Paleoflow Patterns and Macroscopic Sedimentary Features In

Total Page:16

File Type:pdf, Size:1020Kb

Paleoflow Patterns and Macroscopic Sedimentary Features In PALEOFLOW PATTERNS AND MACROSCOPIC SEDIMENTARY FEATURES IN THE LATE DEVONIAN CHATTANOOGA SHALE OF TENNESSEE: DIFFERENCES BETWEEN THE WESTERN AND EASTERN APPALACHIAN BASIN Jürgen Schieber Department of Geology, University of Texas at Arlington, Arlington, Texas 76019 ABSTRACT Previously, paleocurrent data from the from the search for uranium and hydrocarbons, Chattanooga Shale and its lateral equivalents and many studies were carried out along multiple suggested deposition on a westward dipping lines of inquiry (stratigraphy, petrology, paleoslope (westward paleoflow). However, sedimentology, geochemistry, paleontology etc.). new paleocurrent data (measurements of The efforts of the last 30 years led to a well anisotropy of magnetic susceptibility, AMS) are established stratigraphic framework (Woodrow not in agreement that view. They indicate et al., 1988), and a large amount of data exists on eastward flowing paleocurrents in eastern geochemistry (e.g. Leventhal, 1987), distribution Tennessee, and irregular flow in central of lithologies, and sedimentary features (e.g. Tennessee. Conant and Swanson, 1961; Broadhead et al., Macroscopic sedimentary features also 1982; Lundegard et al., 1985; Ettensohn et al., point to significant differences in sedimentary 1988). In fact, the published record leaves one setting between eastern and central Tennessee. with the impression that this is one of the most In eastern Tennessee, the Chattanooga Shale thoroughly investigated shale sequences, and that intertongues with turbidites of the Brallier major questions concerning its origin have been Formation, lacks shallow water features, and satisfactorily answered. may have been deposited in depths between 100- However, a variety of issues, such as for 200m. In central Tennessee, HCS siltstones and example water depth and environment of sandstones, shale-on-shale erosion surfaces, lag deposition, remain a subject of debate. Both a deposits (bone beds), and ripples, suggest shallow (e.g. Conant and Swanson, 1961) and relatively shallow water (tens of metres) and deep-water origin (e.g. Potter et al., 1982, reworking of the sea bed by waves and strong Ettensohn, 1985) has been proposed, and a currents. review of the issue by Woodrow and Isley A shallow water platform in central (1983) showed that various methods led to depth Tennessee, and deeper water conditions in estimates ranging from 39 to 375 metres. The eastern Tennessee require an eastward dipping popular idea that these shales may owe their sea floor (paleoslope) between these two areas. origin to pycnocline development (Byers, 1977), Further east however, where the Chattanooga led to suggestions of water depth of at least 100- Shale interfingers with the Brallier Formation, 200 metres (Potter et al., 1982). Lundegard et al. the paleoslope was inclined in the opposite (1985) even arrived at a maximum estimate in direction (westward flowing paleocurrents). excess of 900 metres. Large water depth and These two opposing slopes formed an elongate stratification of the water column provide for trough along the eastern margin of the stagnant bottom waters with little or only weak Appalachian Basin. current activity, commonly thought to be the The portions of the Chattanooga Shale conditions under which finely laminated black whose AMS data suggest eastward paleoflow, shales (such as the Chattanooga Shale) are most occur between the shallow water Chattanooga of likely to accumulate (Potter et al., 1980). platform origin and the area where it interfingers Conant and Swanson (1961) studied the with the Brallier Formation. Thus, the eastward Chattanooga Shale in central Tennessee and dipping paleoslope suggested by sedimentary found that (1) it rests on a basal unconformity; 2) features is in good agreement with AMS it contains silt and sandstone lenses and scour paleocurrent data. channels; 3) it onlaps towards the Nashville Dome; 4) the region had low relief and shallow INTRODUCTION water sedimentation since the Precambrian; 5) Research on Upper Devonian black the Mississippian sea was shallow and more shales in the Appalachian Basin (e.g. the extensive than the Devonian