Corticosterone Signaling and a Lateral Habenula–Ventral Tegmental Area Circuit Modulate Compulsive Self-Injurious Behavior in a Rat Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tonic Activity in Lateral Habenula Neurons Promotes Disengagement from Reward-Seeking Behavior
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426914; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Tonic activity in lateral habenula neurons promotes disengagement from reward-seeking behavior 5 Brianna J. Sleezer1,3, Ryan J. Post1,2,3, David A. Bulkin1,2,3, R. Becket Ebitz4, Vladlena Lee1, Kasey Han1, Melissa R. Warden1,2,5,* 1Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA 2Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA 10 3These authors contributed equally 4Department oF Neuroscience, Université de Montréal, Montréal, QC H3T 1J4, Canada 5Lead Contact *Correspondence: [email protected] 15 Sleezer*, Post*, Bulkin* et al. 1 of 38 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.15.426914; this version posted January 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SUMMARY Survival requires both the ability to persistently pursue goals and the ability to determine when it is time to stop, an adaptive balance of perseverance and disengagement. Neural activity in the 5 lateral habenula (LHb) has been linked to aversion and negative valence, but its role in regulating the balance between reward-seeking and disengaged behavioral states remains unclear. -
Neural Plasticity in the Brain During Neuropathic Pain
biomedicines Review Neural Plasticity in the Brain during Neuropathic Pain Myeong Seong Bak 1, Haney Park 1 and Sun Kwang Kim 1,2,* 1 Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; [email protected] (M.S.B.); [email protected] (H.P.) 2 Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-0491 Abstract: Neuropathic pain is an intractable chronic pain, caused by damage to the somatosensory nervous system. To date, treatment for neuropathic pain has limited effects. For the development of efficient therapeutic methods, it is essential to fully understand the pathological mechanisms of neuropathic pain. Besides abnormal sensitization in the periphery and spinal cord, accumulating evidence suggests that neural plasticity in the brain is also critical for the development and mainte- nance of this pain. Recent technological advances in the measurement and manipulation of neuronal activity allow us to understand maladaptive plastic changes in the brain during neuropathic pain more precisely and modulate brain activity to reverse pain states at the preclinical and clinical levels. In this review paper, we discuss the current understanding of pathological neural plasticity in the four pain-related brain areas: the primary somatosensory cortex, the anterior cingulate cortex, the periaqueductal gray, and the basal ganglia. We also discuss potential treatments for neuropathic pain based on the modulation of neural plasticity in these brain areas. Keywords: neuropathic pain; neural plasticity; primary somatosensory cortex; anterior cingulate cortex; periaqueductal grey; basal ganglia Citation: Bak, M.S.; Park, H.; Kim, S.K. -
Brain Structure and Function Related to Headache
Review Cephalalgia 0(0) 1–26 ! International Headache Society 2018 Brain structure and function related Reprints and permissions: sagepub.co.uk/journalsPermissions.nav to headache: Brainstem structure and DOI: 10.1177/0333102418784698 function in headache journals.sagepub.com/home/cep Marta Vila-Pueyo1 , Jan Hoffmann2 , Marcela Romero-Reyes3 and Simon Akerman3 Abstract Objective: To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background: Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus: This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms -
Neural Circuit and Clinical Insights from Intraoperative Recordings During Deep Brain Stimulation Surgery
brain sciences Perspective Neural Circuit and Clinical Insights from Intraoperative Recordings During Deep Brain Stimulation Surgery Anand Tekriwal 1,2,3 , Neema Moin Afshar 2, Juan Santiago-Moreno 3, Fiene Marie Kuijper 4, Drew S. Kern 1,5, Casey H. Halpern 4, Gidon Felsen 2 and John A. Thompson 1,5,* 1 Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80203, USA 2 Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80203, USA 3 Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80203, USA 4 Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA 5 Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80203, USA * Correspondence: [email protected] Received: 28 June 2019; Accepted: 18 July 2019; Published: 20 July 2019 Abstract: Observations using invasive neural recordings from patient populations undergoing neurosurgical interventions have led to critical breakthroughs in our understanding of human neural circuit function and malfunction. The opportunity to interact with patients during neurophysiological mapping allowed for early insights in functional localization to improve surgical outcomes, but has since expanded into exploring fundamental aspects of human cognition including reward processing, language, the storage and retrieval of memory, decision-making, as well as sensory and motor processing. The increasing use of chronic neuromodulation, via deep brain stimulation, for a spectrum of neurological and psychiatric conditions has in tandem led to increased opportunity for linking theories of cognitive processing and neural circuit function. Our purpose here is to motivate the neuroscience and neurosurgical community to capitalize on the opportunities that this next decade will bring. -
