Teleostei: Cyprinidae) from Cytochrome B Sequences

Total Page:16

File Type:pdf, Size:1020Kb

Teleostei: Cyprinidae) from Cytochrome B Sequences Copeia, 2002(3), pp. 665±678 Evolutionary Relationships of the Plagopterins (Teleostei: Cyprinidae) from Cytochrome b Sequences THOMAS E. DOWLING,C.ALANA TIBBETS,W.L.MINCKLEY, AND GERALD R. SMITH Sequences of cytochrome b (cytb) were used to examine composition and phylo- genetic relationships of cyprinid ®shes of the tribe Plagopterini, endemic to the Great Basin and Lower Colorado River in southwestern North America. The pla- gopterin genera, Lepidomeda, Meda, Plagopterus, and Snyderichthys, were most closely af®liated with the chubs Couesius and Margariscus of northern and eastern North America. As indicated by previous morphologic, allozymic, and mtDNA studies, Sny- derichthys is intimately related to Lepidomeda. The relationship is paraphyletic, how- ever, according to our molecular data. Snyderichthys from the Snake and Bear River drainages are part of a clade that includes Lepidomeda mollispinis and Lepidomeda albivallis according to the cytb sequence, with Snyderichthys from the central and southern Bonneville basin more divergent. This paraphyly and the complex geo- graphic relationships of mtDNA sequences indicate a complex history of the group and cast doubt on the validity of morphologically diagnosed Snyderichthys. Estimates of divergence time, based on a combination of fossil and molecular data, indicate that the plagopterins are an ancient clade, at least 17 million years old. HE Cyprinidae or minnows are the most di- They hypothesized existence of three major T verse freshwater ®sh family in North Amer- groups: ``shiner,'' ``chub,'' and ``western'' ica, represented by more than 300 species in clades. Plagopterins fell within a Gila clade of approximately 50 genera (Burr and Mayden, western minnows, most closely related to a clade 1992). Although recent morphological studies containing Agosia, Moapa, and Rhinichthys.As provide hypotheses of relationships among gen- previously indicated by Uyeno (1960), Gila copei era, species groups, and species (Mayden, 1989; was considered distinct from the plagopterins. Cavender and Coburn, 1992; Coburn and Cav- Studies of molecular characters indicated dif- ender, 1992), analysis of molecular characters ferent plagopterin relationships. DeMarais sometimes produce con¯icting results (e.g., Si- (1992) provided allozymic evidence that G. copei mons and Mayden, 1997, et seq.; Broughton was closely af®liated with Lepidomeda, possibly and Gold, 2000) and a different perspective of rendering the plagopterins paraphyletic. Fur- evolutionary relationships. ther taxonomic studies were deemed necessary The plagopterins are a monophyletic group to ensure proper phylogenetic placement of G. of North American cyprinids diagnosed by copei; however, its close af®nities with Lepidomeda spinelike ossi®cation of the ®rst two rays of the led DeMarais (1992) to recommend resurrec- dorsal and pelvic ®ns. As de®ned by Miller and tion of Snyderichthys, a recommendation we fol- Hubbs (1960), the group consists of six species low. in three genera: Lepidomeda vittata, Lepidomeda Simons and Mayden (1997, et seq.) identi®ed mollispinis, Lepidomeda albivallis, and Lepidomeda four major lineages (with sequences from 12S altivelis; Meda fulgida; and Plagopterus argentissi- ribosomal DNA) that differed from those iden- mus. These are (or were) endemic to the middle ti®ed by Coburn and Cavender (1992). Both and lower Colorado River drainage. Relation- morphological and molecular data indicated a ships of this group to several other cyprinids of distinct western clade; however, there were ma- the region have been hypothesized, especially jor differences in composition and placement Snyderichthys copei (Miller, 1945) of the adjacent of taxa within the chubs and shiners. Creek Bonneville