Evolutionary Genetics of Pocillopora Corals

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Genetics of Pocillopora Corals Evolutionary Genetics of Pocillopora Corals by David J. Combosch Diploma Environmental Scientist, University Duisburg-Essen A dissertation submitted to the Faculty of the College of Science of Northeastern University In partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2, 2013 Dissertation directed by Steven V. Vollmer Associate Professor of Marine & Environmental Sciences DEDICATION Für Walter Combosch ii ACKNOWLEDGEMENTS I am grateful to my advisor Steven Vollmer for his support, guidance and friendship. I thank all my committee members, Rebeca Rosengaus, Matthew Bracken, Geoff Trussell and especially Gonzalo Giribet for their support and advice and my German mentor Helmut Schuhmacher for many years of support. In addition, I want to thank many colleagues and friends from the Vollmer Lab, especially Silvia Libro, Liz Hemond, Sarah Gignoux-Wolfsohn, Chris Marks and Stefan Kaluziak as well as the Giribet Lab, especially Vanessa Gonzales and Alicia Perez-Porro and my collaborators Lauren Toth, Rich Aronson and Ian McIntyre. I benefitted greatly from the Three Sea Program, particularly due to the help of Sal Genovese, Pete Edmunds, Ruth Gates, Brian Helmuth, Josh Idjahdi, Jim Leichter and Bill Precht. Numerous friends in America, Germany, Panamá, France, French Polynesia and especially in 123 River Street contributed a lot, both directly and indirectly, to this dissertation, especially my girlfriend Sarah Lemer, my brother Florian and his family Fiona, Liva, Clara und Bruno as well as my parents Lene and Walter Combosch. This work was supported by a German Academic Exchange Service Pre-doctoral fellowship, Teaching assistantship awards from Northeastern University and the Three Seas Program and the National Science Foundation to Steven Vollmer. iii ABSTRACT OF DISSERTATION My dissertation research addresses fundamental questions about the evolution of tropical reef corals in isolated biogeographic regions. The main focus is on the effect of intra- and inter- specific gene flow within and among peripheral coral populations. Since introgression and genetic connectivity are keys factor for evolution and adaptation as well as for population resilience, recovery and persistence, the identification and quantification of past and present gene flow is of major interest, not only for basic evolutionary research but also for applied conservation. The central question of my research is the how the widespread, but generally subordinate reef-building coral Pocillopora damicornis became the ecologically dominant reef-builder in the isolated, environmentally challenging Tropical Eastern Pacific (TEP). The dominance of TEP Pocillopora damicornis populations is accompanied by strong differences in life-history traits, including a shift in reproductive strategy from brooding predominantly parthenogenetic larvae in the Indo-West Pacific to broadcast spawning in the TEP. Using a combination of genetic tools ranging from multi-locus Sanger sequencing to RAD-Seq phylogenomic analyses, I show that three genetic lineages that are found in TEP and Central Pacific P. damicornis populations are characterized by strong genome-wide differences, which suggests that they belong to separate species. However, a subset of loci was shared among P. damicornis colonies across lineages and across large geographic distances. The allelic composition of putative hybrid samples indicate repeated uniparental backcrossing and substantial genomic introgression among TEP Pocillopora species. The population genetic structure of TEP P. damicornis indicates limited gene flow among and within populations, which enables effective adaptations to the environmentally iv heterogeneous