3. Interacting Fields
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
An Introduction to Quantum Field Theory
AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ........................... -
External Fields and Measuring Radiative Corrections
Quantum Electrodynamics (QED), Winter 2015/16 Radiative corrections External fields and measuring radiative corrections We now briefly describe how the radiative corrections Πc(k), Σc(p) and Λc(p1; p2), the finite parts of the loop diagrams which enter in renormalization, lead to observable effects. We will consider the two classic cases: the correction to the electron magnetic moment and the Lamb shift. Both are measured using a background electric or magnetic field. Calculating amplitudes in this situation requires a modified perturbative expansion of QED from the one we have considered thus far. Feynman rules with external fields An important approximation in QED is where one has a large background electromagnetic field. This external field can effectively be treated as a classical background in which we quantise the fermions (in analogy to including an electromagnetic field in the Schrodinger¨ equation). More formally we can always expand the field operators around a non-zero value (e) Aµ = aµ + Aµ (e) where Aµ is a c-number giving the external field and aµ is the field operator describing the fluctua- tions. The S-matrix is then given by R 4 ¯ (e) S = T eie d x : (a=+A= ) : For a static external field (independent of time) we have the Fourier transform representation Z (e) 3 ik·x (e) Aµ (x) = d= k e Aµ (k) We can now consider scattering processes such as an electron interacting with the background field. We find a non-zero amplitude even at first order in the perturbation expansion. (Without a background field such terms are excluded by energy-momentum conservation.) We have Z (1) 0 0 4 (e) hfj S jii = ie p ; s d x : ¯A= : jp; si Z 4 (e) 0 0 ¯− µ + = ie d x Aµ (x) p ; s (x)γ (x) jp; si Z Z 4 3 (e) 0 µ ik·x+ip0·x−ip·x = ie d x d= k Aµ (k)u ¯s0 (p )γ us(p) e ≡ 2πδ(E0 − E)M where 0 (e) 0 M = ieu¯s0 (p )A= (p − p)us(p) We see that energy is conserved in the scattering (since the external field is static) but in general the initial and final 3-momenta of the electron can be different. -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
Higgs Mechanism and Debye Screening in the Generalized Electrodynamics
Higgs Mechanism and Debye Screening in the Generalized Electrodynamics C. A. Bonin1,∗ G. B. de Gracia2,y A. A. Nogueira3,z and B. M. Pimentel2x 1Department of Mathematics & Statistics, State University of Ponta Grossa (DEMAT/UEPG), Avenida Carlos Cavalcanti 4748,84030-900 Ponta Grossa, PR, Brazil 2 Instituto de F´ısica Teorica´ (IFT), Universidade Estadual Paulista Rua Dr. Bento Teobaldo Ferraz 271, Bloco II Barra Funda, CEP 01140-070 Sao˜ Paulo, SP, Brazil 3Universidade Federal de Goias,´ Instituto de F´ısica, Av. Esperanc¸a, 74690-900, Goiania,ˆ Goias,´ Brasil September 12, 2019 Abstract In this work we study the Higgs mechanism and the Debye shielding for the Bopp-Podolsky theory of electrodynamics. We find that not only the massless sector of the Podolsky theory acquires a mass in both these phenomena, but also that its massive sector has its mass changed. Furthermore, we find a mathematical analogy in the way these masses change between these two mechanisms. Besides exploring the behaviour of the screened potentials, we find a temperature for which the presence of the generalized gauge field may be experimentally detected. Keywords: Quantum Field Theory; Finite Temperature; Spontaneous Symmetry Breaking, Debye Screening arXiv:1909.04731v1 [hep-th] 10 Sep 2019 ∗[email protected] [email protected] [email protected] (corresponding author) [email protected] 1 1 Introduction The mechanisms behind mass generation for particles play a crucial role in the advancement of our understanding of the fundamental forces of Nature. For instance, our current description of three out of five fundamental interactions is through the action of gauge fields [1]. -
Feynman Diagrams, Momentum Space Feynman Rules, Disconnected Diagrams, Higher Correlation Functions
PHY646 - Quantum Field Theory and the Standard Model Even Term 2020 Dr. Anosh Joseph, IISER Mohali LECTURE 05 Tuesday, January 14, 2020 Topics: Feynman Diagrams, Momentum Space Feynman Rules, Disconnected Diagrams, Higher Correlation Functions. Feynman Diagrams We can use the Wick’s theorem to express the n-point function h0jT fφ(x1)φ(x2) ··· φ(xn)gj0i as a sum of products of Feynman propagators. We will be interested in developing a diagrammatic interpretation of such expressions. Let us look at the expression containing four fields. We have h0jT fφ1φ2φ3φ4g j0i = DF (x1 − x2)DF (x3 − x4) +DF (x1 − x3)DF (x2 − x4) +DF (x1 − x4)DF (x2 − x3): (1) We can interpret Eq. (1) as the sum of three diagrams, if we represent each of the points, x1 through x4 by a dot, and each factor DF (x − y) by a line joining x to y. These diagrams are called Feynman diagrams. In Fig. 1 we provide the diagrammatic interpretation of Eq. (1). The interpretation of the diagrams is the following: particles are created at two spacetime points, each propagates to one of the other points, and then they are annihilated. This process can happen in three different ways, and they correspond to the three ways to connect the points in pairs, as shown in the three diagrams in Fig. 1. Thus the total amplitude for the process is the sum of these three diagrams. PHY646 - Quantum Field Theory and the Standard Model Even Term 2020 ⟨0|T {ϕ1ϕ2ϕ3ϕ4}|0⟩ = DF(x1 − x2)DF(x3 − x4) + DF(x1 − x3)DF(x2 − x4) +DF(x1 − x4)DF(x2 − x3) 1 2 1 2 1 2 + + 3 4 3 4 3 4 Figure 1: Diagrammatic interpretation of Eq. -
