Review Article Polyphenols As Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies

Total Page:16

File Type:pdf, Size:1020Kb

Review Article Polyphenols As Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Hindawi Publishing Corporation Oxidative Medicine and Cellular Longevity Volume 2016, Article ID 6475624, 17 pages http://dx.doi.org/10.1155/2016/6475624 Review Article Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies Anna Maria Mileo and Stefania Miccadei Regina Elena National Cancer Institute, 00144 Rome, Italy Correspondence should be addressed to Stefania Miccadei; [email protected] Received 22 May 2015; Accepted 21 July 2015 Academic Editor: Amit Tyagi Copyright © 2016 A. M. Mileo and S. Miccadei. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Cancer onset and progression have been linked to oxidative stress by increasing DNA mutations or inducing DNA damage, genome instability, and cell proliferation and therefore antioxidant agents could interfere with carcinogenesis. It is well known that conventional radio-/chemotherapies influence tumour outcome through ROS modulation. Since these antitumour treatments have important side effects, the challenge is to develop new anticancer therapeutic strategies more effective and less toxic for patients. To this purpose, many natural polyphenols have emerged as very promising anticancer bioactive compounds. Beside their well-known antioxidant activities, several polyphenols target epigenetic processes involved in cancer development through the modulation of oxidative stress. An alternative strategy to the cytotoxic treatment is an approach leading to cytostasis through the induction of therapy-induced senescence. Many anticancer polyphenols cause cellular growth arrest through the induction of a ROS-dependent premature senescence and are considered promising antitumour therapeutic tools. Furthermore, one of the most innovative and interesting topics is the evaluation of efficacy of prooxidant therapies on cancer stem cells (CSCs). Several ROS inducers-polyphenols can impact CSCs metabolisms and self-renewal related pathways. Natural polyphenol roles, mainly in chemoprevention and cancer therapies, are described and discussed in the light of the current literature data. 1. Introduction data in literature, suggest that the antioxidant properties of the phenolic compounds may not fully account for their Many epidemiological studies suggest that diet particularly chemopreventive effects [10]. Emerging evidence indicates rich in fruits and vegetables have cancer preventive properties that these polyphenols may also behave as prooxidants to [1–3]. The beneficial effects of diet are attributable, at least in initiate a reactive oxygen species mediated cellular DNA part,topolyphenolswhichhaveantitumouractivitiesbothin breakage and consequent cell death [11]. It has been reported animal models and in humans [4, 5]. thatsuchaprooxidantmechanismisaresultofredox-active During the past few decades the growing interest in natural polyphenols has contributed to understanding these microenvironment in cancer cells due to elevated levels in compounds in terms of their chemical and biological func- copper [12]. Copper is an important redox-active metal ion tions and beneficial effects on human health [6, 7]. With present in chromatin, closely associated with DNA bases the advent of cellular, molecular experimental systems, and can be mobilized by metal chelating agents. Several and transgenic/knockout mice models, relevant advances studies have established that serum, tissue, and cellular inunderstandingthemechanismsinvolvedintheaction copper levels in cancer patients are significantly elevated. of polyphenols have been achieved. Most of the beneficial Given that aberrant redox system is frequently observed in effects of natural polyphenols are considered to reflect their many tumour cells [13], it was hypothesized that polyphenols ability to scavenge-free radicals endogenously generated [8] may selectively affect tumour cells behaviour based on their or formed by radiation and xenobiotics [9]. However, some differential redox status [12]. 2 Oxidative Medicine and Cellular Longevity The protective mechanisms that block the initiation of prevented and some of the most common cancers such as carcinogenesis can be defined as chemoprevention, a concept breast, colorectal, and cervical cancer are curable if treated that was originally introduced by Wattenberg [14]. Interest- promptly. Among many factors that cause cancer, oxidative ingly, natural polyphenols could induce apoptotic cell death stress is one of the most important and well-studied event in preneoplastic or neoplastic cells through various growth that gives rise to the conditions leading to tumour onset and inhibitory mechanisms as the activation of cytochrome c progression [29]. andcaspases,thearrestofcellcycle,andthemodulationof It has been demonstrated that continuous inflammation signalling pathways (NF-B, JAK/STAT) which result in the mayleadtoapreneoplasticsituation[30–32].Inchronically