TEP environment. Predominantly sexual reproduction, significant inbreeding and small-scale spatial genetic structures over meter scales within populations further sustain divergent adaptations. This small-scale population genetic structure allows P. damicornis to adapt locally to the harsh environmental condition of the Tropical Eastern Pacific and presumably facilitated its regional dominance. In addition, I show that Central Pacific P. damicornis display a unique mixed reproductive strategy that includes the simultaneous production of sexual and asexual larvae. While the majority of larvae are produced parthenogenetically, most colonies also produce a subset of their larvae sexually. The proportion of sexually produced larvae decreases with colony size, suggesting that the mixed reproductive strategy is flexible and changes across the life of the coral, leading to an increasingly asexual propagation of locally successful genotypes. Combined, I have shown that Pocillopora corals in the peripheral TEP are characterized by interspecific gene flow between P. damicornis and its congeners P. eydouxi and P. elegans and limited gene flow among and within P. damicornis populations. I showed that the morphospecies Pocillopora damicornis is composed of multiple genetic lineages, in part due to introgressive hybridization in the TEP. Pocillopora populations further differ in their reproductive strategies with central Pacific populations reproducing predominantly parthenogenetic and TEP populations reproducing mostly sexually. v TABLE OF CONTENTS DEDICATION II ACKNOWLEDGEMENTS III ABSTRACT OF DISSERTATION IV TABLE OF CONTENTS VI LIST OF FIGURES IX LIST OF TABLES XI CHAPTER 1 - GENE FLOW, POCILLOPORA CORALS AND THE TROPICAL EASTERN PACIFIC 1 Overview 1 Gene Flow 2 Pocillopora corals 7 The Tropical Eastern Pacific 10 References 14 CHAPTER 2 - POPULATION GENETICS OF AN ECOSYSTEM-DEFINING REEF CORAL - POCILLOPORA DAMICORNIS IN THE TROPICAL EASTERN PACIFIC 25 Abstract 25 Introduction 26 Materials and Methods 30 Results 35 Discussion 38 vi Conclusion 49 Acknowledgements 50 References 51 Tables 62 Figures 67 Supplementary Material 70 Chapter 3 - MIXED ASEXUAL AND SEXUAL REPRODUCTION IN THE INDO-PACIFIC REEF CORAL POCILLOPORA DAMICORNIS 71 Abstract 71 Introduction 72 Materials and Methods 74 Results 77 Discussion 78 Conclusion 85 Acknowledgements 86 References 87 Tables 93 Figures 96 CHAPTER 4 - EVOLUTIONARY GENOMICS OF POCILLOPORA CORALS 101 Abstract 101 Introduction 102 Material and Methods 105 Results 112 Discussion 116 vii Conclusions 125 Acknowledgements 126 References 127 Tables 133 Figures 136 Supplementary Material 143 FINAL CONCLUSIONS 149 viii LIST OF FIGURES CHAPTER 2 FIGURE 1: MAP OF PANAMÁ, SHOWING THE THREE MAIN PACIFIC REGIONS AND THE SAMPLED LOCATIONS. 67 FIGURE 2: PRINCIPAL COMPONENT ANALYSIS OF POCILLOPORA DAMICORNIS POPULATIONS, CONSTRUCTED USING GENALEX 6.1. 68 FIGURE 3: SPATIAL CORRELOGRAMS OF THE SPAGEDI ANALYSIS OF SPATIAL GENETIC STRUCTURE (SGS) AMONG SPECIMEN WITHIN DISCRETE DISTANCE CLASSES. 69 FIGURE S1: RESULTS OF THE BAYESIAN CLUSTERING APPROACH IMPLEMENTED IN STRUCTURE 2.3 THAT WERE USED TO INFER THE NUMBER OF GENETIC CLUSTERS (K) IN THE MICROSATELLITE DATASET 70 CHAPTER 3 FIGURE 1: A POCILLOPORA DAMICORNIS COLONY ON THE REEF IN FRONT OF THE GUMP RESEARCH STATION IN MOOREA, FRENCH POLYNESIA 96 FIGURE 2: THE PROPORTION OF SEXUALLY PRODUCED LARVAE DECREASES AS A FUNCTION OF COLONY SIZE 97 FIGURE 3: THE PROPORTION OF SEXUALLY PRODUCED LARVAE RELEASED DECREASES DURING THE REPRODUCTIVE CYCLES OF P. DAMICORNIS COLONIES 99 CHAPTER 4 FIGURE 1A: POCILLOPORA ELEGANS COLONY IN A P. DAMICORNIS CARPET IN ISLA COIBA, GULF OF CHIRIQUÍ, PANAMÁ. 136 FIGURE 1B: PHENOTYPIC PLASTICITY OF P. DAMICORNIS/P. VERRUCOSA IN MOOREA, FRENCH POLYNESIA. 