basin and upper Snake River drain- chubs and relatives (Couesius, Hemitremia, Mar- age. That species was placed in the monotypic gariscus, Semotilus) were identi®ed as a distinct genus Snyderichthys by Miller (1945) but consid- lineage (``creek chub clade'') instead of being ered a monotypic subgenus of the genus Gila by members of the chub clade as hypothesized by Uyeno (1960). Coburn and Cavender (1992). Plagopterins (in- Coburn and Cavender (1992) completed an cluding Snyderichthys) were more closely related extensive analysis of phylogenetic relationships to this clade than to members of the genus Gila. among North American cyprinids based on Simons and Mayden (1997) included only two morphological and osteological characters. plagopterins (L. vittata, M. fulgida); therefore, q 2002 by the American Society of Ichthyologists and Herpetologists 666 COPEIA, 2002, NO. 3 gopterus argentissimus are found only in single drainages. Previous studies of variation in L. vit- tata indicated limited divergence among locali- ties (Tibbets, 1998; Tibbets et al., 2001); there- fore, single individuals of Lepidomeda mollispinis mollispinis, L. vittata, and Plagopterus argentissi- mus were used to represent each. Previous stud- ies of Meda fulgida (Anderson and Hendrickson, 1994; Tibbets and Dowling, 1996) identi®ed di- vergent populations in the Gila and Verde Riv- ers; therefore each was represented. Because of the widespread distribution and potential para- phyly of Snyderichthys to the plagopterins, mul- tiple samples were also examined (Bonneville basin, Bear and Snake River drainages). Representatives of the three major clades (western, shiner, and chub) of Coburn and Cav- ender (1992) were also examined, with special emphasis on hypothesized sister taxa to plagop- terins. These names will be used throughout manuscript. Chubs were Campostoma anomalum, Couesius plumbeus, Hybognathus hankinsoni, Mar- Fig. 1. Approximate distribution of species and gariscus margarita, Nocomis micropogon, and Semo- samples (indicated by lines and shading). Snyderichthys tilus atromaculatus. Shiners included Cyprinella copei, Goose Creek (SCGC), Sulphur Creek (SCSC), spiloptera, Luxilus chrysocephalus, and Pimephales Spanish Fork River (SCSF), Sevier River (SCSR); Lep- notatus. Representatives of the western clade idomeda albivallis (LA), Lepidomeda mollispinus mollispi- were Acrocheilus alutaceus, Agosia chrysogaster, Gila nus (LMM), Lepidomeda mollispinus pratensis (LMP); cypha, Moapa coriacea, Orthodon microlepidotum, Lepidomeda vitatta (LV); Plagopterus argentissimus (PA); and Rhinichthys atratulus. Based on relationships Meda fulgida, Verde River (MFV), Aravaipa Creek inferred from morphological characters (Cav- (MFA). The southwest range limits of the sister ender and Coburn, 1992; Coburn and Caven- groups, Couesius plumbeus and Margariscus margarita, are shown in the upper right. der, 1992), sequences from the leuciscins Abram- is brama (Briolay et al., 1998; GenBank accession nunber Y10441) and Notemigonus crysoleucas relationships within the group and effects of (Schmidt and Gold, 1995; GenBank accession taxonomic sampling on placement of Snyderi- number U01318) were used as outgroups. chthys could not be examined. We use sequences from the cytochrome b Sequencing.ÐSequences were obtained from (cytb) gene from all extant plagopterins to ex- PCR products by either standard dideoxy se- amine relationships among members of this quencing or cycle-sequencing and deposited in group and to test the hypothesized placement GenBank (accession numbers in Material Ex- of these ®shes relative to other cyprinids [as amined). In the standard method, templates proposed by Coburn and Cavender (1992) and were obtained through two rounds of ampli®- Simons and Mayden (1997)]. Given the unique cation. In the ®rst, a double-stranded product morphology and geography of these ®shes, was generated as follows: 1±5 ml (approximately knowledge of their phylogenetic relationships 1±5 ng) of genomic DNA; 0.25 units of Taq DNA to other minnow lineages provides important polymerase [from Promega Corp. or puri®ed information for the evolution of morphological characters and the biogeography of several ma- from a clone as described by Pluthero (1993)]; jor drainages in western North America. 