    [Show full text]
  • The Basic Interactions Between Photons and Charged Particles With
    Outline Chapter 6 The Basic Interactions between • Photon interactions Photons and Charged Particles – Photoelectric effect – Compton scattering with Matter – Pair productions Radiation Dosimetry I – Coherent scattering • Charged particle interactions – Stopping power and range Text: H.E Johns and J.R. Cunningham, The – Bremsstrahlung interaction th physics of radiology, 4 ed. – Bragg peak http://www.utoledo.edu/med/depts/radther Photon interactions Photoelectric effect • Collision between a photon and an • With energy deposition atom results in ejection of a bound – Photoelectric effect electron – Compton scattering • The photon disappears and is replaced by an electron ejected from the atom • No energy deposition in classical Thomson treatment with kinetic energy KE = hν − Eb – Pair production (above the threshold of 1.02 MeV) • Highest probability if the photon – Photo-nuclear interactions for higher energies energy is just above the binding energy (above 10 MeV) of the electron (absorption edge) • Additional energy may be deposited • Without energy deposition locally by Auger electrons and/or – Coherent scattering Photoelectric mass attenuation coefficients fluorescence photons of lead and soft tissue as a function of photon energy. K and L-absorption edges are shown for lead Thomson scattering Photoelectric effect (classical treatment) • Electron tends to be ejected • Elastic scattering of photon (EM wave) on free electron o at 90 for low energy • Electron is accelerated by EM wave and radiates a wave photons, and approaching • No
    [Show full text]
  • Optical Light Manipulation and Imaging Through Scattering Media
    Optical light manipulation and imaging through scattering media Thesis by Jian Xu In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2020 Defended September 2, 2020 ii © 2020 Jian Xu ORCID: 0000-0002-4743-2471 All rights reserved except where otherwise noted iii ACKNOWLEDGEMENTS Foremost, I would like to express my sincere thanks to my advisor Prof. Changhuei Yang, for his constant support and guidance during my PhD journey. He created a research environment with a high degree of freedom and encouraged me to explore fields with a lot of unknowns. From his ethics of research, I learned how to be a great scientist and how to do independent research. I also benefited greatly from his high standards and rigorous attitude towards work, with which I will keep in my future path. My committee members, Professor Andrei Faraon, Professor Yanbei Chen, and Professor Palghat P. Vaidyanathan, were extremely supportive. I am grateful for the collaboration and research support from Professor Andrei Faraon and his group, the helpful discussions in optics and statistics with Professor Yanbei Chen, and the great courses and solid knowledge of signal processing from Professor Palghat P. Vaidyanathan. I would also like to thank the members from our lab. Dr. Haojiang Zhou introduced me to the wavefront shaping field and taught me a lot of background knowledge when I was totally unfamiliar with the field. Dr. Haowen Ruan shared many innovative ideas and designs with me, from which I could understand the research field from a unique perspective.
    [Show full text]
  • Particles and Deep Inelastic Scattering
    Heidi Schellman Northwestern Particles and Deep Inelastic Scattering Heidi Schellman Northwestern University HUGS - JLab - June 2010 June 2010 HUGS 1 Heidi Schellman Northwestern k’ k q P P’ A generic scatter of a lepton off of some target. kµ and k0µ are the 4-momenta of the lepton and P µ and P 0µ indicate the target and the final state of the target, which may consist of many particles. qµ = kµ − k0µ is the 4-momentum transfer to the target. June 2010 HUGS 2 Heidi Schellman Northwestern Lorentz invariants k’ k q P P’ 2 2 02 2 2 2 02 2 2 2 The 5 invariant masses k = m` , k = m`0, P = M , P ≡ W , q ≡ −Q are invariants. In addition you can define 3 Mandelstam variables: s = (k + P )2, t = (k − k0)2 and u = (P − k0)2. 2 2 2 2 s + t + u = m` + M + m`0 + W . There are also handy variables ν = (p · q)=M , x = Q2=2Mµ and y = (p · q)=(p · k). June 2010 HUGS 3 Heidi Schellman Northwestern In the lab frame k’ k θ q M P’ The beam k is going in the z direction. Confine the scatter to the x − z plane. µ k = (Ek; 0; 0; k) P µ = (M; 0; 0; 0) 0µ 0 0 0 k = (Ek; k sin θ; 0; k cos θ) qµ = kµ − k0µ June 2010 HUGS 4 Heidi Schellman Northwestern In the lab frame k’ k θ q M P’ 2 2 2 s = ECM = 2EkM + M − m ! 2EkM 2 0 0 2 02 0 t = −Q = −2EkEk + 2kk cos θ + mk + mk ! −2kk (1 − cos θ) 0 ν = (p · q)=M = Ek − Ek energy transfer to target 0 y = (p · q)=(p · k) = (Ek − Ek)=Ek the inelasticity P 02 = W 2 = 2Mν + M 2 − Q2 invariant mass of P 0µ June 2010 HUGS 5 Heidi Schellman Northwestern In the CM frame k’ k q P P’ The beam k is going in the z direction.