Loss of the Habenula Intrinsic Neuromodulator Kisspeptin1 Affects Learning in Larval Zebrafish
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Loss of the habenula intrinsic neuromodulator Kisspeptin1 affects learning in larval zebrafish Lupton, Charlotte; Sengupta, Mohini; Cheng, Ruey‑Kuang; Chia, Joanne; Thirumalai, Vatsala; Jesuthasan, Suresh 2017 Lupton, C., Sengupta, M., Cheng, R.‑K., Chia, J., Thirumalai, V., & Jesuthasan, S. (2017). Loss of the habenula intrinsic neuromodulator Kisspeptin1 affects learning in larval zebrafish. eNeuro, 4(3), e0326‑16.2017‑. doi:10.1523/ENEURO.0326‑16.2017 https://hdl.handle.net/10356/107013 https://doi.org/10.1523/ENEURO.0326‑16.2017 © 2017 Lupton et al. This is an open‑access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. Downloaded on 29 Sep 2021 15:54:33 SGT New Research Cognition and Behavior Loss of the Habenula Intrinsic Neuromodulator Kisspeptin1 Affects Learning in Larval Zebrafish Joanne Chia,5 Vatsala ء,Ruey-Kuang Cheng,4 ء,Mohini Sengupta,3 ء,Charlotte Lupton,1,2 and Suresh Jesuthasan2,4,6 ء,Thirumalai,3 DOI:http://dx.doi.org/10.1523/ENEURO.0326-16.2017 1Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK, 2Institute for Molecular and Cell Biology, 138673, Singapore, 3National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India, 4Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore, 5National University of Singapore Graduate School for Integrative Sciences and Engineering, 117456, Singapore, and 6Duke-NUS Graduate Medical School, 169857 Singapore Abstract Learning how to actively avoid a predictable threat involves two steps: recognizing the cue that predicts upcoming punishment and learning a behavioral response that will lead to avoidance. -
Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons
The Journal of Neuroscience, June 27, 2007 • 27(26):6923–6930 • 6923 Behavioral/Systems/Cognitive Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons through a GABAA Receptor-Mediated Mechanism Huifang Ji and Paul D. Shepard Maryland Psychiatric Research Center and Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228 Transient changes in the activity of midbrain dopamine neurons encode an error signal that contributes to associative learning. Although considerableattentionhasbeendevotedtothemechanismscontributingtophasicincreasesindopamineactivity,lessisknownaboutthe origin of the transient cessation in firing accompanying the unexpected loss of a predicted reward. Recent studies suggesting that the lateral habenula (LHb) may contribute to this type of signaling in humans prompted us to evaluate the effects of LHb stimulation on the activity of dopamine and non-dopamine neurons of the anesthetized rat. Single-pulse stimulation of the LHb (0.5 mA, 100 s) transiently suppressed the activity of 97% of the dopamine neurons recorded in the substantia nigra and ventral tegmental area. The duration of the cessation averaged ϳ85 ms and did not differ between the two regions. Identical stimuli transiently excited 52% of the non-dopamineneuronsintheventralmidbrain.ElectrolyticlesionsofthefasciculusretroflexusblockedtheeffectsofLHbstimulationon dopamine neurons. Local application of bicuculline but not the SK-channel blocker apamin attenuated the effects of LHb stimulation on dopamine cells, indicating that the response is mediated by GABAA receptors. These data suggest that LHb-induced suppression of dopamine cell activity is mediated indirectly by orthodromic activation of putative GABAergic neurons in the ventral midbrain. The habenulomesencephalic pathway, which is capable of transiently suppressing the activity of dopamine neurons at a population level, may represent an important component of the circuitry involved in encoding reward expectancy. -
Increased Theta/Alpha Synchrony in the Habenula-Prefrontal Network with Negative