4 ml of dNTP mix (®nal concentration of 200 mM of each of the four dNTPs); 2.5 ml MgCl2 stock (®nal concentration of 2.5 mM); 2.5 mlof MATERIALS AND METHODS 103 buffer stock [provided by the enzyme sup- Samples.ÐMost plagopterin taxa now occupy plier or as described in Pluthero (1993)]; 1.25 limited ranges (Fig. 1) in the lower Colorado ml of each primer (®nal concentration of 0.5 River system. Lepidomeda albivallis and Lepidome- mM of each); sterile-distilled water to a ®nal vol- da mollispinis pratensis are restricted to single lo- ume of 25 ml. Ampli®cation was performed by calities and L. m. mollispinis, L. vittata, and Pla- 20 cycles of denaturation at 94 C for 1 min, an- DOWLING ET AL.ÐRELATIONSHIPS OF PLAGOPTERINS 667 TABLE 1. SEQUENCES OF PRIMERS USED FOR AMPLIFICATION AND SEQUENCING OF CYTb. Primera Positionb Sequence LA-a 15248 59 GTG ACT TGA AAA ACC ACC GTT G 39 LC-s 15536 59 ATA CAT GCC AAC GGA GCA TC 39 HD-a 15894 59 GGG TTG TTT GAT CCT GTT TCG T 39 LD-a 15848 59 CCA TTC GTC ATC GCC GGT GC 39 LDIB-a 15768 59 ACC CTT GTT CAA TGA ATC TG 39 LDLUX-a 15812 59 ACA TTA ACA CGA TTC TTC GC 39 LE-s 16084 59 CCC ACC ACA CAT TCA ACC 39 HA-a 16462 59 CAA CGA TCT CCG GTT TAC AAG AC 39 a Primers are designated by strand (L 5 light, H 5 heavy) and application (a 5 ampli®cation and sequencing, s 5 sequencing only). b Position is identi®ed relative to the published sequence for carp, Cyprinus carpio, (Chang et al., 1994). nealing at 48 C for 1 min, and extension at 72 Swofford, Sinauer Associates,
Recommended publications
  • A Thesis Entitled Molecular, Morphological, and Biogeographic Resolution of Cryptic Taxa in the Greenside Darter Etheostoma Blen
    A Thesis Entitled Molecular, morphological, and biogeographic resolution of cryptic taxa in the Greenside Darter Etheostoma blennioides complex By Amanda E. Haponski Submitted as partial fulfillment of the requirements for The Master of Science Degree in Biology (Ecology-track) ____________________________ Advisor: Dr. Carol A. Stepien ____________________________ Committee Member: Dr. Timothy G. Fisher ____________________________ Committee Member: Dr. Johan F. Gottgens ____________________________ College of Graduate Studies The University of Toledo December 2007 Copyright © 2007 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Molecular, morphological, and biogeographic resolution of cryptic taxa in the Greenside Darter Etheostoma blennioides complex Amanda E. Haponski Submitted as partial fulfillment of the requirements for The Master of Science Degree in Biology (Ecology-track) The University of Toledo December 2007 DNA sequencing has led to the resolution of many cryptic taxa, which are especially prevalent in the North American darter fishes (Family Percidae). The Greenside Darter Etheostoma blennioides commonly occurs in the lower Great Lakes region, where two putative subspecies, the eastern “Allegheny” type E. b. blennioides and the western “Prairie” type E. b. pholidotum , overlap. The objective of this study was to test the systematic identity and genetic divergence distinguishing the two subspecies in areas of sympatry and allopatry in comparison to other subspecies and close relatives. DNA sequences from the mtDNA cytochrome b gene and control region and the nuclear S7 intron 1 comprising a total of 1,497 bp were compared from 294 individuals across 18 locations, including the Lake Erie basin and the Allegheny, Meramec, Obey, Ohio, Rockcastle, Susquehanna, and Wabash River systems.