    [Show full text]
  • 3 Scattering Theory
    3 Scattering theory In order to find the cross sections for reactions in terms of the interactions between the reacting nuclei, we have to solve the Schr¨odinger equation for the wave function of quantum mechanics. Scattering theory tells us how to find these wave functions for the positive (scattering) energies that are needed. We start with the simplest case of finite spherical real potentials between two interacting nuclei in section 3.1, and use a partial wave anal- ysis to derive expressions for the elastic scattering cross sections. We then progressively generalise the analysis to allow for long-ranged Coulomb po- tentials, and also complex-valued optical potentials. Section 3.2 presents the quantum mechanical methods to handle multiple kinds of reaction outcomes, each outcome being described by its own set of partial-wave channels, and section 3.3 then describes how multi-channel methods may be reformulated using integral expressions instead of sets of coupled differential equations. We end the chapter by showing in section 3.4 how the Pauli Principle re- quires us to describe sets identical particles, and by showing in section 3.5 how Maxwell’s equations for electromagnetic field may, in the one-photon approximation, be combined with the Schr¨odinger equation for the nucle- ons. Then we can describe photo-nuclear reactions such as photo-capture and disintegration in a uniform framework. 3.1 Elastic scattering from spherical potentials When the potential between two interacting nuclei does not depend on their relative orientiation, we say that this potential is spherical. In that case, the only reaction that can occur is elastic scattering, which we now proceed to calculate using the method of expansion in partial waves.
    [Show full text]
  • The Effects of Elastic Scattering in Neutral Atom Transport D
    The effects of elastic scattering in neutral atom transport D. N. Ruzic Citation: Phys. Fluids B 5, 3140 (1993); doi: 10.1063/1.860651 View online: http://dx.doi.org/10.1063/1.860651 View Table of Contents: http://pop.aip.org/resource/1/PFBPEI/v5/i9 Published by the American Institute of Physics. Related Articles Dissociation mechanisms of excited CH3X (X = Cl, Br, and I) formed via high-energy electron transfer using alkali metal targets J. Chem. Phys. 137, 184308 (2012) Efficient method for quantum calculations of molecule-molecule scattering properties in a magnetic field J. Chem. Phys. 137, 024103 (2012) Scattering resonances in slow NH3–He collisions J. Chem. Phys. 136, 074301 (2012) Accurate time dependent wave packet calculations for the N + OH reaction J. Chem. Phys. 135, 104307 (2011) The k-j-j′ vector correlation in inelastic and reactive scattering J. Chem. Phys. 135, 084305 (2011) Additional information on Phys. Fluids B Journal Homepage: http://pop.aip.org/ Journal Information: http://pop.aip.org/about/about_the_journal Top downloads: http://pop.aip.org/features/most_downloaded Information for Authors: http://pop.aip.org/authors Downloaded 23 Dec 2012 to 192.17.144.173. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions The effects of elastic scattering in neutral atom transport D. N. Ruzic University of Illinois, 103South Goodwin Avenue, Urbana Illinois 61801 (Received 14 December 1992; accepted21 May 1993) Neutral atom elastic collisions are one of the dominant interactions in the edge of a high recycling diverted plasma. Starting from the quantum interatomic potentials, the scattering functions are derived for H on H ‘, H on Hz, and He on Hz in the energy range of 0.