137 ix FIGURE 2: ORF AND ITS PHYLOGENY 138 FIGURE 3: RAD PHYLOGENOMIC ANALYSES 140 FIGURE 4: PRINCIPAL COORDINATE ANALYSIS OF PAIRWISE P-DISTANCES BETWEEN RAD-SEQ SAMPLES. 141 FIGURE 5: ALLELE COMPOSITION OF PUTATIVE HYBRID P. DAMICORNIS SAMPLES COMPARED TO THE EXPECTED ALLELE COMPOSITIONS OF BACKCROSSING HYBRIDS OVER SEVERAL GENERATIONS. 142 FIGURE S1: BASIC RAD LOCI CORRELATIONS 147 FIGURE S2: PAIRWISE P-DISTANCE COMPARISONS BETWEEN SAMPLES AT TRANSCRIBED VS. UNTRANSCRIBED LOCI. 148 x LIST OF TABLES CHAPTER 2 TABLE 1: POPULATION GENETIC INDICES FOR THE SIX MICROSATELLITE LOCI. 62 TABLE 2: POPULATION GENETIC INDICES FOR THE NINE POPULATIONS. 63 TABLE 3: HIERARCHICAL AMOVA RESULTS 64 TABLE 4: PAIRWISE RST AND FST BETWEEN TEP P. DAMICORNIS POPULATIONS 65 TABLE 5: POCILLOPORA DAMICORNIS POPULATION GENETIC SURVEY (SORTED BY FST). 66 CHAPTER 3 TABLE 1: LOCI-SPECIFIC STATISTICS FOR EACH OF THE SIX SAMPLED MICROSATELLITE LOCI. 93 TABLE 2: LIST OF MATERNAL COLONIES 94 TABLE 3: RESULTS OF THE GENERALIZED LINEAR MIXED EFFECTS MODEL FOR THE MAIN LOGISTIC REGRESSION ANALYSIS 95 CHAPTER 4 TABLE 1: OVERVIEW OF THE RAD-SEQ SAMPLE COMPOSITION AND BASIC POPULATION GENETIC INDICES. 133 TABLE 2: PAIRWISE COMPARISONS BETWEEN SAMPLES USING P-DISTANCE AND IBS- PROPORTIONS. 134 TABLE 3: GENETIC MAKE-UP OF PUTATIVE HYBRID P. DAMICORNIS SAMPLES 135 TABLE S1: READ DEPTH PER SAMPLE AND PER LOCUS 143 xi TABLE S2: TRANSCRIPTOME MATCHES/ALIGNMENTS. 144 TABLE S3: IBS & NUMBER OF DIFFERENTLY FIXED LOCI 145 TABLE S4: VICE VERSA COMPARISON OF ALLELIC IDENTITY 146 xii Evolutionary Genetics of Pocillopora Corals CHAPTER 1 GENE FLOW, POCILLOPORA CORALS AND THE TROPICAL EASTERN PACIFIC Overview This dissertation explores the patterns and consequences of gene flow for the evolution of reef-building corals. Each chapter highlights a different aspect of gene flow, within species, between generation and across species. Gene flow acts on many different levels and in different, sometimes contradictive ways, to shape the genetic identity and delimitations of species and
Recommended publications
  • The Crustacea Decapoda (Brachyura and Anomura) of Eniwetok Atoll, Marshall Islands, with Special Reference to the Obligate Commensals of Branching Corals 1
    The Crustacea Decapoda (Brachyura and Anomura) of Eniwetok Atoll, Marshall Islands, with special reference to the obligate commensals of branching corals 1 John S. GARTH Allan Hancock Foundation Univer5ity of Southern California 2 and Eniwetok Ma rine Biological Laboratory Introduction The brachyuran decapod crustaceans of the Marsh all Islands have been reviewed by Balss (1938) and by Miyake (1938, 1939). These reports stem from the German and Jap anese occupations, respect ively, the former being the result of the Pacific Exp edition of Dr. Sixten Bock, 1917-1918, the latter th e result of the Micronesia Expedition of Prof. Te iso Esaki, 1937-1938. According to Fosberg (1956, p. 1), J aluit Atoll was the headquarters of both the German and the Japan ese administrations, a fact that accounts for the preponderanc e of record s from the southern Marshall Isl ands. Additional coverage of the southern Marsh alls was provided by the 1950 Arno Atoll Expedition of the Coral Atoll Program of the Pa cific Science Board, the decapod crustaceans collected by Dr. R. W. Hiatt having been reported by Holthuis (1953). Carcinologically speak­ ing, the northern Marshalls ar e less well known, collections having been made only at Likieb Atoll by both Dr. Bock and Prof. Esaki and at Kwajalein Atoll by Prof . Esaki alone. Except for the shrimps, reported by Chace (1955), the extensive collections made in connection with Operation Crossroads in 1946- 1947, which includ ed Bikini, Rongelap, Rongerik, and Eniwetok atolls (Fosberg, 1956, p. 4), are at the U.S. Nationa l Museum awaiting stud y.