    [Show full text]
  • LITTLE COLORADO RIVER SPINEDACE, Lepidomeda Vitata RECOVERY PLAN
    DRAFT LITTLE COLORADO RIVER SPINEDACE, Lepidomeda vitata RECOVERY PLAN prepared by: C.O. Minckley U.S. Fish and Wildlife Service, Region 2 Parker Fishery Resource Office, Parker, Arizona 85344 August 1994 for U.S. Fish and Wildlife Service, Albuquerque, New Mexico ' DISCLAIMER Recovery plans delineate reasonable actions which are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance of recovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available, subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views nor the official positions or approvals of any individuals or agencies (involved in the plan formulation), other than the U.S. Fish and Wildlife Service. They represent the official position of the U.S. Fish and Wildlife Service only after they have been signed by the Regional Director or Director as approved. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks. ...) i ' ,4 , ' P DRAF1- ig l Li &a-liATION8 U.S. Fish and Wildlife Service. 199. Little Colorado River spinedace, Lepidomeda vittata Recovery Plan. Phoenix, AZ pp. Additional copies may be purchased from: Fish and Wildlife Reference Service: 5430 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814 301/492-6403 or 1-800-582-3421 The fee for the Plan varies depending on the number of pages of the Plan.
    [Show full text]
  • ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
    ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al.
    [Show full text]
  • Parker Little Colorado River Spinedace Recovery Plan
    Parker Fisheries Resource Office Little Colorado River Spinedace Recovery Plan Little Colorado River Spinedace Lepidomeda vittata Recovery Plan prepared by: C. 0. Minckley U.S. Fish and Wildlife Service Parker Fishery Resource Office, Parker, Arizona 85344 October 1997 for U.S. Fish and Wildlife Service, Albuquerque, New Mexico Approved: ~~~ector Regi Date: r~IAN 09 1998 Little Colorado River Spinedace Recovery Plan DISCLAIMER Recovery plans delineate reasonable actions believed necessary to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance of recovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available, subject to budgetary and other constraints affecting the stakeholders involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views nor the official positions or approvals ofany individuals or agencies (involved in the plan formulation), other than the U.S. Fish and Wildlife Service. They represent the official position ofthe U.S. Fish and Wildlife Service only after they have been signed by the Regional Director or Director as approved. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion ofrecovery tasks. Little Colorado River Spinedace Recovery Plan LITERATURE CITATION U.S. Fish and Wildlife Service. 1998. Little Colorado River spinedace, Lepido-meda vittata Recovery Plan. Albuquerque NM. 51 pp. Additional copies may be purchased from: Fish and Wildlife Reference Service: 5430 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814 301/492-6403 or 800/582-3421 Fees charged for Recovery Plans vary depending on the number of Plans requested.
    [Show full text]
  • Defining Conservation Priorities for Freshwater Fishes According To
    Ecological Applications, 21(8), 2011, pp. 3002–3013 Ó 2011 by the Ecological Society of America Defining conservation priorities for freshwater fishes according to taxonomic, functional, and phylogenetic diversity 1,4 1 2 3 ANGELA L. STRECKER, JULIAN D. OLDEN, JOANNA B. WHITTIER, AND CRAIG P. PAUKERT 1School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98105 USA 2Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, Missouri 65211 USA 3U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, Missouri 65211 USA Abstract. To date, the predominant use of systematic conservation planning has been to evaluate and conserve areas of high terrestrial biodiversity. Although studies in freshwater ecosystems have received recent attention, research has rarely considered the potential trade- offs between protecting different dimensions of biodiversity and the ecological processes that maintain diversity. We provide the first systematic prioritization for freshwaters (focusing on the highly threatened and globally distinct fish fauna of the Lower Colorado River Basin, USA) simultaneously considering scenarios of: taxonomic, functional, and phylogenetic diversity; contemporary threats to biodiversity (including interactions with nonnative species); and future climate change and human population growth. There was 75% congruence between areas of highest conservation priority for different aspects of biodiversity, suggesting that conservation efforts can concurrently achieve strong complementarity among all types of diversity. However, sizable fractions of the landscape were incongruent across conservation priorities for different diversity scenarios, underscoring the importance of considering multiple dimensions of biodiversity and highlighting catchments that contribute disproportionately to taxonomic, functional, and phylogenetic diversity in the region.
