Submm Observations of Massive Star Formation in the Giant Molecular Cloud NGC 6334: Gas Kinematics with Radiative Transfer Models
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Richness of Compact Radio Sources in NGC 6334D to F S.-N
Astronomy & Astrophysics manuscript no. main c ESO 2021 June 22, 2021 The richness of compact radio sources in NGC 6334D to F S.-N. X. Medina1, S. A. Dzib1, M. Tapia2, L. F. Rodríguez3, and L. Loinard3;4 1 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany 2 Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, B. C., CP 22830, Mexico 3 Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Morelia 58089, Mexico 4 Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, CdMx C.P. 04510, Mexico e-mail: smedina, sdzib, @mpifr-bonn.mpg.de; [email protected]; l.rodriguez, and l.loinard, @crya.unam.mx Received 2017; ABSTRACT Context. The presence and properties of compact radio sources embedded in massive star-forming regions can reveal important physical properties about these regions and the processes occurring within them. The NGC 6334 complex, a massive star-forming region, has been studied extensively. Nevertheless, none of these studies has focused in its content in compact radio sources. Aims. Our goal here is to report on a systematic census of the compact radio sources toward NGC 6334, and their characteristics. This will be used to try and define their very nature. Methods. We use VLA C band (4–8 GHz) archive data with 000.36 (500 AU) of spatial resolution and noise level of 50 µJy bm−1 to carry out a systematic search for compact radio sources within NGC 6334. We also search for infrared counterparts to provide some constraints on the nature of the detected radio sources. -
From: "MESSENGER, SCOTT R
The Starting Materials In: Meteorites and the Early Solar System II S. Messenger Johnson Space Center S. Sandford Ames Research Center D. Brownlee University of Washington Combined information from observations of interstellar clouds and star forming regions and studies of primitive solar system materials give a first order picture of the starting materials for the solar system’s construction. At the earliest stages, the presolar dust cloud was comprised of stardust, refractory organic matter, ices, and simple gas phase molecules. The nature of the starting materials changed dramatically together with the evolving solar system. Increasing temperatures and densities in the disk drove molecular evolution to increasingly complex organic matter. High temperature processes in the inner nebula erased most traces of presolar materials, and some fraction of this material is likely to have been transported to the outermost, quiescent portions of the disk. Interplanetary dust particles thought to be samples of Kuiper Belt objects probably contain the least altered materials, but also contain significant amounts of solar system materials processed at high temperatures. These processed materials may have been transported from the inner, warmer portions of the disk early in the active accretion phase. 1. Introduction A principal constraint on the formation of the Solar System was the population of starting materials available for its construction. Information on what these starting materials may have been is largely derived from two approaches, namely (i) the examination of other nascent stellar systems and the dense cloud environments in which they form, and (ii) the study of minimally altered examples of these starting materials that have survived in ancient Solar System materials. -
The Evolutionary Story Ahead of Biochemistry
Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story Ahead of Biochemistry Sandra Pizzarello1 and Everett Shock1,2 1Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 2School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287-1404 Correspondence: [email protected] Carbon-containing meteorites provide a natural sample of the extraterrestrial organic chemistry that occurred in the solar system ahead of life’s origin on the Earth. Analyses of 40 years have shown the organic content of these meteorites to be materials as diverse as kerogen-like macromolecules and simpler soluble compounds such as amino acids and polyols. Many meteoritic molecules have identical counterpart in the biosphere and, in a primitive group of meteorites, represent the majority of their carbon. Most of the compounds in meteorites have isotopic