one; 6) it contains Chattanooga Shale) received substantial impetus linguloid brachiopods. Although these observations suggested shallow water deposition island in the Chattanooga Sea SW of Nashville to Conant and Swanson (1961), most of the (Conant and Swanson, 1961). evidence is circumstantial in nature. In eastern Tennessee the Chattanooga This paper was written to report new Shale reaches a thickness of approximately 650 observations that have a bearing on the origin of m (Hasson, 1982), and is subdivided into the the Chattanooga Shale. Aside of paleocurrent basal Millboro Member, the middle Brallier measurements via AMS (anisotropy of magnetic Member, and the upper Big Stone Gap Member susceptibility), other observations that are (Fig. 1). The Chattanooga Shale unconformably reported were exclusively made in outcrop. overlies the Lower Devonian Wildcat Valley They suggest that contrary to commonly held Sandstone, and is conformably overlain by the opinions, large portions of the Chattanooga Mississippian Grainger Formation. Shale were deposited in comparatively shallow water, and OBSERVATIONS that strong currents at times eroded and Macroscopic Sedimentary Features, Western winnowed the sea floor. Portion of Basin Hummocky cross-stratification (HCS), GEOLOGIC SETTING soft sediment deformation, erosion surfaces, The Chattanooga Shale and its lateral bone beds, and ripples can readily be observed in equivalents form the distal part of a westward outcrop and provide information about water thinning clastic wedge that accumulated in a depth and energy conditions. In addition, a foreland basin to the west of the Acadian wealth of small scale sedimentary features can be Mountains. It is known as Chattanooga Shale observed in sawed slabs and thin sections primarily in Alabama, Tennessee, and south- (Schieber, this volume). central Kentucky, towards the northeast as Ohio Shale, and towards the northwest (Illinois Basin) HCS Beds as New Albany Shale (de Witt, 1981). Conant and Swanson (1961) described a Overall sediment transport was towards local marker bed ("varved bed") from outcrops in the west (Lundegard et al., 1985). Going east to DeKalb County (Fig. 1), Tennessee. It is thin (1- west, major environments of deposition include 10cm) and fine grained (silt to fine sand), has an alluvial plain, delta plain, shelf, slope with erosional lower contact, and is overlain by turbidites, and basin floor with black-shale greenish-gray shale (Fig. 2). Thickness accumulation (Woodrow et al., 1988). Estimated variations are regular (pinch and swell) and the positions of the Chattanooga Sea range from surface of the bed appears hummocky. Internal equatorial (e.g. Ettensohn and Barron, 1981) to laminae conform to the basal erosion surface as 30 degrees south latitude (Witzke and Heckel, well as to gently undulose internal erosion 1988). Climatic indicators suggest seasonal surfaces, and may show systematic thickening rainfall, tropical temperatures, and into hummocks and thinning into swales. predominantly perennial streams (Woodrow et These characteristics fit the definition al., 1988). for hummocky cross-stratification as proposed In central Tennessee the Chattanooga by Harms et al. (1975). Thinner, but otherwise Shale is of Late Devonian (Frasnian-Famennian) comparable beds of laminated silt and sand were age, and is a nearly flat-lying Formation that observed elsewhere in the Chattanooga Shale reaches a thickness of slightly above 9m (Fig. 1). where it contains interbeds of greenish-gray It has been subdivided into the Hardin (base), shale. 200 km to the SW in Hardin County (Fig. Dowelltown, and Gassaway (top) members (Fig. 1), Tennessee, HCS beds (medium sand) are 1), and is conformably overlain by the Lower common in the Dowelltown Member, and Mississippian Maury Formation (Conant and amalgamation of HCS beds has been observed as Swanson, 1961). The Hardin Sandstone Member well. is only locally present at the base of the Chattanooga Shale, and grades into the overlying Soft Sediment Deformation Dowelltown Member. Uniform thickness and low rates of lateral thickness change suggest that, Ball-and-pillow structures were aside of a few exceptions, the Chattanooga Shale observed in association with a HCS sandstone was deposited on a very smooth and even bed (10-20 cm