    [Show full text]
  • Fishes As a Template for Reticulate Evolution
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2016 Fishes as a Template for Reticulate Evolution: A Case Study Involving Catostomus in the Colorado River Basin of Western North America Max Russell Bangs University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Evolution Commons, Molecular Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Bangs, Max Russell, "Fishes as a Template for Reticulate Evolution: A Case Study Involving Catostomus in the Colorado River Basin of Western North America" (2016). Theses and Dissertations. 1847. http://scholarworks.uark.edu/etd/1847 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Fishes as a Template for Reticulate Evolution: A Case Study Involving Catostomus in the Colorado River Basin of Western North America A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology by Max Russell Bangs University of South Carolina Bachelor of Science in Biological Sciences, 2009 University of South Carolina Master of Science in Integrative Biology, 2011 December 2016 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. _____________________________________ Dr. Michael E. Douglas Dissertation Director _____________________________________ ____________________________________ Dr. Marlis R. Douglas Dr. Andrew J. Alverson Dissertation Co-Director Committee Member _____________________________________ Dr. Thomas F. Turner Ex-Officio Member Abstract Hybridization is neither simplistic nor phylogenetically constrained, and post hoc introgression can have profound evolutionary effects.
    [Show full text]
  • Fishtraits: a Database on Ecological and Life-History Traits of Freshwater
    FishTraits database Traits References Allen, D. M., W. S. Johnson, and V. Ogburn-Matthews. 1995. Trophic relationships and seasonal utilization of saltmarsh creeks by zooplanktivorous fishes. Environmental Biology of Fishes 42(1)37-50. [multiple species] Anderson, K. A., P. M. Rosenblum, and B. G. Whiteside. 1998. Controlled spawning of Longnose darters. The Progressive Fish-Culturist 60:137-145. [678] Barber, W. E., D. C. Williams, and W. L. Minckley. 1970. Biology of the Gila Spikedace, Meda fulgida, in Arizona. Copeia 1970(1):9-18. [485] Becker, G. C. 1983. Fishes of Wisconsin. University of Wisconsin Press, Madison, WI. Belk, M. C., J. B. Johnson, K. W. Wilson, M. E. Smith, and D. D. Houston. 2005. Variation in intrinsic individual growth rate among populations of leatherside chub (Snyderichthys copei Jordan & Gilbert): adaptation to temperature or length of growing season? Ecology of Freshwater Fish 14:177-184. [349] Bonner, T. H., J. M. Watson, and C. S. Williams. 2006. Threatened fishes of the world: Cyprinella proserpina Girard, 1857 (Cyprinidae). Environmental Biology of Fishes. In Press. [133] Bonnevier, K., K. Lindstrom, and C. St. Mary. 2003. Parental care and mate attraction in the Florida flagfish, Jordanella floridae. Behavorial Ecology and Sociobiology 53:358-363. [410] Bortone, S. A. 1989. Notropis melanostomus, a new speices of Cyprinid fish from the Blackwater-Yellow River drainage of northwest Florida. Copeia 1989(3):737-741. [575] Boschung, H.T., and R. L. Mayden. 2004. Fishes of Alabama. Smithsonian Books, Washington. [multiple species] 1 FishTraits database Breder, C. M., and D. E. Rosen. 1966. Modes of reproduction in fishes.
