Lecture 7: Propagation, Dispersion and Scattering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Measuring and Modelling Forward Light Scattering in the Human Eye
MEASURING AND MODELLING FORWARD LIGHT SCATTERING IN THE HUMAN EYE A thesis submitted to The University of Manchester, for the degree of Doctor of Philosophy, in the Faculty of Life Sciences. 2015 Pablo Benito López Optometry THESIS CONTENT THESIS CONTENT ...................................................................................................................... 2 LIST OF FIGURES ....................................................................................................................... 5 LIST OF TABLES ........................................................................................................................ 10 LIST OF EQUATIONS ............................................................................................................... 11 ABBREVIATIONS LIST ........................................................................................................... 12 ABSTRACT ................................................................................................................................... 13 DECLARATION .......................................................................................................................... 14 THESIS FORMAT ....................................................................................................................... 14 COPYRIGHT STATEMENT .................................................................................................... 15 ACKNOWLEDGEMENTS ...................................................................................................... -
12 Light Scattering AQ1
12 Light Scattering AQ1 Lev T. Perelman CONTENTS 12.1 Introduction ......................................................................................................................... 321 12.2 Basic Principles of Light Scattering ....................................................................................323 12.3 Light Scattering Spectroscopy ............................................................................................325 12.4 Early Cancer Detection with Light Scattering Spectroscopy .............................................326 12.5 Confocal Light Absorption and Scattering Spectroscopic Microscopy ............................. 329 12.6 Light Scattering Spectroscopy of Single Nanoparticles ..................................................... 333 12.7 Conclusions ......................................................................................................................... 335 Acknowledgment ........................................................................................................................... 335 References ...................................................................................................................................... 335 12.1 INTRODUCTION Light scattering in biological tissues originates from the tissue inhomogeneities such as cellular organelles, extracellular matrix, blood vessels, etc. This often translates into unique angular, polari- zation, and spectroscopic features of scattered light emerging from tissue and therefore information about tissue -
Solutions 7: Interacting Quantum Field Theory: Λφ4
QFT PS7 Solutions: Interacting Quantum Field Theory: λφ4 (4/1/19) 1 Solutions 7: Interacting Quantum Field Theory: λφ4 Matrix Elements vs. Green Functions. Physical quantities in QFT are derived from matrix elements M which represent probability amplitudes. Since particles are characterised by having a certain three momentum and a mass, and hence a specified energy, we specify such physical calculations in terms of such \on-shell" values i.e. four-momenta where p2 = m2. For instance the notation in momentum space for a ! scattering in scalar Yukawa theory uses four-momenta labels p1 and p2 flowing into the diagram for initial states, with q1 and q2 flowing out of the diagram for the final states, all of which are on-shell. However most manipulations in QFT, and in particular in this problem sheet, work with Green func- tions not matrix elements. Green functions are defined for arbitrary values of four momenta including unphysical off-shell values