    [Show full text]
  • Lecture 7: Propagation, Dispersion and Scattering
    Satellite Remote Sensing SIO 135/SIO 236 Lecture 7: Propagation, Dispersion and Scattering Helen Amanda Fricker Energy-matter interactions • atmosphere • study region • detector Interactions under consideration • Interaction of EMR with the atmosphere scattering absorption • Interaction of EMR with matter Interaction of EMR with the atmosphere • EMR is attenuated by its passage through the atmosphere via scattering and absorption • Scattering -- differs from reflection in that the direction associated with scattering is unpredictable, whereas the direction of reflection is predictable. • Wavelength dependent • Decreases with increase in radiation wavelength • Three types: Rayleigh, Mie & non selective scattering Atmospheric Layers and Constituents JeJnesnesne n2 020505 Major subdivisions of the atmosphere and the types of molecules and aerosols found in each layer. Atmospheric Scattering Type of scattering is function of: 1) the wavelength of the incident radiant energy, and 2) the size of the gas molecule, dust particle, and/or water vapor droplet encountered. JJeennsseenn 22000055 Rayleigh scattering • Rayleigh scattering is molecular scattering and occurs when the diameter of the molecules and particles are many times smaller than the wavelength of the incident EMR • Primarily caused by air particles i.e. O2 and N2 molecules • All scattering is accomplished through absorption and re-emission of radiation by atoms or molecules in the manner described in the discussion on radiation from atomic structures. It is impossible to predict the direction in which a specific atom or molecule will emit a photon, hence scattering. • The energy required to excite an atom is associated with short- wavelength, high frequency radiation. The amount of scattering is inversely related to the fourth power of the radiation's wavelength (!-4).
    [Show full text]
  • Elastic Scattering, Fusion, and Breakup of Light Exotic Nuclei
    Eur. Phys. J. A (2016) 52: 123 THE EUROPEAN DOI 10.1140/epja/i2016-16123-1 PHYSICAL JOURNAL A Review Elastic scattering, fusion, and breakup of light exotic nuclei J.J. Kolata1,a, V. Guimar˜aes2, and E.F. Aguilera3 1 Physics Department, University of Notre Dame, Notre Dame, IN, 46556-5670, USA 2 Instituto de F`ısica,Universidade de S˜aoPaulo, Rua do Mat˜ao,1371, 05508-090, S˜aoPaulo, SP, Brazil 3 Departamento de Aceleradores, Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, C´odigoPostal 11801, M´exico, Distrito Federal, Mexico Received: 18 February 2016 Published online: 10 May 2016 c The Author(s) 2016. This article is published with open access at Springerlink.com Communicated by N. Alamanos Abstract. The present status of fusion reactions involving light (A<20) radioactive projectiles at energies around the Coulomb barrier (E<10 MeV per nucleon) is reviewed, emphasizing measurements made within the last decade. Data on elastic scattering (providing total reaction cross section information) and breakup channels for the involved systems, demonstrating the relationship between these and the fusion channel, are also reviewed. Similarities and differences in the behavior of fusion and total reaction cross section data concerning halo nuclei, weakly-bound but less exotic projectiles, and strongly-bound systems are discussed. One difference in the behavior of fusion excitation functions near the Coulomb barrier seems to emerge between neutron-halo and proton-halo systems. The role of charge has been investigated by comparing the fusion excitation functions, properly scaled, for different neutron- and proton-rich systems. Possible physical explanations for the observed differences are also reviewed.
    [Show full text]
  • 11. Light Scattering
    11. Light Scattering Coherent vs. incoherent scattering Radiation from an accelerated charge Larmor formula Why the sky is blue Rayleigh scattering Reflected and refracted beams from water droplets Rainbows Coherent vs. Incoherent light scattering Coherent light scattering: scattered wavelets have nonrandom relative phases in the direction of interest. Incoherent light scattering: scattered wavelets have random relative phases in the direction of interest. Example: Randomly spaced scatterers in a plane Incident Incident wave wave Forward scattering is coherent— Off-axis scattering is incoherent even if the scatterers are randomly when the scatterers are randomly arranged in the plane. arranged in the plane. Path lengths are equal. Path lengths are random. Coherent vs. Incoherent Scattering N Incoherent scattering: Total complex amplitude, Aincoh exp(j m ) (paying attention only to the phase m1 of the scattered wavelets) The irradiance: NNN2 2 IAincoh incohexp( j m ) exp( j m ) exp( j n ) mmn111 NN NN exp[jjN (mn )] exp[ ( mn )] mn11mn mn 11 mn m = n mn Coherent scattering: N 2 2 Total complex amplitude, A coh 1 N . Irradiance, I A . So: Icoh N m1 So incoherent scattering is weaker than coherent scattering, but not zero. Incoherent scattering: Reflection from a rough surface A rough surface scatters light into all directions with lots of different phases. As a result, what we see is light reflected from many different directions. We’ll see no glare, and also no reflections. Most of what you see around you is light that has been incoherently scattered. Coherent scattering: Reflection from a smooth surface A smooth surface scatters light all into the same direction, thereby preserving the phase of the incident wave.
    [Show full text]