thick) in the Dowelltown peneplain. The most notable of these exceptions Member. This bed has in places completely is known as the Hohenwald Platform (Fig. 1), an Correlation of erosion surfaces between closely spaced outcrops has so far Figure 1: Location map. Shows localities mentioned in text and AMS paleocurrent directions in central and eastern Tennessee. Arrows represent vector means, numbers besides arrows indicate number of measurements per location. The two rose diagrams combine measurements for central and eastern Tennessee (N=number of measurements; note that rose diagrams have different scale). Data indicate more or less uniform eastward flow in eastern Tennessee. In central Tennessee the pattern is random to possibly circular (only data from Gassaway Member are shown). Overview stratigraphic columns are for the type locality in central Tennessee (left) as described by Conant and Swanson (1961), and for eastern Tennessee after Hasson (1982, his section 1). Note that the scale of the two stratigraphic columns differs by two orders of magnitude. The hatched area
Recommended publications
  • Stratigraphic Evaluation of the St. Joe-Boone Boundary Interval
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2018 Stratigraphic Evaluation of the St. Joe-Boone Boundary Interval, Kinderhookian-Osagean Series, Lower Mississippian System, Tri-State Region, Southern Midcontinent Forrest Dalton McFarlin University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Geology Commons, and the Stratigraphy Commons Recommended Citation McFarlin, Forrest Dalton, "Stratigraphic Evaluation of the St. Joe-Boone Boundary Interval, Kinderhookian-Osagean Series, Lower Mississippian System, Tri-State Region, Southern Midcontinent" (2018). Theses and Dissertations. 2952. https://scholarworks.uark.edu/etd/2952 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Stratigraphic Evaluation of the St. Joe-Boone Boundary Interval, Kinderhookian-Osagean Series, Lower Mississippian System, Tri-State Region, Southern Midcontinent A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology by Forrest Dalton McFarlin Texas Christian University Bachelor of Science in Geology, 2015 August 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council. _____________________________________ Walter Manger, PhD Thesis Director _____________________________________ Adriana Potra, PhD Committee Member _____________________________________ Thomas McGilvery, PhD Committee Member ©2018 by Forrest Dalton McFarlin All Rights Reserved Abstract The Lower Mississippian interval comprises a single, third-order, eustatic cycle subdivided lithostratigraphically into the St. Joe Limestone (Hopkins 1893) and overlying Boone Formation (Branner 1891, Simonds 1891) with type areas in northern Arkansas.
    [Show full text]
  • Bedrock Geology of Altenburg Quadrangle, Jackson County
    BEDROCK GEOLOGY OF ALTENBURG QUADRANGLE Institute of Natural Resource Sustainability William W. Shilts, Executive Director JACKSON COUNTY, ILLINOIS AND PERRY COUNTY, MISSOURI STATEMAP Altenburg-BG ILLINOIS STATE GEOLOGICAL SURVEY E. Donald McKay III, Interim Director Mary J. Seid, Joseph A. Devera, Allen L. Weedman, and Dewey H. Amos 2009 360 GEOLOGIC UNITS ) ) ) 14 Qal Alluvial deposits ) 13 18 Quaternary Pleistocene and Holocene 17 360 ) 15 360 16 14 0 36 ) 13 Qf Fan deposits ) Unconformity Qal ) & 350 tl Lower Tradewater Formation Atokan ) ) Pennsylvanian 360 ) &cv Caseyville Formation Morrowan 24 360 ) Unconformity ) 17 Upper Elviran undivided, Meu ) Waltersburg to top of Degonia 19 20 Qal 21 22 23 ) 24 ) Mv Vienna Limestone 360 o ) 3 Mts ) 350 Mts Tar Springs Sandstone ) 20 360 ) Mgd 360 30 ) Mgd Glen Dean Limestone ) 21 350 360 Mts 29 ) Qal Hardinsburg Sandstone and J N Mhg Chesterian ) Golconda Formations h Æ Qal Mav anc 28 27 Br ) N oJ 26 25 JN 85 N ) Cypress Sandstone through J Mcpc Dsl 500 Paint Creek Formation JN N ) J o Mts N 5 J s ) Dgt 600 J N 70 J N Mgd Yankeetown Formation s ) Myr Db 80 28 Æ and Renault Sandstone N J 29 N J N ) Sb J Mgd Mississippian o Dgt Ssc 25 Clines o N 25 Msg 27 ) Qal J 80 s 3 Mav Aux Vases Sandstone N J N Mts o MILL J MISSISSIPPI 34 ) Qal J N ) N J Dsl 35 N 26 J o N 25 J Mgd Mgd ) Msg Ste. Genevieve Limestone 500 o Db DITCH J 20 Mgd N N N ) J J o RIVER o N 600 J 80 N ) 10 o J Mav Æ Msl St.