where p2 6= m2. So much of the information encoded in a Green function has no obvious physical meaning. Of course to extract the corresponding physical matrix element from the Greens function we would have to apply such physical constraints in order to get the physics of scattering of real physical particles. Alternatively our Green function may be part of an analysis of a much bigger diagram so it represents contributions from virtual particles to some more complicated physical process. ∗1. The full propagator in λφ4 theory Consider a theory of a real scalar field φ 1 1 λ L = (@ φ)(@µφ) − m2φ2 − φ4 (1) 2 µ 2 4! (i) A theory with a gφ3=(3!) interaction term will not have an energy which is bounded below. -
Arxiv:2008.11688V1 [Astro-Ph.CO] 26 Aug 2020
APS/123-QED Cosmology with Rayleigh Scattering of the Cosmic Microwave Background Benjamin Beringue,1 P. Daniel Meerburg,2 Joel Meyers,3 and Nicholas Battaglia4 1DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, UK, CB3 0WA 2Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands 3Department of Physics, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas 75275, USA 4Department of Astronomy, Cornell University, Ithaca, New York, USA (Dated: August 27, 2020) The cosmic microwave background (CMB) has been a treasure trove for cosmology. Over the next decade, current and planned CMB experiments are expected to exhaust nearly all primary CMB information. To further constrain cosmological models, there is a great benefit to measuring signals beyond the primary modes. Rayleigh scattering of the CMB is one source of additional cosmological information. It is caused by the additional scattering of CMB photons by neutral species formed during recombination and exhibits a strong and unique frequency scaling ( ν4). We will show that with sufficient sensitivity across frequency channels, the Rayleigh scattering/ signal should not only be detectable but can significantly improve constraining power for cosmological parameters, with limited or no additional modifications to planned experiments. We will provide heuristic explanations for why certain cosmological parameters benefit from measurement of the Rayleigh scattering signal, and confirm these intuitions using the Fisher formalism. In particular, observation of Rayleigh scattering P allows significant improvements on measurements of Neff and mν . PACS numbers: Valid PACS appear here I. INTRODUCTION direction of propagation of the (primary) CMB photons. There are various distinguishable ways that cosmic In the current era of precision cosmology, the Cosmic structures can alter the properties of CMB photons [10]. -
Herschel Images of Fomalhaut. an Extrasolar Kuiper Belt at the Height
Astronomy & Astrophysics manuscript no. acke c ESO 2018 November 7, 2018 Herschel images of Fomalhaut⋆ An extrasolar Kuiper Belt at the height of its dynamical activity B. Acke1,⋆⋆, M. Min2,3, C. Dominik3,4, B. Vandenbussche1 , B. Sibthorpe5, C. Waelkens1, G. Olofsson6, P. Degroote1, K. Smolders1,⋆⋆⋆, E. Pantin7, M. J. Barlow8, J. A. D. L. Blommaert1, A. Brandeker6, W. De Meester1, W. R. F. Dent9, K. Exter1, J. Di Francesco10, M. Fridlund11, W. K. Gear12, A. M. Glauser5,13, J. S. Greaves14, P. M. Harvey15, Th. Henning16, M. R. Hogerheijde17, W. S. Holland5, R. Huygen1, R. J. Ivison5,18, C. Jean1, R. Liseau19, D. A. Naylor20, G. L. Pilbratt11, E. T. Polehampton20,21, S. Regibo1, P. Royer1, A. Sicilia-Aguilar16,22, and B.M. Swinyard21 (Affiliations can be found after the references) Received ; accepted ABSTRACT 8 Context. Fomalhaut is a young (2 ± 1 × 10 years), nearby (7.7 pc), 2 M⊙ star that is suspected to harbor an infant planetary system, interspersed with one or more belts of dusty debris. Aims. We present far-infrared images obtained with the Herschel Space Observatory with an angular resolution between 5.7′′ and 36.7′′ at wave- lengths between 70 µm and 500 µm. The images show the main debris belt in great detail. Even at high spatial resolution, the belt appears smooth. The region in between the belt and the central star is not devoid of material; thermal emission is observed here as well. Also at the location of the star, excess emission is detected. We aim to construct a consistent image of the Fomalhaut system. -
Instrumental Methods for Professional and Amateur
Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, Francois Colas, Alain Klotz, Christophe Pellier, Jean-Marc Petit, Philippe Rousselot, et al. To cite this version: Olivier Mousis, Ricardo Hueso, Jean-Philippe Beaulieu, Sylvain Bouley, Benoît Carry, et al.. Instru- mental Methods for Professional and Amateur Collaborations in Planetary Astronomy. Experimental Astronomy, Springer Link, 2014, 38 (1-2), pp.91-191. 10.1007/s10686-014-9379-0. hal-00833466 HAL Id: hal-00833466 https://hal.archives-ouvertes.fr/hal-00833466 Submitted on 3 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Instrumental Methods for Professional and Amateur Collaborations in Planetary Astronomy O. Mousis, R. Hueso, J.-P. Beaulieu, S. Bouley, B. Carry, F. Colas, A. Klotz, C. Pellier, J.-M. Petit, P. Rousselot, M. Ali-Dib, W. Beisker, M. Birlan, C. Buil, A. Delsanti, E. Frappa, H. B. Hammel, A.-C. Levasseur-Regourd, G. S. Orton, A. Sanchez-Lavega,´ A. Santerne, P. Tanga, J. Vaubaillon, B. Zanda, D. Baratoux, T. Bohm,¨ V. Boudon, A. Bouquet, L. Buzzi, J.-L. Dauvergne, A. -
The Basic Interactions Between Photons and Charged Particles With
Outline Chapter 6 The Basic Interactions between • Photon interactions Photons and Charged Particles – Photoelectric effect – Compton scattering with Matter – Pair productions Radiation Dosimetry I – Coherent scattering • Charged particle interactions – Stopping power and range Text: H.E Johns and J.R. Cunningham, The – Bremsstrahlung interaction th physics of radiology, 4 ed. – Bragg peak http://www.utoledo.edu/med/depts/radther Photon interactions Photoelectric effect • Collision between a photon and an • With energy deposition atom results in ejection of a bound – Photoelectric effect electron – Compton scattering • The photon disappears and is replaced by an electron ejected from the atom • No energy deposition in classical Thomson treatment with kinetic energy KE = hν − Eb – Pair production (above the threshold of 1.02 MeV) • Highest probability if the photon – Photo-nuclear interactions for higher energies energy is just above the binding energy (above 10 MeV) of the electron (absorption edge) • Additional energy may be deposited • Without energy deposition locally by Auger electrons and/or – Coherent scattering Photoelectric mass attenuation coefficients fluorescence photons of lead and soft tissue as a function of photon energy. K and L-absorption edges are shown for lead Thomson scattering Photoelectric effect (classical treatment) • Electron tends to be ejected • Elastic scattering of photon (EM wave) on free electron o at 90 for low energy • Electron is accelerated by EM wave and radiates a wave photons, and approaching • No -
Optical Light Manipulation and Imaging Through Scattering Media
Optical light manipulation and imaging through scattering media Thesis by Jian Xu In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2020 Defended September 2, 2020 ii © 2020 Jian Xu ORCID: 0000-0002-4743-2471 All rights reserved except where otherwise noted iii ACKNOWLEDGEMENTS Foremost, I would like to express my sincere thanks to my advisor Prof. Changhuei Yang, for his constant support and guidance during my PhD journey. He created a research environment with a high degree of freedom and encouraged me to explore fields with a lot of unknowns. From his ethics of research, I learned how to be a great scientist and how to do independent research. I also benefited greatly from his high standards and rigorous attitude towards work, with which I will keep in my future path. My committee members, Professor Andrei Faraon, Professor Yanbei Chen, and Professor Palghat P. Vaidyanathan, were extremely supportive. I am grateful for the collaboration and research support from Professor Andrei Faraon and his group, the helpful discussions in optics and statistics with Professor Yanbei Chen, and the great courses and solid knowledge of signal processing from Professor Palghat P. Vaidyanathan. I would also like to thank the members from our lab. Dr. Haojiang Zhou introduced me to the wavefront shaping field and taught me a lot of background knowledge when I was totally unfamiliar with the field. Dr. Haowen Ruan shared many innovative ideas and designs with me, from which I could understand the research field from a unique perspective. -
Rayleigh Scattering by Gas Molecules: Why Is the Sky Blue?