compositions that date their formation to presolar environments and reveal a long and active cosmochemical evolution of the biogenic elements. Whether this evolution resumed on the Earth to foster biogenesis after exogenous deliveryof meteoritic and cometary materials is not known, yet, the selective abundance of biomolecule precur- sors evident in some cosmic environments and the unique L-asymmetry of some meteoritic amino acids are suggestive of their possible contribution to terrestrial molecular evolution. INTRODUCTION that fostered biogenesis. These conditions are entirely unknown because geological and Why Meteorites are Part of the Discourse biological processes of over four billion years about the Origin of Life have long eradicated any traces of early Earth’s he studies of meteorites have long been part chemistry. -
The Anatomy of the Orion Jedi Revealed by Radio-Astronomy
Beyond the appearances: The anatomy of the Orion Jedi revealed by radio-astronomy Using the IRAM 30 meter radio-telescope in the Sierra Nevada of Spain, an international team of astronomers led by Jérôme Pety (IRAM & Observatoire de Paris) obtained the most complete radio- observations of the Orion B cloud, famous for hosting the Horsehead and Flame nebulae. Taking advantage of the fact that cold molecules shine at radio wavelengths and using machine learning methods adapted to this wealth of data, the team revealed the hidden anatomy of the Orion B cloud. Through a careful dissection of the cloud into regions of different molecular composition, they shed new light on how the darkest and coldest inner parts give birth to new stars. Following mankind's tradition of associating characters with features on the sky, the radio-astronomy view of Orion seems to show the skeleton of a fighting Star Wars Jedi! Using the IRAM 30 meter radio-telescope in Sierra Nevada (Spain), the ORION-B (Outstanding Radio-Imaging of OrionN B) project, an international scientific program led by Jérôme Pety (IRAM & Observatoire de Paris), has achieved the most complete observations in the radio domain of the Orion B giant molecular cloud (GMC), a huge reservoir of interstellar matter in the Orion nebula, containing about 70,000 times the mass of the Sun in gas and dust. Pety, astronomer at IRAM, explains: "Focused on a field around the well-known Horsehead and Flame nebulae, the ORION-B observations deliver a data set that amounts to about 160,000 images of 325 x 435 pixels, enough to make a movie of 1h50m at 24 frames per second. -
Ammonia Snow-Lines and Ammonium Salts Desorption ? F
Astronomy & Astrophysics manuscript no. aanda_ammonium-salts ©ESO 2021 April 22, 2021 Ammonia snow-lines and ammonium salts desorption ? F. Kruczkiewicz1; 2; 3, J. Vitorino2, E. Congiu2, P. Theulé1, and F. Dulieu2 1 Aix Marseille Univ, CNRS, CNES, LAM, Marseille, France e-mail: [email protected] 2 CY Cergy Paris Université, Observatoire de Paris, PSL University, Sorbonne Université, CNRS, LERMA, F-95000, Cergy, France 3 Max-Planck-Institut für extraterrestrische Physik, Gießenbachstraße 1, Garching, 85748, Germany Received –; accepted – ABSTRACT Context. The nitrogen reservoir in planetary systems is a long standing problem. Part of the N-bearing molecules is probably incor- porated into the ice bulk during the cold phases of the stellar evolution, and may be gradually released into the gas phase when the ice is heated, such as in active comets. The chemical nature of the N-reservoir should greatly influence how, when and in what form N returns to the gas phase, or is incorporated into the refractory material forming planetary bodies. Aims. We present the study the thermal desorption of two ammonium salts: ammonium formate and ammonium acetate from a gold surface and from a water ice substrate. Methods. Temperature-programmed desorption experiments and Fourier transform infrared reflection spectroscopy were conducted to investigate the desorption behavior of ammonium salts. Results. Ammonium salts are semi-volatile species releasing neutral species as major components upon desorption, that is ammonia and the corresponding organic acid (HCOOH and CH3COOH), at temperatures higher than the temperature of thermal desorption of water ice. Their desorption follows a first-order Wigner-Polanyi law. We find the first order kinetic parameters A = 7.7 ± 0.6 × 1015 s−1 −1 20 −1 −1 and Ebind = 68.9 ± 0.1 kJ mol for ammonium formate and A = 3.0 ± 0.4 × 10 s and Ebind = 83.0 ± 0.2 kJ mol for ammonium acetate. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Ortho–H2 and the Age of Prestellar Cores L