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424800; this version posted January 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Increased theta/alpha synchrony in the habenula-prefrontal network with negative 2 emotional stimuli in human patients 3 Yongzhi Huang1,2*, Bomin Sun3*, Jean Debarros4, Chao Zhang3, Shikun Zhan3, Dianyou Li3, 4 Chencheng Zhang3, Tao Wang3, Peng Huang3, Yijie Lai3, Peter Brown4, Chunyan Cao3†, 5 Huiling Tan4† 6 1 Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 7 300072, China 8 2 Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK 9 3 Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of 10 Medicine, Shanghai 200025, China 11 4 Medical Research Council (MRC) Brain Network Dynamics Unit at the University of Oxford, 12 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK 13 * These authors contributed equally to this work 14 † Corresponding author. 15 Address correspondence to: 16 Huiling Tan, 6th Floor West Wing JR Hospital, MRC Brain Network Dynamics Unit, Nuffield 17 Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Phone: 18 (+44) 01865-572483; Email: [email protected]; 19 or Chunyan Cao, Center of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong 20 University School of Medicine, Shanghai 200025, China; Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.30.424800; this version posted January 1, 2021. -
The Use of Neuromodulation in the Treatment of Cocaine Dependence Lucia M
Original Article ADDICTIVE 1 DISORDERS & THEIR TREATMENT Volume 13, Number 1 March 2014 The Use of Neuromodulation in the Treatment of Cocaine Dependence Lucia M. Alba-Ferrara, PhD, Francisco Fernandez, MD, and Gabriel A. de Erausquin, MD, PhD, MSc reports of craving, which usually pre- Abstract cedes the seeking and taking of drugs. Cocaine-related disorders are currently among the Understanding the pathophysiology of most devastating mental diseases, as they impover- ish all spheres of life resulting in tremendous eco- addiction and the neurobiological basis nomic, social, and moral costs. Despite multiple of craving in particular, is essential for efforts to tackle cocaine dependence, pharmacolog- designing better index of treatment re- ical as well as cognitive therapies have had limited success. In this review, we discuss the use of recent sponse and for developing new thera- neuromodulation techniques, such as conventional peutic interventions. repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation, and the use of H coils for deep rTMS for the treatment of cocaine dependence. Moreover, we discuss attempts to identify optimal brain targets underpinning cocaine craving and with- THE ANATOMIC BASIS OF drawal for neurodisruption treatment, as well as some weaknesses in the literature, such as the ab- COCAINE DEPENDENCE sence of biomarkers for individual risk classification and the inadequacy of treatment outcome measures, Several investigations have con- which may delay progress in the field. Finally, we present some genetic markers candidates and objec- cluded that the most likely final com- From the Department of tive outcome measures, which could be applied in mon pathway underpinning drugs’ Psychiatry and Neuroscience, combination with transcranial magnetic stimulation treatment of cocaine dependence. -
A Hierarchical Interpretation of the Functional Organization of the Basal Ganglia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central HYPOTHESIS AND THEORY ARTICLE published: 11 March 2011 SYSTEMS NEUROSCIENCE doi: 10.3389/fnsys.2011.00013 The arbitration–extension hypothesis: a hierarchical interpretation of the functional organization of the basal ganglia Iman Kamali Sarvestani1,2*, Mikael Lindahl1,2, Jeanette Hellgren-Kotaleski1,2,3 and Örjan Ekeberg1,2 1 Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology, Stockholm, Sweden 2 Stockholm Brain Institute, Stockholm, Sweden 3 Department of Neuroscience, Karolinska Institute, Stockholm, Sweden Edited by: Based on known anatomy and physiology, we present a hypothesis where the basal ganglia Federico Bermudez-Rattoni, motor loop is hierarchically organized in two main subsystems: the arbitration system and Universidad Nacional Autónoma de México, Mexico the extension system. The arbitration system, comprised of the subthalamic nucleus, globus Reviewed by: pallidus, and pedunculopontine nucleus, serves the role of selecting one out of several candidate Federico Bermudez-Rattoni, actions as they are ascending from various brain stem motor regions and aggregated in the Universidad Nacional Autónoma de centromedian thalamus or descending from the extension system or from the cerebral cortex. México, Mexico This system is an action-input/action-output system whose winner-take-all mechanism finds Jose Bargas, Universidad Nacional Autónoma de México, Mexico the strongest response among several candidates to execute. This decision is communicated *Correspondence: back to the brain stem by facilitating the desired action via cholinergic/glutamatergic projections Iman Kamali Sarvestani, Department and suppressing conflicting alternatives via GABAergic connections. -
Understanding the Role of Cholinergic Tone in the Pedunculopontine Tegmental Nucleus