    [Show full text]
  • Evaluación De Riesgo De Extinción De Pocillopora Inflata De Acuerdo Al Numeral 5.7 De La Norma Oficial Mexicana NOM-059-SEMARNAT-2010
    Evaluación de Riesgo de Extinción de Pocillopora inflata de acuerdo al numeral 5.7 de la Norma Oficial Mexicana NOM-059-SEMARNAT-2010. 5.7.1 DATOS GENERALES DEL RESPONSABLE DE LA PROPUESTA Autores: Nájera-Hillman Eduardo1 y Meléndez-Rosas Rebeca1 1COSTASALVAJE, A.C. Domicilio: Boulevard Las Dunas No. 160 Interior 203. Fraccionamiento Playa de Ensenada, Ensenada Baja California. CP 22880 Teléfono: 016461521518 e-mail: [email protected], [email protected] Asesores: 5.7.2 NOMBRE CIENTÍFICO VÁLIDO CITANDO LA AUTORIDAD TAXONÓMICA RESPECTIVA Pocillopora inflata Glynn, 1999 La página web utilizada para proporcionar el nombre científico de la especie, fue WoRMS (WoRMS editorial board, 2018) y UICN-Red List for Threatened Species. SINÓNIMOS No existen NOMBRES COMUNES No existen TAXONOMÍA Reino: Animalia Phylum: Cnidaria Clase: Anthozoa Orden: Scleractinia Familia: Pocilloporidae Genero: Pocillopora Especie: Pocillopora inflata Glynn, 1999 1 2 1Fotografía: Glynn, 1999. 2Fotografía: Reyes-Bonilla et al. 2017, tomada al Sur del Golfo de California. MOTIVO DE LA PROPUESTA La investigación documental que se condujo sobre la especie de coral P. inflata, evidenció el riesgo que tiene esta especie de desaparecer del territorio nacional. Debido a su restringido rango de distribución, prácticas de explotación comercial por el acuarismo y extensas amenazas al hábitat de arrecifes de coral, se propone que la especie sea incorporada bajo la categoría “Amenazada” de la NOM-059- SEMARNAT-2010. 5.7.3 MAPA DE DISTRIBUCIÓN GEOGRÁFICA DE P. inflata Figura 1. Registros de la distribución del coral Pocillopora inflata en México. 5.7.4 JUSTIFICACIÓN TÉCNICA CIENTÍFICA DE LA PROPUESTA a) Análisis diagnóstico del estado actual de la especie y su hábitat El coral Pocillopora inflata tiene una distribución geográfica restringida, siendo endémico del Pacífico Oriental Tropical.
    [Show full text]
  • Index to Volume 53
    Index to Volume 53 Author Index ABURTO-OROPEZA, OCTAVIo-see Sala et al. EWING, CURTIS ALLEN, MELINDA S., and GAIL M. MURAKAMI The Endemic Hawaiian Sap Beetles (Coleoptera: Liina'i Island's Arid Lowland Vegetation in Late Nitidulidae): Distribution, Ecological Shifts, and Prehistory, 88-112 Adaptation (abstract), 114-115 ARREOLA-RoBLES, JosE L.-see Sala et al. ASQUITH, ADAM-see Kido et al. ATAN, HUGO-see Osorio et al. FILARDI, CHRISTOPHER E., CATHERINE E. SMITH, ATKINSON, MARLIN J.-see Tarrant et al. ANDREW W. KRATTER, DAVID W. STEADMAN, and ATKINSON, SHANNON-See Tarrant et al. H. PRICE WEBB New Behavioral, Ecological, and Biogeographic Data BAILEy-BROCK, JULIE H. on the Avifauna of Rennell, Solomon Islands, 319­ NeriIlidae of Hawai'i: Two New Records of 340 Interstitial Polychaetes, 299-304 FLETCHER, CHARLES H., III-see Harney et al. see also Brock et al. FOALE, SIMON BAILEy-BROCK, JULIE H., VERNON R. BROCK, and Local Ecological Knowledge and Biology of the Land RiCHARD E. BROCK Crab Cardisoma hirtipes (Decapoda: Gecarcinidae) Intrusion of Anchialine Species in the Marine at West Nggela, Solomon Islands, 37-49 Environment: The Appearance of an Endemic FOSTER, JAMIE S. Hawaiian Shrimp, Halocaridina rubra, on the South Lipopolysaccharide-Induced Apoptosis in the Shore ofO'ahu (Hawaiian Islands), 367-369 Symbiotic Light Organ of the Sepiolid Squid BIRKELAND, C. E.-see Green et al. Euprymna scolopes (abstract), liS BROCK, RICHARD E.-see Bailey-Brock et al. BROCK, RiCHARD, JULIE H. BAILEy-BROCK, and JOHN GARB, JESSICA E. GOODY Origins ofthe Hawaiian Crab Spider Fauna (abstract), A Case Study of Efficacy of Freshwater Immersion in 115-116 Controlling Introduction of Alien Marine Fouling GARRISON, JENNIFER Communities: The USS Missouri, 223-231 Role of Alien Tree Plantations in Native Forest BROCK, VERNON R.-see Bailey-Brock et al.