Lecture Notes Particle Physics II Quantum Chromo Dynamics 6
Lecture notes Particle Physics II Quantum Chromo Dynamics 6. Feynman rules and colour factors Michiel Botje Nikhef, Science Park, Amsterdam December 7, 2012 Colour space We have seen that quarks come in three colours i = (r; g; b) so • that the wave function can be written as (s) µ ci uf (p ) incoming quark 8 (s) µ ciy u¯f (p ) outgoing quark i = > > (s) µ > cy v¯ (p ) incoming antiquark <> i f c v(s)(pµ) outgoing antiquark > i f > Expressions for the> 4-component spinors u and v can be found in :> Griffiths p.233{4. We have here explicitly indicated the Lorentz index µ = (0; 1; 2; 3), the spin index s = (1; 2) = (up; down) and the flavour index f = (d; u; s; c; b; t). To not overburden the notation we will suppress these indices in the following. The colour index i is taken care of by defining the following basis • vectors in colour space 1 0 0 c r = 0 ; c g = 1 ; c b = 0 ; 0 1 0 1 0 1 0 0 1 @ A @ A @ A for red, green and blue, respectively. The Hermitian conjugates ciy are just the corresponding row vectors. A colour transition like r g can now be described as an • ! SU(3) matrix operation in colour space. Recalling the SU(3) step operators (page 1{25 and Exercise 1.8d) we may write 0 0 0 0 1 cg = (λ1 iλ2) cr or, in full, 1 = 1 0 0 0 − 0 1 0 1 0 1 0 0 0 0 0 @ A @ A @ A 6{3 From the Lagrangian to Feynman graphs Here is QCD Lagrangian with all colour indices shown.29 • µ 1 µν a a µ a QCD = (iγ @µ m) i F F gs λ j γ A L i − − 4 a µν − i ij µ µν µ ν ν µ µ ν F = @ A @ A 2gs fabcA A a a − a − b c We have introduced here a second colour index a = (1;:::; 8) to label the gluon fields and the corresponding SU(3) generators. -
12 Light Scattering AQ1
12 Light Scattering AQ1 Lev T. Perelman CONTENTS 12.1 Introduction ......................................................................................................................... 321 12.2 Basic Principles of Light Scattering ....................................................................................323 12.3 Light Scattering Spectroscopy ............................................................................................325 12.4 Early Cancer Detection with Light Scattering Spectroscopy .............................................326 12.5 Confocal Light Absorption and Scattering Spectroscopic Microscopy ............................. 329 12.6 Light Scattering Spectroscopy of Single Nanoparticles ..................................................... 333 12.7 Conclusions ......................................................................................................................... 335 Acknowledgment ........................................................................................................................... 335 References ...................................................................................................................................... 335 12.1 INTRODUCTION Light scattering in biological tissues originates from the tissue inhomogeneities such as cellular organelles, extracellular matrix, blood vessels, etc. This often translates into unique angular, polari- zation, and spectroscopic features of scattered light emerging from tissue and therefore information about tissue -
Solutions 7: Interacting Quantum Field Theory: Λφ4
QFT PS7 Solutions: Interacting Quantum Field Theory: λφ4 (4/1/19) 1 Solutions 7: Interacting Quantum Field Theory: λφ4 Matrix Elements vs. Green Functions. Physical quantities in QFT are derived from matrix elements M which represent probability amplitudes. Since particles are characterised by having a certain three momentum and a mass, and hence a specified energy, we specify such physical calculations in terms of such \on-shell" values i.e. four-momenta where p2 = m2. For instance the notation in momentum space for a ! scattering in scalar Yukawa theory uses four-momenta labels p1 and p2 flowing into the diagram for initial states, with q1 and q2 flowing out of the diagram for the final states, all of which are on-shell. However most manipulations in QFT, and in particular in this problem sheet, work with Green func- tions not matrix elements. Green functions are defined for arbitrary values of four momenta including unphysical off-shell values where p2 6= m2. So much of the information encoded in a Green function has no obvious physical meaning. Of course to extract the corresponding physical matrix element from the Greens function we would have to apply such physical constraints in order to get the physics of scattering of real physical particles. Alternatively our Green function may be part of an analysis of a much bigger diagram so it represents contributions from virtual particles to some more complicated physical process. ∗1. The full propagator in λφ4 theory Consider a theory of a real scalar field φ 1 1 λ L = (@ φ)(@µφ) − m2φ2 − φ4 (1) 2 µ 2 4! (i) A theory with a gφ3=(3!) interaction term will not have an energy which is bounded below. -