Astronomy & Astrophysics manuscript no. collapse˙l183˙v6 c ESO 2012 November 27, 2012 Ortho–H2 and the age of prestellar cores L. Pagani1, P. Lesaffre2, M. Jorfi3, P. Honvault4,5, T. Gonz´alez-Lezana6 , and A. Faure7 1 LERMA, UMR8112 du CNRS, Observatoire de Paris, 61, Av. de l′Observatoire, 75014 Paris, France. e-mail: [email protected] 2 LERMA, UMR8112 du CNRS, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris Cedex 05, France 3 Institut de Chimie des Milieux et des Mat´eriaux de Poitiers, UMR CNRS 6503, Universit´ede Poitiers, 86022 Poitiers Cedex, France 4 Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 du CNRS, Universit´ede Bourgogne, 21078 Dijon Cedex, France 5 UFR Sciences et Techniques, Universit´ede Franche-Comt´e, 25030 Besanc¸on cedex 6 Instituto de F´ısica Fundamental, CSIC, Serrano 123, 28006 Madrid, Spain 7 Institut de Plan´etologie et d’Astrophysique de Grenoble, UMR 5274 du CNRS, Universit´eJoseph Fourier, B.P. 53, 38041 Grenoble Cedex 09, France Received 29/04/2011; accepted ... ABSTRACT Prestellar cores form from the contraction of cold gas and dust material in dark clouds before they collapse to form protostars. Several concurrent theories exist to describe this contraction which are currently difficult to discriminate. One major difference is the time scale involved to form the prestellar cores: some theories advocate nearly free-fall speed via e.g. rapid turbulence decay while others can accommodate much longer periods to let the gas accumulate via e.g. ambipolar diffusion. To discriminate between these theories, measuring the age of prestellar cores could greatly help. -
Study of the Magnetic Water Treatment Mechanism
Journal of Ecological Engineering Received: 2019.12.03 Revised: 2019.12.23 Volume 21, Issue 2, February 2020, pages 251–260 Accepted: 2020.01.10 Available online: 2020.01.25 https://doi.org/10.12911/22998993/116341 Study of the Magnetic Water Treatment Mechanism Iryna Vaskina1*, Ihor Roi1, Leonid Plyatsuk1, Roman Vaskin1, Olena Yakhnenko1 1 Sumy State University, Sumy, Ukraine * Corresponding author’s e-mail: [email protected] ABSTRACT The main problem of widespread introduction of magnetic water treatment (MWT) in the processes of water and wastewater treatment is the lack of modern research aimed at studying the mechanisms of MWT effects, in particular the influence on the physicochemical properties of aqueous solutions. This study explains the effect of MWT taking into account the physical and chemical properties of aqueous solutions due to the presence of the quantum differences in water molecules. All of the MWT effects are related to the change in the physicochemical properties of aqueous solutions. It is due to the presence of two types of water molecule isomers and their libra- tional oscillations. The result of MWT is a violation of the synchronism of para-isomers vibrations, with the sub- sequent destruction of ice-like structures due to the receiving of energy from collisions with other water molecules (ortho-isomers). One of the most important MWT effects includes the change in the nature and speed of the physi- cochemical processes in aqueous solutions by increasing the number of more physically and chemically active ortho-isomers. The MWT parameters specified in the work allow explaining the nature of most MWT effects and require developing the scientific and methodological principles for the implementation of the MWT process and mathematical modeling of the MWT process in the water and wastewater treatment. -
407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical -
Key Information • This Exam Contains 6 Parts, 79 Questions, and 180 Points Total