    [Show full text]
  • Geology of the Devonian Marcellus Shale—Valley and Ridge Province
    Geology of the Devonian Marcellus Shale—Valley and Ridge Province, Virginia and West Virginia— A Field Trip Guidebook for the American Association of Petroleum Geologists Eastern Section Meeting, September 28–29, 2011 Open-File Report 2012–1194 U.S. Department of the Interior U.S. Geological Survey Geology of the Devonian Marcellus Shale—Valley and Ridge Province, Virginia and West Virginia— A Field Trip Guidebook for the American Association of Petroleum Geologists Eastern Section Meeting, September 28–29, 2011 By Catherine B. Enomoto1, James L. Coleman, Jr.1, John T. Haynes2, Steven J. Whitmeyer2, Ronald R. McDowell3, J. Eric Lewis3, Tyler P. Spear3, and Christopher S. Swezey1 1U.S. Geological Survey, Reston, VA 20192 2 James Madison University, Harrisonburg, VA 22807 3 West Virginia Geological and Economic Survey, Morgantown, WV 26508 Open-File Report 2012–1194 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Ken Salazar, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.
    [Show full text]
  • Geologic Resources Inventory Ancillary Map Information Document for Little River Canyon National Preserve
    U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Directorate Geologic Resources Division Little River Canyon National Preserve GRI Ancillary Map Information Document Produced to accompany the Geologic Resources Inventory (GRI) Digital Geologic Data for Little River Canyon National Preserve liri_geology.pdf Version: 6/30/2020 I Little River Canyon National Preserve Geologic Resources Inventory Ancillary Map Information Document for Little River Canyon National Preserve Table of Contents Geologic Reso..u..r..c..e..s.. .I.n..v..e..n..t.o...r.y.. .M...a..p.. .D...o..c..u..m...e...n..t............................................................................ 1 About the NPS.. .G...e..o..l.o..g..i.c... .R..e..s..o..u...r.c..e..s.. .I.n..v..e..n...t.o..r.y.. .P...r.o..g...r.a..m............................................................... 3 GRI Digital Ma.p..s.. .a..n...d.. .S..o..u...r.c..e.. .M...a..p.. .C...i.t.a..t..i.o..n..s.................................................................................. 5 Index Ma..p........................................................................................................................................................................ 6 Map Unit List ................................................................................................................................... 7 Map Unit Desc..r.i.p..t.i.o...n..s...................................................................................................................... 9 Qal - Allu..v..iu..m... .a..n..d.. .l.o..w... .t.e..r.r.a..c..e.. .d..e..p..o..s..i.t.s. .(..Q..u..a..t.e..r..n..a..r.y.)..................................................................................................... 9 Tal - Fluv..i.a..l. .d..e..p..o..s.i.t.s.. .(.T..e..r..t.ia..r..y.)........................................................................................................................................ 9 PNpv - P.o..t.t.s..v..i.l.le.. .F...o..r.m...a..t.i.o..n.