An Introduction to Supersymmetry
An Introduction to Supersymmetry Ulrich Theis Institute for Theoretical Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D–07743 Jena, Germany [email protected] This is a write-up of a series of five introductory lectures on global supersymmetry in four dimensions given at the 13th “Saalburg” Summer School 2007 in Wolfersdorf, Germany. Contents 1 Why supersymmetry? 1 2 Weyl spinors in D=4 4 3 The supersymmetry algebra 6 4 Supersymmetry multiplets 6 5 Superspace and superfields 9 6 Superspace integration 11 7 Chiral superfields 13 8 Supersymmetric gauge theories 17 9 Supersymmetry breaking 22 10 Perturbative non-renormalization theorems 26 A Sigma matrices 29 1 Why supersymmetry? When the Large Hadron Collider at CERN takes up operations soon, its main objective, besides confirming the existence of the Higgs boson, will be to discover new physics beyond the standard model of the strong and electroweak interactions. It is widely believed that what will be found is a (at energies accessible to the LHC softly broken) supersymmetric extension of the standard model. What makes supersymmetry such an attractive feature that the majority of the theoretical physics community is convinced of its existence? 1 First of all, under plausible assumptions on the properties of relativistic quantum field theories, supersymmetry is the unique extension of the algebra of Poincar´eand internal symmtries of the S-matrix. If new physics is based on such an extension, it must be supersymmetric. Furthermore, the quantum properties of supersymmetric theories are much better under control than in non-supersymmetric ones, thanks to powerful non- renormalization theorems. -
Path Integral and Asset Pricing
Path Integral and Asset Pricing Zura Kakushadze§†1 § Quantigicr Solutions LLC 1127 High Ridge Road #135, Stamford, CT 06905 2 † Free University of Tbilisi, Business School & School of Physics 240, David Agmashenebeli Alley, Tbilisi, 0159, Georgia (October 6, 2014; revised: February 20, 2015) Abstract We give a pragmatic/pedagogical discussion of using Euclidean path in- tegral in asset pricing. We then illustrate the path integral approach on short-rate models. By understanding the change of path integral measure in the Vasicek/Hull-White model, we can apply the same techniques to “less- tractable” models such as the Black-Karasinski model. We give explicit for- mulas for computing the bond pricing function in such models in the analog of quantum mechanical “semiclassical” approximation. We also outline how to apply perturbative quantum mechanical techniques beyond the “semiclas- sical” approximation, which are facilitated by Feynman diagrams. arXiv:1410.1611v4 [q-fin.MF] 10 Aug 2016 1 Zura Kakushadze, Ph.D., is the President of Quantigicr Solutions LLC, and a Full Professor at Free University of Tbilisi. Email: [email protected] 2 DISCLAIMER: This address is used by the corresponding author for no purpose other than to indicate his professional affiliation as is customary in publications. In particular, the contents of this paper are not intended as an investment, legal, tax or any other such advice, and in no way represent views of Quantigic Solutions LLC, the website www.quantigic.com or any of their other affiliates. 1 Introduction In his seminal paper on path integral formulation of quantum mechanics, Feynman (1948) humbly states: “The formulation is mathematically equivalent to the more usual formulations. -
Fermion Potential, Yukawa and Photon Exchange Copyright C 2007 by Joel A
Last Latexed: October 24, 2013 at 10:23 1 Lecture 15 Oct. 24, 2013 Fermion Potential, Yukawa and Photon Exchange Copyright c 2007 by Joel A. Shapiro Last week we learned how to calculate cross sections in terms of the S- matrix or the invariant matrix element . Last time we learned, pretty M much, how to evaluate in terms of matrix element of the time ordered product of free fields (i.e.M interaction representation fields) between states given na¨ıvely by creation and annihilation operators for the incoming and outgoing particles. Today we are going to address the first “real” applications. First we will consider the low energy scattering of two different fermions • each coupled to a single scalar field, as proposed by Yukawa to explain the nuclear potential1. Then we will give Feynman rules for the electromagnetic field, that is, • for photons. This will not be rigorously derived until next semester, but we can motivate a set of correct rules, which will get elaborated as we go on. Finally, we will couple the fermions with photons instead of Yukawa • scalar particles, and see that this differs from the Yukawa case not only because the photon is massless, and therefore the range of the Coulomb potential is infinite, but also in being repulsive between two identical particles, and attractive only between particle - antiparticle pairs. We also see that gravity should, like the Yukawa potential, be always attractive. Read Peskin and Schroeder pp. 118–126. Let us consider the scattering of two distinguishable fermions 1This is often mentioned as a great success, with the known range of the nuclear potential predicting the existance of the pion.