Reach for the Stars *** Practice Test 2020-2021 Season Answer Key Information • This exam contains 6 parts, 79 questions, and 180 points total. • You may take this test apart. Put your team number on each page. There is not a separate answer page, so write all answers on this exam. • You are permitted the resources specified on the 2021 rules. • Don't worry about significant figures, use 3 or more in your answers. However, be sure your answer is in the correct units. • For calculation questions, any answers within 10% (inclusive) of the answer on the key will be accepted. • Ties will be broken by section score in reverse order (i.e. Section F score is the first tiebreaker, Section A the last). • Written by RiverWalker88. Feel free to PM me if you have any questions, feedback, etc. • Good Luck! Reach for the stars! Reach for the Stars B Team #: Constants and Conversions CONSTANTS Stefan-Boltzmann Constant = σ = 5:67 × 10−8 W=m2K4 Speed of light = c = 3 × 108m/s 30 Mass of the sun = M = 1:99 × 10 kg 5 Radius of the sun = R = 6:96 × 10 km Temperature of the sun = T = 5778K 26 Luminosity of the sun = L = 3:9 × 10 W Absolute Magnitude of the sun = MV = 4.83 UNIT CONVERSIONS 1 AU = 1:5 × 106km 1 ly = 9:46 × 1012km 1 pc = 3:09 × 1013km = 3.26 ly 1 year = 31557600 seconds USEFUL EQUATIONS 2900000 Wien's Law: λ = peak T • T = Temperature (K) • λpeak = Peak Wavelength in Blackbody Spectrum (nanometers) 1 Parallax: d = p • d = Distance (pc) • p = Parallax Angle (arcseconds) Page 2 of 13Page 13 Reach for the Stars B Team #: Part A: Astrophotographical References 9 questions, 18 points total For each of the following, identify the star or deep space object pictured in the image. -
Arxiv:1809.02083V1 [Astro-Ph.GA]
Draft version September 7, 2018 Typeset using LATEX twocolumn style in AASTeX61 ACCURATE ROTATIONAL REST FREQUENCIES FOR AMMONIUM ION ISOTOPOLOGUES Jose´ L. Domenech´ ,1 Stephan Schlemmer,2 and Oskar Asvany2 1Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E28006 Madrid, Spain 2I. Physikalisches Institut, Universit¨at zu K¨oln, Z¨ulpicher Str. 77, 50937 K¨oln, Germany (Accepted September 4, 2018) Submitted to The Astrophysical Journal ABSTRACT + + We report rest frequencies for rotational transitions of the deuterated ammonium isotopologues NH3D , NH2D2 + + + and NHD3 , measured in a cryogenic ion trap machine. For the symmetric tops NH3D and NHD3 one and three + transitions are detected, respectively, and five transitions are detected for the asymmetric top NH2D2 . While the + lowest frequency transition of NH3D was already known in the laboratory and space, this work enables the future radio astronomical detection of the two other isotopologues. Keywords: ISM: molecules — methods: laboratory: molecular — molecular data — techniques: spec- troscopic arXiv:1809.02083v1 [astro-ph.GA] 6 Sep 2018 Corresponding author: Oskar Asvany [email protected] 2 Domenech,´ Schlemmer and Asvany 1. INTRODUCTION wards the D atoms), thus making their detection feasi- Nitrogen is one of the most abundant elements in ble. Indeed, the detection of ammonium in space was the local universe, and has a notably rich chemistry, claimed through the assignment of an emission line cen- with more than seventy nitrogen-containing molecules tered at 262817 GHz (observed both in Orion IRc2 and − + identified in space to date (CDMS 2018). Two of the in Barnard B1-bS) to the 10 00 transition of NH3D most abundant nitrogen-bearing molecules in the inter- (Cernicharo et al. -
Molecular Excitation in the Interstellar Medium: Recent Advances In
Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes Evelyne Roueff∗,† and François Lique∗,‡ Laboratoire Univers et Théories, Observatoire de Paris, 92190, Meudon, France, and LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058, Le Havre, France E-mail: [email protected]; [email protected] Contents 1 Introduction 3 2 Collisional excitation 7 2.1 Methods . 9 2.1.1 Theory . 9 2.1.2 Potential energy surfaces . 10 2.1.3 Scattering Calculations . 13 arXiv:1310.8259v1 [physics.chem-ph] 30 Oct 2013 2.1.4 Experiments . 17 2.2 H2, CO and H2O molecules as benchmark systems . 19 2.2.1 H2 ....................................... 19 ∗To whom correspondence should be addressed †Laboratoire Univers et Théories, Observatoire de Paris, 92190, Meudon, France ‡LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058, Le Havre, France 1 2.2.2 CO . 22 2.2.3 H2O...................................... 27 2.3 Other recent results . 30 2.3.1 CN / HCN / HNC . 31 2.3.2 CS / SiO / SiS / SO / SO2 .......................... 34 2.3.3 NH3 /NH................................... 38 2.3.4 O2 / OH / NO . 40 2.3.5 C2 /C2H/C3 /C4 / HC3N.......................... 41 2.3.6 Complex Organic Molecules : H2CO / HCOOCH3 / CH3OH . 45 + + + + + 2.3.7 Cations : CH / SiH / HCO /N2H / HOCO . 49 + 2.3.8 H3 ...................................... 52 − − 2.3.9 Anions : CN /C2H ............................ 52 2.4 Isotopologues . 55 3 Radiative and chemical excitation 57 3.1 Radiative effects . 57 3.2 Chemical effects . 59 3.3 Examples .