    [Show full text]
  • IC-29 Geology and Ground Water Resources of Walker County, Georgia
    IC 29 GEORGIA STATE DIVISION OF CONSERVATION DEPARTMENT OF MINES, MINING AND GEOLOGY GARLAND PEYTON, Director THE GEOLOGICAL SURVEY Information Circular 29 GEOLOGY AND GROUND-WATER RESOURCES OF WALKER COUNTY, GEORGIA By Charles W. Cressler U.S. Geological Survey Prepared in cooperation with the U.S. Geological Survey ATLANTA 1964 CONTENTS Page Abstract _______________________________________________ -··---------------------------- _____________________ ----------------·----- _____________ __________________________ __ 3 In trodu ction ------------------------------------------ ________________________________ --------------------------------------------------------------------------------- 3 Purpose and scope ------------------------------"--------------------------------------------------------------------------------------------------------- 3 Previous inv es tigati o ns ____ _____ ________ _______ __________ ------------------------------------------------------------------------------------------ 5 Geo Io gy _________________________________________________________________ --- ___________________ -- ___________ ------------- __________________ ---- _________________ ---- _______ 5 Ph ys i ogr a p hy ______________________________________________________ ---------------------------------------- __________________ -------------------------------- 5 Geo Io gi c his tory __________________________ _ __ ___ ___ _______ _____________________________________________ ------------------------------------------------- 5 Stratigraphy -·· __________________
    [Show full text]
  • Geologic Cross Section C–C' Through the Appalachian Basin from Erie
    Geologic Cross Section C–C’ Through the Appalachian Basin From Erie County, North-Central Ohio, to the Valley and Ridge Province, Bedford County, South-Central Pennsylvania By Robert T. Ryder, Michael H. Trippi, Christopher S. Swezey, Robert D. Crangle, Jr., Rebecca S. Hope, Elisabeth L. Rowan, and Erika E. Lentz Scientific Investigations Map 3172 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Ryder, R.T., Trippi, M.H., Swezey, C.S. Crangle, R.D., Jr., Hope, R.S., Rowan, E.L., and Lentz, E.E., 2012, Geologic cross section C–C’ through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania: U.S. Geological Survey Scientific Investigations Map 3172, 2 sheets, 70-p.
    [Show full text]
  • Upper Ordovician and Silurian Stratigraphy in Sequatchie Valley and Parts of the Adjacent Valley and Ridge, Tennessee
    Upper Ordovician and Silurian Stratigraphy in Sequatchie Valley and Parts of the Adjacent Valley and Ridge, Tennessee GEOLOGICAL SURVEY PROFESSIONAL PAPER 996 Prepared in cooperation with the Tennessee Division of Geology Upper Ordovician and Silurian Stratigraphy in Sequatchie Valley and Parts of the Adjacent Valley and Ridge, Tennessee By ROBERT C. MILICI and HELMUTH WEDOW, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 996 Prepared in cooperation with the Tennessee Division of Geology UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1977 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Milici, Robert C 1931- Upper Ordovician and Silurian stratigraphy in Sequatchie Valley and parts of the adjacent valley and ridge, Tennessee. (Geological Survey professional paper; 996) Bibliography: p. Supt. of Docs. no.: I 19.16:996 1. Geology, Stratigraphic--Ordovician. 2. Geology, Stratigraphic--Silurian. 3. Geology--Tennessee--Sequatchie Valley. 4. Geology--Tennessee--Chattanooga region. I. Wedow, Helmuth, 1917- joint author. II: Title. Upper Ordovician and Silurian stratigraphy in Sequatchie Valley .... III. Series: United States. Geological Survey. Professional paper; 996. QE660.M54 551.7'310976877 76-608170 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03002·1 CONTENTS Page Abstract 1 Introduction -----------------------------------------------------------------------------
    [Show full text]
  • Developing a Sequence Stratigraphic Framework for the Late Devonian Chattanooga Shale of the Southeastern Us: Relevance for the Bakken Shale
    DEVELOPING A SEQUENCE STRATIGRAPHIC FRAMEWORK FOR THE LATE DEVONIAN CHATTANOOGA SHALE OF THE SOUTHEASTERN US: RELEVANCE FOR THE BAKKEN SHALE Jürgen Schieber Department of Geology, The University of Texas at Arlington, Arlington, Texas 76019 ABSTRACT The Late Devonian Chattanooga Shale of Tennessee and Kentucky is in most areas a thin black shale deposit of less than 10 meters thickness. It is a distal equivalent to the almost 3000m thick Catskill sequence, and encompasses most of the Frasnian and Fammenian. Although originally thought of as a continuously, though slowly, deposited deep water shale unit, the Chattanooga Shale shows internal erosion surfaces at various scales as well as storm deposits. These features suggest comparatively shallow water deposition (tens of meters water depth), and a stratigraphic record with numerous interruptions of various duration. A number of erosion surfaces are laterally extensive and can be traced from exposure to exposure through the entire outcrop area (over distances of as much as 300km). Erosion surfaces of this type are considered sequence boundaries sensu Vail, and tracing them has made it possible to subdivide the Chattanooga Shale into as many as 14 sequences. These sequence boundaries are very subtle. The following features are indicative of their presence in a given outcrop: 1) sandy, silty, or pyritic lag deposits of up to several cm thickness; 2) sharp-based shale beds; 3) low-angle truncation of shale beds; 4) scoured surfaces; and 5) soft-sediment deformation in underlying shales. Tracing erosion surfaces from outcrop to outcrop is based on a combination of: 1) petrographic matching of lag deposits; 2) the petrography and microfabrics of individual shale packages; 3) conodont data; and 4) gamma ray surveys.