    [Show full text]
  • Conservation of Reef Corals in the South China Sea Based on Species and Evolutionary Diversity
    Biodivers Conserv DOI 10.1007/s10531-016-1052-7 ORIGINAL PAPER Conservation of reef corals in the South China Sea based on species and evolutionary diversity 1 2 3 Danwei Huang • Bert W. Hoeksema • Yang Amri Affendi • 4 5,6 7,8 Put O. Ang • Chaolun A. Chen • Hui Huang • 9 10 David J. W. Lane • Wilfredo Y. Licuanan • 11 12 13 Ouk Vibol • Si Tuan Vo • Thamasak Yeemin • Loke Ming Chou1 Received: 7 August 2015 / Revised: 18 January 2016 / Accepted: 21 January 2016 Ó Springer Science+Business Media Dordrecht 2016 Abstract The South China Sea in the Central Indo-Pacific is a large semi-enclosed marine region that supports an extraordinary diversity of coral reef organisms (including stony corals), which varies spatially across the region. While one-third of the world’s reef corals are known to face heightened extinction risk from global climate and local impacts, prospects for the coral fauna in the South China Sea region amidst these threats remain poorly understood. In this study, we analyse coral species richness, rarity, and phylogenetic Communicated by Dirk Sven Schmeller. Electronic supplementary material The online version of this article (doi:10.1007/s10531-016-1052-7) contains supplementary material, which is available to authorized users. & Danwei Huang [email protected] 1 Department of Biological Sciences and Tropical Marine Science Institute, National University of Singapore, Singapore 117543, Singapore 2 Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands 3 Institute of Biological Sciences, Faculty of
    [Show full text]
  • Informe FINAL EVALUACIÓN ECOLOGICA RAPIDA DE LOS
    1866 INFORME FINAL EVALUACIÓN ECOLÓGICA RÁPIDA DE LOS AMBIENTES ARRECIFALES DE LAS ISLAS 0 MURCIÉLAGO Y ALREDEDORES, ÁREA DE CONSERVACIÓN GUANACASTE, CON ESPECIAL ÉNFASIS EN PEPINOS DE MAR INFORME FINAL EVALUACIÓN ECOLÓGICA RÁPIDA DE LOS AMBIENTES ARRECIFALES DE LAS ISLAS MURCIÉLAGO Y ALREDEDORES, ÁREA DE CONSERVACIÓN GUANACASTE, CON ESPECIAL ÉNFASIS EN PEPINOS DE MAR 1 Jorge Cortés Núñez, Juan José Alvarado, Andrés Beita Jiménez, Sebastián Mena González Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) Universidad de Costa Rica JULIO 2014 INTRODUCCIÓN Los pepinos de mar (clase Holothuroidea) son invertebrados exclusivamente marinos pertenecientes al grupo de los equinodermos (Filo Echinodermata) (erizos de mar, estrellas de mar, lirios de mar entre otros). A nivel mundial existen aproximadamente 1400 especies de pepinos de mar (Pawson 2007), de los cuales en la actualidad 66 especies están siendo explotadas (Toral-Granda et al. 2008, Purcell et al. 2012, 2013). Costa Rica posee un total de 80 especies, lo que representa un 5.7% de la diversidad mundial del grupo. A nivel nacional, la costa Pacífica es la más diversa con 28 especies, seguida por la Isla del Coco (26 especies) y por último la costa Caribe con tan solo 4 especies (Alvarado et al. 2013). Los pepinos de mar son organismos bentónicos, móviles, que consumen sedimentos y partículas en suspensión. A través de esta actividad alimenticia los pepinos de mar procesan el sedimento en el fondo marino, con una eficiencia muy alta, que produce que este al ser defecado sea rico en materia orgánica, la cual es utilizada por otros organismos para su alimentación (Birkeland 1989).