Please do not remove this manual from from the lab. It is available via Canvas DEMO NOTES: This manual contains demonstrator notes in blue italics Optics Rayleigh Scattering: 12 hrs Rayleigh scattering by gas molecules: why is the sky blue? Objectives After completing this experiment: • You will be familiar with using a photomultiplier tube) as a means of measuring low intensities of light; • You will have had experience of working safely with a medium power laser producing visible wavelength radiation; • You will have had an opportunity to use the concept of solid angle in connection with scattering experiments; • You will have had the opportunity to experimentally examine the phenomenon of polarization; • You should understand how the scattering of light from molecules varies accord- ing to the direction of polarization of the light and the scattering angle relative to it; • You should have a good understanding of what is meant by cross-section and differential cross section. • You should be able to describe why the daytime sky appears to be blue and why light from the sky is polarized. Note the total time for data-taking in this experiment is about one hour. There are a lot of useful physics concepts to absorb in the background material. You should read the manual bearing in mind that you need to thoroughly understand how you will calculate your results from you measurements BEFORE your final lab session. This is an exercise in time management. Safety A medium power Argon ion laser is used in this experiment. The light from it is potentially dangerous to you and other people in the room. -
3 Scattering Theory
3 Scattering theory In order to find the cross sections for reactions in terms of the interactions between the reacting nuclei, we have to solve the Schr¨odinger equation for the wave function of quantum mechanics. Scattering theory tells us how to find these wave functions for the positive (scattering) energies that are needed. We start with the simplest case of finite spherical real potentials between two interacting nuclei in section 3.1, and use a partial wave anal- ysis to derive expressions for the elastic scattering cross sections. We then progressively generalise the analysis to allow for long-ranged Coulomb po- tentials, and also complex-valued optical potentials. Section 3.2 presents the quantum mechanical methods to handle multiple kinds of reaction outcomes, each outcome being described by its own set of partial-wave channels, and section 3.3 then describes how multi-channel methods may be reformulated using integral expressions instead of sets of coupled differential equations. We end the chapter by showing in section 3.4 how the Pauli Principle re- quires us to describe sets identical particles, and by showing in section 3.5 how Maxwell’s equations for electromagnetic field may, in the one-photon approximation, be combined with the Schr¨odinger equation for the nucle- ons. Then we can describe photo-nuclear reactions such as photo-capture and disintegration in a uniform framework. 3.1 Elastic scattering from spherical potentials When the potential between two interacting nuclei does not depend on their relative orientiation, we say that this potential is spherical. In that case, the only reaction that can occur is elastic scattering, which we now proceed to calculate using the method of expansion in partial waves. -
A Study on Numerical Integration Methods for Rendering Atmospheric
Open Phys. 2019; 17:241–249 Research Article Tomasz Gałaj and Adam Wojciechowski A study on numerical integration methods for rendering atmospheric scattering phenomenon https://doi.org/10.1515/phys-2019-0025 In this paper, a qualitative comparison of three, pop- Received Jan 29, 2019; accepted Mar 07, 2019 ular numerical integration methods to compute the sin- gle scattering integral is presented. In provided research, Abstract: A qualitative comparison of three, popular and three methods have been chosen, namely Midpoint, Trape- most widely known numerical integration methods in zoidal and Simpson’s Rules. These three methods are fairly terms of atmospheric single scattering calculations is pre- popular in Computer Graphics field. Atmospheric scatter- sented. A comparison of Midpoint, Trapezoidal and Simp- ing is calculated using backward ray tracing algorithm tak- son’s Rules taking into account quality of a clear sky gener- ing into account variable light conditions [5]. Then, these ated images is performed. Methods that compute the atmo- methods are compared with each other taking into account spheric scattering integrals use Trapezoidal Rule. Authors quality of the generated images of the sky. As a subproduct try to determine which numerical integration method is of this research, the fidelity of the framework presented the best for determining the colors of the sky and check by Bruneton in [3] is being checked. Authors try to deter- if Trapezoidal Rule is in fact the best choice. The research mine which numerical integration method is the best for does not only conduct experiments with Bruneton’s frame- calculating the colors of the sky and check if Trapezoidal work but also checks which of the selected numerical inte- Rule is in fact the best choice.