    [Show full text]
  • An Inventory of Trilobites from National Park Service Areas
    Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 179 AN INVENTORY OF TRILOBITES FROM NATIONAL PARK SERVICE AREAS MEGAN R. NORR¹, VINCENT L. SANTUCCI1 and JUSTIN S. TWEET2 1National Park Service. 1201 Eye Street NW, Washington, D.C. 20005; -email: [email protected]; 2Tweet Paleo-Consulting. 9149 79th St. S. Cottage Grove. MN 55016; Abstract—Trilobites represent an extinct group of Paleozoic marine invertebrate fossils that have great scientific interest and public appeal. Trilobites exhibit wide taxonomic diversity and are contained within nine orders of the Class Trilobita. A wealth of scientific literature exists regarding trilobites, their morphology, biostratigraphy, indicators of paleoenvironments, behavior, and other research themes. An inventory of National Park Service areas reveals that fossilized remains of trilobites are documented from within at least 33 NPS units, including Death Valley National Park, Grand Canyon National Park, Yellowstone National Park, and Yukon-Charley Rivers National Preserve. More than 120 trilobite hototype specimens are known from National Park Service areas. INTRODUCTION Of the 262 National Park Service areas identified with paleontological resources, 33 of those units have documented trilobite fossils (Fig. 1). More than 120 holotype specimens of trilobites have been found within National Park Service (NPS) units. Once thriving during the Paleozoic Era (between ~520 and 250 million years ago) and becoming extinct at the end of the Permian Period, trilobites were prone to fossilization due to their hard exoskeletons and the sedimentary marine environments they inhabited. While parks such as Death Valley National Park and Yukon-Charley Rivers National Preserve have reported a great abundance of fossilized trilobites, many other national parks also contain a diverse trilobite fauna.
    [Show full text]
  • Xsec A-A Sht1of2 Layout FINAL V
    U.S. DEPARTMENT OF THE INTERIOR SCIENTIFIC INVESTIGATIONS MAP 3425 U.S. GEOLOGICAL SURVEY (SHEET 1 OF 2) Explanatory pamphlet accompanies map A Ontario Allegheny Lowlands Plateau province province SEVERNE WATKINS-BEAVER LODI POINT FIRTREE DAMS ALPINE VAN ETTEN ANTICLINE ANTICLINE ANTICLINE ANTICLINE ANTICLINE ANTICLINE GLENORA SYNCLINE UNNAMED COHOCTON CORBETT POINT ENFIELD CAYUTA SYNCLINE SYNCLINE SYNCLINE SYNCLINE SYNCLINE Bend in section Bend in section Bend in section New York W SE Oatka Genesee NW SE Canisteo NW SW Pennsylvania Black Creek River Canaseraga River Tuscarora Creek Creek Creek FEET MILES 0 10 20 30 40 50 60 70 80 90 3,000 1 2 3 4 5 6 William Duchscherer, Jr. E.F. Blair and Associates NYS Natural Gas Company E.F. Blair and Associates Bowdoin Storage Service Inc. NYS Natural Gas Company No. 1 J. Klotzbach No. 1 L. Tyler No. 1 Albert McClurg No. 1 Arthur N. Kennedy No. 1 Hubbard No. 1 Robert Olin API No. 31-037-05117 API No. 31-037-04593 API No. 31-051-04552 API No. 31-051-04630 API No. 31-101-21496 API No. 31-101-03924 Genesee Co., New York Genesee Co., New York Livingston Co., New York Livingston Co., New York Steuben Co., New York Steuben Co., New York Perrysburg Formation Dunkirk Dunkirk Shale Shale 2,000 Member Wiscoy Sandstone Member Java Perrysburg West River Shale, Nunda Wiscoy Sandstone Member Formation Formation Genundewa Sandstone Member unnamed Pipe Creek 0 Pipe Creek shale member Limestone, Penn Member Shale Member Shale Member Perrysburg Yan Shale, and rmation Formation 0 Dun West River Shale, Java Fo kirk