    [Show full text]
  • Darwin Initiative Annual Report
    Darwin Initiative Annual Report Darwin Project Information Project Ref Number 14-048 Project Title Galapagos Coral Conservation: Impact Mitigation, Mapping and Monitoring Country(ies) Ecuador UK Contract Holder Institution University of Edinburgh UK Partner Institution(s) N/A Host country Partner Institution(s) Charles Darwin Research Foundation, Conservation International, Galapagos National Park Service, WildAid Darwin Grant Value £150,000 Start/End dates of Project May 2005 / April 2008 Reporting period (1 Apr 200x to 1 Apr 2006 to 31 Mar 2007 31 Mar 200y) and annual report number (1, 2, 3...) Annual Report Number 2 Project Leader Name Dr Terence P. Dawson Project website http://www.geos.ed.ac.uk/research/globalchange/grou p4/Galapagoscoral.html Author(s), date Terence Dawson, Stuart Banks, Scott Henderson, Godfrey Merlin, 2007 1. Project Background Wolf and Darwin islands form a distinct and isolated biogeographic zone in the Galapagos Islands that supports a high level of biodiversity, including priority conservation endemic corals and associated species, subject to extreme ‘natural’ climatic and anthropogenic pressures. The extreme climatic fluctuations under El Niño events in the region are particularly damaging for coral populations - extensive coral reefs were reduced by 97% in 1982-83 and further compounded to 99% losses in 1997-98. Subsequent surveys show that Wolf and Darwin harbour >95% of the coral species now found in the Galapagos Marine Reserve (GMR) including rare corals (e.g. Leptoseris sp.) that may well become locally and indeed globally extinct, and demand special attention to their conservation. Although Galapagos coral research 1 Annual Report template with notes 2007 has been carried out previously, this project constitutes the most comprehensive study using innovative mapping techniques undertaken to date in the remote northern islands.
    [Show full text]
  • Distribution, Diversity, and Conservation of Coral Reefs and Coral Communities in the Largest Marine Protected Area of Pacific Panama (Coiba Island)
    Environmental Conservation 31 (2): 111–121 © 2004 Foundation for Environmental Conservation DOI:10.1017/S0376892904001250 Distribution, diversity, and conservation of coral reefs and coral communities in the largest marine protected area of Pacific Panama (Coiba Island) HECTOR M. GUZMAN1 *, CARLOS A. GUEVARA1 AND ODALISCA BREEDY2 1Smithsonian Tropical Research Institute, Unit 0948, APO AA 34002-0948, USA and 2Museo de Zoolog´ıa, Escuela de Biolog´ıa, Universidad de Costa Rica, San Jose,´ Costa Rica Date submitted: 11 July 2003 Date accepted: 3 March 2004 SUMMARY of marine ecosystems is complex, and efforts to understand the processes and patterns that characterize the distribution of Sampling scale and lack of attention to taxa other than their biological diversity have been approximate and incom- scleractinian corals have limited the capacity to pro- plete ( Jackson 1991, 1994; Norse 1993; NRC [National Re- tect coral reefs and coral communities in Pacific search Council] 1995). To understand the most fundamental Panama. The distribution of coral habitats (live processes that create, maintain and regulate this biological coral cover) and their species richness in the diversity is a basic priority for the conservation of marine largest marine protected area of Panama, the Coiba resources, as this will allow for their protection over the long National Park (270 125 ha), is described using quad- term (NRC 1995, 2001). The accelerated demise of marine rat transects and manta tows. The species rich- ecosystems, particularly coral reefs (NRC 1995), has increased ness of scleractinian corals and octocorals was lower in scientific efforts to discern the structure and functioning of coral reefs than in coral communities, and a close rela- marine communities and the effects of this deterioration on tionship between richness and live coral cover was ob- the abundance and distribution of species observed today served only in coral communities.