Western University Scholarship@Western Electronic Thesis and Dissertation Repository 7-22-2014 12:00 AM Understanding the role of cholinergic tone in the pedunculopontine tegmental nucleus Kaie Rosborough The University of Western Ontario Supervisor Dr. Vania Prado The University of Western Ontario Graduate Program in Anatomy and Cell Biology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Kaie Rosborough 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Behavioral Neurobiology Commons Recommended Citation Rosborough, Kaie, "Understanding the role of cholinergic tone in the pedunculopontine tegmental nucleus" (2014). Electronic Thesis and Dissertation Repository. 2388. https://ir.lib.uwo.ca/etd/2388 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. UNDERSTANDING THE ROLE OF CHOLINERGIC TONE IN THE PEDUNCULOPONTINE TEGMENTAL NUCLEUS Thesis format: Monograph Article by Kaie Rosborough Graduate Program in Anatomy and Cell Biology A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Kaie Rosborough 2014 ! Abstract To better understand the role of cholinergic signaling in specific regions of the brain, several genetically modified mice targeting the vesicular acetylcholine transporter (VAChT) gene have been generated (Prado et al., 2006; Guzman et al., 2011; de Castro et al., 2009). VAChT stores acetylcholine (ACh) in synaptic vesicles, and changes in this transporter expression directly interferes with ACh release. -
The External Pallidum: Think Locally, Act Globally
The external pallidum: think locally, act globally Connor D. Courtney, Arin Pamukcu, C. Savio Chan Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA Correspondence should be addressed to C. Savio Chan, Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611. [email protected] Running title: GPe neuron diversity & function Keywords: cellular diversity, synaptic connectivity, motor control, Parkinson’s disease Main text: 5789 words Text boxes: 997 words Acknowledgments We thank past and current members of the Chan Lab for their creativity and dedication to our understanding of the pallidum. This work was supported by NIH R01 NS069777 (CSC), R01 MH112768 (CSC), R01 NS097901 (CSC), R01 MH109466 (CSC), R01 NS088528 (CSC), and T32 AG020506 (AP). Abstract (117 words) The globus pallidus (GPe), as part of the basal ganglia, was once described as a black box. As its functions were unclear, the GPe has been underappreciated for decades. The advent of molecular tools has sparked a resurgence in interest in the GPe. A recent flurry of publications has unveiled the molecular landscape, synaptic organization, and functions of the GPe. It is now clear that the GPe plays multifaceted roles in both motor and non-motor functions, and is critically implicated in several motor disorders. Accordingly, the GPe should no longer be considered as a mere homogeneous relay within the so-called ‘indirect pathway’. Here we summarize the key findings, challenges, consensuses, and disputes from the past few years. Introduction (437 words) Our ability to move is essential to survival. We and other animals produce a rich repertoire of body movements in response to internal and external cues, requiring choreographed activity across a number of brain structures. -
Revue Rezai.Pdf
MOVEMENT DISORDERS SURGERY FOR MOVEMENT DISORDERS Ali R. Rezai, M.D. Center for Neurological Restoration, and MOVEMENT DISORDERS, SUCH as Parkinson’s disease, tremor, and dystonia, are Department of Neurosurgery, among the most common neurological conditions and affect millions of patients. Cleveland Clinic, Cleveland, Ohio Although medications are the mainstay of therapy for movement disorders, neurosurgery has played an important role in their management for the past 50 years. Surgery is now Andre G. Machado, M.D., Ph.D. a viable and safe option for patients with medically intractable Parkinson’s disease, Center for Neurological Restoration, and essential tremor, and dystonia. In this article, we provide a review of the history, neuro- Department of Neurosurgery, Cleveland Clinic, circuitry, indication, technical aspects, outcomes, complications, and emerging neuro- Cleveland, Ohio surgical approaches for the treatment of movement disorders. KEY WORDS: Deep brain stimulation, Dystonia, Essential tremor, Globus pallidus pars interna, Movement Milind Deogaonkar, M.D. disorders, Parkinson’s disease, Stereotaxis, Subthalamic nucleus, Ventralis intermedius nucleus Center for Neurological Restoration, and Department of Neurosurgery, Neurosurgery 62[SHC Suppl 2]:SHC809–SHC839, 2008 DOI: 10.1227/01.NEU.0000297003.12598.B9 Cleveland Clinic, Cleveland, Ohio Hooman Azmi, M.D. Historical Perspective predominantly limited to thalamotomy (8, Center for Neurological Restoration, and arious surgical approaches, such as 115–117, 149, 167, 254, 275, 343) for the treat- Department of Neurosurgery, resection, lesioning, stimulation, and ment of tremor and pallidotomy and thalamo- Cleveland Clinic, tomy for dystonia (224, 341, 371, 383). PD sur- Cleveland, Ohio others, have been used to treat patients V gery was rarely performed during this time.