    [Show full text]
  • Fish Species of Vermont
    Fishes of Vermont Vermont Natural Heritage Inventory Vermont Fish & Wildlife Department 22 March 2017 The following is a list of fish species known to regularly occur in Vermont. Historic species (not documented in Vermont in the last 25 years) are included if there is a reasonable expectation of their return. Extinct or extirpated species are not included. The list is organized taxonomically to genus, then alphabetically within genus. Species not native to Vermont are indicated with an asterisk (*). State Global State Federal Scientific Name Common Name Rank Rank Status Status SGCN Ichthyomyzon fossor Northern Brook Lamprey S1 G4 E SGCN Ichthyomyzon unicuspis Silver Lamprey S2? G5 SC SGCN Lethenteron appendix American Brook Lamprey S1 G4 T SGCN Synonym: Lampetra appendix Petromyzon marinus Sea Lamprey S4S5 G5 SGCN Acipenser fulvescens Lake Sturgeon S1 G3G4 E SGCN Lepisosteus osseus Longnose Gar S4 G5 Amia calva Bowfin S4 G5 Hiodon tergisus Mooneye SU G5 SGCN Anguilla rostrata American Eel S2 G4 SC SGCN Alosa aestivalis Blueback Herring SU G3G4 SC SGCN * Alosa pseudoharengus Alewife SNA G5 Alosa sapidissima American Shad S4 G5 SGCN * Dorosoma cepedianum Gizzard Shad SNA G5 * Carassius auratus Goldfish SNA G5 Chrosomus eos Northern Redbelly Dace S4 G5 Chrosomus neogaeus Finescale Dace S3? G5 Couesius plumbeus Lake Chub S4 G5 Cyprinella spiloptera Spotfin Shiner S3S4 G5 * Cyprinus carpio Common Carp SNA G5 Exoglossum maxillingua Cutlip Minnow S3 G5 Hybognathus hankinsoni Brassy Minnow S1 G5 SC Hybognathus regius Eastern Silvery Minnow S3S4
    [Show full text]
  • BMC Evolutionary Biology Biomed Central
    BMC Evolutionary Biology BioMed Central Research article Open Access Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world's smallest vertebrate Lukas Rüber*1, Maurice Kottelat2, Heok Hui Tan3, Peter KL Ng3 and Ralf Britz1 Address: 1Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK, 2Route de la Baroche 12, Case postale 57, CH-2952 Cornol, Switzerland (permanent address) and Raffles Museum of Biodiversity Research, National University of Singapore, Kent Ridge, Singapore 119260 and 3Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260 Email: Lukas Rüber* - [email protected]; Maurice Kottelat - [email protected]; Heok Hui Tan - [email protected]; Peter KL Ng - [email protected]; Ralf Britz - [email protected] * Corresponding author Published: 13 March 2007 Received: 23 October 2006 Accepted: 13 March 2007 BMC Evolutionary Biology 2007, 7:38 doi:10.1186/1471-2148-7-38 This article is available from: http://www.biomedcentral.com/1471-2148/7/38 © 2007 Rüber et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Paedocypris, a highly developmentally truncated fish from peat swamp forests in Southeast Asia, comprises the world's smallest vertebrate. Although clearly a cyprinid fish, a hypothesis about its phylogenetic position among the subfamilies of this largest teleost family, with over 2400 species, does not exist.
    [Show full text]
  • Checklist of Fishes of Thunder Bay District, Ontario
    Thunder Bay Field Naturalists Checklist of Fish es of Thunder Bay District , Ontario 31 December 2019 Introduction This first edition of Checklist of Fishes of Thunder Bay District adds to existing checklists prepared by members of the Thunder Bay Field Naturalists (TBFN) covering other vertebrate taxa (mammals, birds, reptiles & amphibians), as well vascular plants, butterflies, and odonates. As with these other checklists, it covers the official judicial District of Thunder Bay (Figure 1). The District extends from the eastern border of Quetico Provincial Park east to White River, and from the international border north to Lake St. Joseph and the Albany River. Much of the District (60%) is within the Great Lakes watershed, with the remaining draining into the Arctic Ocean either north via the Hudson Bay Lowlands, or west via Rainy Lake/Lake of the Woods and the Nelson River watershed. Figure 1. Judicial District of Thunder Bay with primary watersheds and protected areas. 2 The fish species of the Thunder Bay District mostly reflect post-glacial colonization, modified by more recent ecological and anthropogenic influences. The Wisconsinan ice mass began to retreat north of Lake Superior circa 10,700 BP (Farrand and Drexler 1985), allowing fish to initially colonize the Thunder Bay area (Momot and Stephenson 1996). The Marquette advance circa 9900 BP likely wiped out these early colonizers, but its retreat around 9700 BP allowed many species access from glacial refugia in the Mississippi River basin to the south (Mandrak and Crossman 1992b; Stephenson and Momot 1994). Some species invaded from the east via the outlet of Lake Minong and Lake Superiors’ other post-glacial predecessors.