    [Show full text]
  • Switch Between Morphospecies of Pocillopora Corals Author(S): David A
    The University of Chicago Switch between Morphospecies of Pocillopora Corals Author(s): David A. Paz-García, Michael E. Hellberg, Francisco J. García-de-León, Eduardo F. Balart Source: The American Naturalist, Vol. 186, No. 3 (September 2015), pp. 434-440 Published by: The University of Chicago Press for The American Society of Naturalists Stable URL: http://www.jstor.org/stable/10.1086/682363 . Accessed: 13/09/2015 13:16 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press, The American Society of Naturalists, The University of Chicago are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org This content downloaded from 128.95.104.109 on Sun, 13 Sep 2015 13:16:46 PM All use subject to JSTOR Terms and Conditions vol. 186, no. 3 the american naturalist september 2015 Natural History Note Switch between Morphospecies of Pocillopora Corals David A. Paz-García,1,2 Michael E. Hellberg,3 Francisco J. García-de-León,2 and Eduardo F. Balart1,* 1. Laboratorio de Necton y Ecología de Arrecifes, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Instituto Politécnico Nacional 195, Colonia Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico; 2.
    [Show full text]
  • Factors That Limit Establishment of Stony Corals By: Michelle C
    Factors That Limit Establishment of Stony Corals By: Michelle C. Temby; Research Sponsor (PI): Emilia Triana and Frank Joyce ABSTRACT Corals occupy less than 1% of the surface area of world oceans but provide a home for 25% of all marine fish species. This study analyzed individual coral heads, specifically the genus Pocillopora (tentative identification: Po- cillopora elegans), and their establishments in Cuajiniquil using 3 locations in the Guanacaste province of Costa Rica to understand why coral reefs are not establishing at some sites. These sites occur at Bajo Rojo, Bahía Thomas West, and Isla David. The size of establishing coral heads, the surrounding water temperature where each coral head occurred, the urchin cover in a 30 cm radius of each coral head, the bleaching of each individual coral head, the substrate the coral was establishing on, the approximate angle of the substrate, the depth of the coral, and the surge of the water at each site were recorded. The potential factors that affect coral establishment ofPocillopora in Guanacaste, Costa Rica along the coast of Cuajiniquil were investigated: urchin populations may compete with corals for substrate, strong surges may displace larvae, and a range in coral health measured by bleaching may af- fect coral establishments observed at Isla David and Bajo Rojo. Pocillopora spp. are, however, establishing in larger numbers at Bahía Thomas which may be due to the weak surge, the smaller quantities of urchins, and the good health of individual establishing corals. Department and Year: Department of Integrative Biology, University of California, Berkeley 7 June 2019 Keywords: Costa Rica, Coral establishment, Stony coral, Pocillopora, Pocillopora elegans INTRODUCTION al.
    [Show full text]
  • Center for Biological Diversity-2009-TN1518-Ctr Bio
    BEFORE THE SECRETARY OF COMMERCE PETITION TO LIST 83 CORAL SPECIES UNDER THE ENDANGERED SPECIES ACT Blue rice coral photo © Keoki Stender Submitted October 20, 2009 NOTICE OF PETITION Gary Locke Secretary of Commerce U.S. Department of Commerce 1401 Constitution Avenue, N.W., Room 5516 Washington, D.C. 20230 E-mail: [email protected] James Balsiger, Acting Director NOAA Fisheries National Oceanographic and Atmospheric Administration 1315 East-West Highway Silver Springs, MD 20910 E-mail: [email protected] PETITIONER The Center for Biological Diversity 351 California Street, Suite 600 San Francisco, CA 94104 ph: (415) 436-9682 fax: (415) 436-9683 Date: October 20, 2009 Miyoko Sakashita Shaye Wolf Center for Biological Diversity Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. §1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 553(e), and 50 C.F.R. §424.14(a), the Center for Biological Diversity (“Petitioner”) hereby petitions the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (“NOAA”), through the National Marine Fisheries Service (“NMFS” or “NOAA Fisheries”), to list 83 coral species and to designate critical habitat to ensure their survival and recovery. The Center for Biological Diversity (“Center”) is a non-profit, public interest environmental organization dedicated to the protection of native species and their habitats through science, policy, and environmental law. The Center has over 43,000 members throughout the United States and internationally. The Center and its members are concerned with the conservation of endangered species, including coral species, and the effective implementation of the ESA.