    [Show full text]
  • Stratigraphy and Uranium Content of the Chattanooga Shale in Northeastern Alabama Northwestern Georgia and Eastern Tennessee
    Stratigraphy and Uranium Content of the Chattanooga Shale in Northeastern Alabama Northwestern Georgia and Eastern Tennessee y LYNN GLOVER CONTRIBUTIONS TO THE GEOLOGY OF URANIUM GEOLOGICAL SURVEY - B U L L E T I N 10 8 7 - E ''his report concerns work done on behalf f the U.S. Atomic Energy Commission nd is published with the permission of he Commission NITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. - Price $1 (paper cover) CONTENTS Page Abstract-..---.---.------.----- --- -------- ._...__._.._. 133 Introduction _____--___--___-_--_----_-------------------__-__--_-- 133 Acknowledgments _-__._____-___._-_-__----_-----_-_-___-_-___-___. 134 General geologic and structural setting-_-_-__--__-_-_______-_________ 135 Stratigraphy and sedimentation-___--___---_----_--__-_--_______-___ 135 Chattanooga shale.--_------_-_--_-_-------_--------______-_.__ 135 Dowelltown and Gassaway members,--_--_-__________._._.._ 136 Overlap.--__---------------_--------------------------_.. 137 Basal sandstone______-________------------_-______________' 137 Lithology ----------------------- ----- ___.___. 139 Sand and silt-----------_---------_-------------_----. 139 Gray beds.--.-----.---..----------------____I... 139 Phosphate and chert._______-__----_--_______--________ 140 Intraformational conglomerates--_-_-._________.____1__. 142 Maury formation._____________________________________________ 143 Birmingham high._________________________________________ 143 Black shale.--_------..----.._---- .-____________ 144 Bacon Bend section..._________________________________L___ 145 Fort Payne.chert.______-____--_-___-__---__---__--__-_-_-__-__ 146 Pre-Chattanooga unconformity and its relation to the origin of the shale.
    [Show full text]
  • Key, M. M., Jr. and N. Potter, Jr. 1992
    Guidebook for the llth Annual Field Trip of the Harrisburg Area Geological Society May 9, 1992 Paleozoic Geology of the Paw Paw-Hancock Area of Maryland and West Virginia by Marcus M. Key, Jr. and Noel Potter, Jr. Dickinson College TABLE OF CONTENTS . .. List of F1gures . .............................................. 111 Introduction . ....................................... · ......... 1 Road Log • ..•... • ..... · .... • •.....•....•...•......• e ••• '0 ••••••••• 3 Stop 1. Roundtop Hill . ............ o •••••••••• o •••••••••••••••••• 5 stop 2. Sideling Hill Road Cut ..•.••............••.••••......... 8 Stop 3. Sideling Hill Diamictite Exposure ....•.•....•.•....•... 11 Stop 4. Cacapon Mountain Overlook .••.......•......•.•••••...... 15 Stop 5. Fluted Rocks Overlook .•..•••.••....•.•.•••.•........... 16 Stop 6. Fluted Rocks ................. .,. .......... ., o ••••• ., •••••• • 19 Stop 7. Berkeley Springs state Park •...•.....................•. 20 Acknowled·gments . ........................... :- ... e ••••••••••••••• 21 References .....••.•..•.•••.•..•.•..•.••......................•. 2 2 Topogrpphic maps covering field trip stops: USGS 7 1/2 minute quadrangles Bellegrove (MD-PA-WV), Great Cacapon (WV-MD), Hancock (WV-MD-PA) Cover Photo: Anticline in Silurian Bloomsburg Formation. From Stose and swartz (1912). The anticline is visible from the towpath of the c & 0 Canal at Roundtop Hill (Stop# 1). Guidebook copies may be obtained by writing: Harrisburg Area Geological Society cjo Pennsylvania Geological Survey P.O. Box 2357 Harrisburg,
    [Show full text]