    [Show full text]
  • Checklist of the Inland Fishes of Louisiana
    Southeastern Fishes Council Proceedings Volume 1 Number 61 2021 Article 3 March 2021 Checklist of the Inland Fishes of Louisiana Michael H. Doosey University of New Orelans, [email protected] Henry L. Bart Jr. Tulane University, [email protected] Kyle R. Piller Southeastern Louisiana Univeristy, [email protected] Follow this and additional works at: https://trace.tennessee.edu/sfcproceedings Part of the Aquaculture and Fisheries Commons, and the Biodiversity Commons Recommended Citation Doosey, Michael H.; Bart, Henry L. Jr.; and Piller, Kyle R. (2021) "Checklist of the Inland Fishes of Louisiana," Southeastern Fishes Council Proceedings: No. 61. Available at: https://trace.tennessee.edu/sfcproceedings/vol1/iss61/3 This Original Research Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in Southeastern Fishes Council Proceedings by an authorized editor. For more information, please visit https://trace.tennessee.edu/sfcproceedings. Checklist of the Inland Fishes of Louisiana Abstract Since the publication of Freshwater Fishes of Louisiana (Douglas, 1974) and a revised checklist (Douglas and Jordan, 2002), much has changed regarding knowledge of inland fishes in the state. An updated reference on Louisiana’s inland and coastal fishes is long overdue. Inland waters of Louisiana are home to at least 224 species (165 primarily freshwater, 28 primarily marine, and 31 euryhaline or diadromous) in 45 families. This checklist is based on a compilation of fish collections records in Louisiana from 19 data providers in the Fishnet2 network (www.fishnet2.net).
    [Show full text]
  • Volume 2E - Revised Baseline Ecological Risk Assessment Hudson River Pcbs Reassessment
    PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2E - REVISED BASELINE ECOLOGICAL RISK ASSESSMENT HUDSON RIVER PCBS REASSESSMENT NOVEMBER 2000 For U.S. Environmental Protection Agency Region 2 and U.S. Army Corps of Engineers Kansas City District Book 2 of 2 Tables, Figures and Plates TAMS Consultants, Inc. Menzie-Cura & Associates, Inc. PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2E- REVISED BASELINE ECOLOGICAL RISK ASSESSMENT HUDSON RIVER PCBs REASSESSMENT RI/FS CONTENTS Volume 2E (Book 1 of 2) Page TABLE OF CONTENTS ........................................................ i LIST OF TABLES ........................................................... xiii LIST OF FIGURES ......................................................... xxv LIST OF PLATES .......................................................... xxvi EXECUTIVE SUMMARY ...................................................ES-1 1.0 INTRODUCTION .......................................................1 1.1 Purpose of Report .................................................1 1.2 Site History ......................................................2 1.2.1 Summary of PCB Sources to the Upper and Lower Hudson River ......4 1.2.2 Summary of Phase 2 Geochemical Analyses .......................5 1.2.3 Extent of Contamination in the Upper Hudson River ................5 1.2.3.1 PCBs in Sediment .....................................5 1.2.3.2 PCBs in the Water Column ..............................6 1.2.3.3 PCBs in Fish .........................................7
    [Show full text]