    [Show full text]
  • Growth Rates of Eight Species of Scleractinian Corals in the Eastern Pacific (Costa Rica)
    BULLETIN OF MARINE SCIENCE, 44(3): 1186-1194, 1989 CORAL REEF PAPER GROWTH RATES OF EIGHT SPECIES OF SCLERACTINIAN CORALS IN THE EASTERN PACIFIC (COSTA RICA) Hector M. Guzman and Jorge Cortes ABSTRACT The annual linear skeletal growth rates for the following hermatypic corals was studied at thc non-upwelling area of Caiio Island, Costa Rica: Porites lobata Dana; Pavona varians Verrill; Pavona clavus Dana; Pavona gigantea Verrill; Gardineroseris planulata (Dana); Psam- mocora superficialis (Gardiner); Pocillopora elegans Dana; Pocillopora damicornis (Linnaeus). The seasonal growth rates of the main reef-building corals, P. lobata and P. damicornis, were measured and correlated with five environmental variables. Growth rates for P. varians and P. superficialis are presented for the first time. The species with growth rates similar to corals from non-upwelling areas, Porites lobata, Pocillopora damicornis, P. elegans, are the dominant species at Caiio Island, while the other species studied, Pavona clavus, P. gigantea and Gardineroseris planulata, have reduced growth rates compared to other areas. The results suggest that seasonal growth, which is greater during the dry season, may be affected by variations in available light, cloud cover, turbidity, salinity and reproductive time rather than temperature changes. Coral reefs grow under a variety of oceanographic and climatic conditions (e.g., upwelling and non-upwelling areas) along the Tropical Eastern Pacific coast, from Ecuador to Costa Rica. Thus, the community structure (coral zonation, abun- dance, and dominance) of these reefs differs markedly among localities, and the growth rates and morphology of colonial corals vary greatly in response to different environmental factors (Dodge and Vaisnys, 1975; Chappell, 1980; Hudson, 1981).
    [Show full text]
  • Eastern Pacific Coral Reef Provinces, Coral Community Structure and Composition: 5 an Overview
    Eastern Pacific Coral Reef Provinces, Coral Community Structure and Composition: 5 An Overview Peter W. Glynn, Juan J. Alvarado, Stuart Banks, Jorge Cortés, Joshua S. Feingold, Carlos Jiménez, James E. Maragos, Priscilla Martínez, Juan L. Maté, Diana A. Moanga, Sergio Navarrete, Héctor Reyes-Bonilla, Bernhard Riegl, Fernando Rivera, Bernardo Vargas-Ángel, Evie A. Wieters, and Fernando A. Zapata J.L. Maté Smithsonian Tropical Research Institute, 0843-03092 Panama, By consensus, authors are arranged alphabetically after lead author Republic of Panama P. W. Glynn e-mail: [email protected] D.A. Moanga P.W. Glynn (&) Department of Environmental Science, Policy, & Management, Department of Marine Biology and Ecology, Rosenstiel School of University of California, Berkeley, # 326 Mulford Hall, Berkeley, Marine and Atmospheric Science, 4600 Rickenbacker Causeway, 94720, CA, USA Miami, FL 33149, USA e-mail: [email protected] e-mail: [email protected] S. Navarrete J.J. Alvarado Estación Costera de Investigaciones Marinas, Advanced Studies in Escuela de Biología/Museo de Biología, Centro de Investigación Ecology and Biodiversity, Departamento de Ecología, Facultad de en Ciencias del Mar y Limnología (CIMAR), Universidad de Ciencias Biológicas, Pontificia, Universidad Católica de Chile, Costa Rica, 11501-2060 San Pedro, San José, Costa Rica Casilla 114-d, Alameda 340, Santiago, Chile e-mail: [email protected] e-mail: [email protected] S. Banks H. Reyes-Bonilla Marine Ecosystem Research Programme, Charles Darwin Departamento Académico de Biología Marina, Universidad Research Station, Galápagos, Ecuador; Conservation International, Autónoma de Baja California Sur, Carretera al sur km 5.5. col. El c/o Christian Lavoie, Av. Catalina Aldáz N34-181 y Portugal, Mezquitito, 23080 La Paz, B.C.S, Mexico Edificio Titanium II, Piso 4, of.
    [Show full text]