inhibition of tumour progression [15, 16]. inflamed cells, the secretion of a large amount of reactive Research on the anticancer activities of dietary polyphe- oxygen/nitrogen species (ROS/RNS) recruits more activated nols, identified new antitumour molecules that can be used immune cells, which leads to the amplification of dysregu- in cancer prevention and treatment, both alone and in lated processes and eventually to a preneoplastic condition. If combination with current chemotherapy/radiotherapy [17– the amount of cellular ROS/RNS produced is high enough to 19]. overcome endogenous antioxidant response, an irreversible Cellular senescence is a physiological process of irre- oxidative damage to nucleic acids, lipids, and proteins may versible cell-cycle arrest that contributes to various physio- cause genetic and/or epigenetic alterations leading to the logical and pathological processes of aging [20]. Replicative dysregulation of oncogenes and tumour suppressor genes. senescence (RS) is associated with telomere erosion after Hence, the oxidative stress and chronic inflammation pro- repeated cell divisions, whereas stress-induced premature cesses are tightly coupled and the failure to block these senescence (SIPS) is a telomere-independent process and processes could result in genetic/epigenetic changes that occurs in response to aberrant oncogenic signalling, oxidative drive the initiation of carcinogenesis [33]. Furthermore, stress, and DNA damage. Although senescent cells have several studies have shown that oxidative stress affects several irreversibly lost their capacity for cell division, they are viable signalling pathways associated with cell proliferation [34]. and remain metabolically active [21, 22]. Amongthem,theepidermalgrowthfactorreceptorsignalling Induction of cellular senescence can be considered a pathway (EGFR) can be mentioned and key signalling pro- relevant mechanism of tumour suppression. The concept of teins, such as the nuclear factor erythroid 2-related factor prosenescence therapy has emerged over the past few years 2 (NRF2), Ras/Raf, the mitogen activated protein kinases as a novel therapeutic approach to treat cancers. Emerging (MAPKs) ERK1/2, and MEK, phosphatidyl inositol 3-kinase evidence has demonstrated that therapy-induced senescence (PI3K),phospholipaseC,andproteinkinaseCareaffectedby (TIS)isacriticalmechanismthroughwhichmanyanticancer oxidative stress [35–37]. Moreover, ROS alter the expression drugs inhibit tumour progression [23]. TIS may be viewed of the p53 suppressor gene that is a key factor in apoptosis. either as an independent approach to treat cancer cells or as a Thus, oxidative stress causes changes in gene expression, cell combined strategy with conventional chemo-/radiotherapy. proliferation, and apoptosis and plays a significant role in In a neoadjuvant setting, prosenescence therapy could be tumour initiation and progression [37–40]. used with traditional treatments in order to reduce tumour Intriguingly, it is believed that, on the one hand, ROS mass before surgery. Furthermore, the engagement of prose- contribute to the carcinogenesis, but, on the other hand, nescence as an adjuvant therapy could be helpful in reducing excessive amounts of ROS may act as cellular toxicants which the statistical risk of cancer relapse. lead to cancer cell growth arrest, apoptosis, or necrosis [41] Epigenetic alterations, such as DNA methylation, histone (Figure 1). It is speculated that the malignant cells which acetylation level, and gene expression miRNA-regulated can- are under increased level of oxidative stress would be more cer stem cells biology, and induction of premature senescence vulnerable to further ROS attack [42]. in tumour cells have been identified as relevant anticancer The evaluation of tissue redox status has great diagnostic features of many dietary polyphenolic compounds [24– potential in oncology. There are studies showing that low 28]. Increasing data from both cancer epidemiology and antioxidant status and increased oxidative stress levels are experimental attempts support the bright future of polyphe- detected in cancer patients, even before oncology treatment nols as epigenetic modulators, prosenescence inducers, and starts [43]. Moreover, the redox status has a prognostic rel- cancer stem cells metabolism regulators in new anticancer evance for cancer therapy and could significantly
Recommended publications
  • Potential Applications of Curcumin and Curcumin Nanoparticles: from Traditional Therapeutics to Modern Nanomedicine
    Nanotechnol Rev 2015; 4(2): 161–172 Review Mahendra Rai*, Raksha Pandit, Swapnil Gaikwad, Alka Yadav and Aniket Gade Potential applications of curcumin and curcumin nanoparticles: from traditional therapeutics to modern nanomedicine Abstract: Curcumin (diferuloylmethane) is one of the regions throughout the world and widely cultivated in potent, nontoxic, and major bioactive components pre- Asian countries, mostly in India and China [2, 3]. sent in turmeric. The major drawbacks of curcumin are Curcumin was isolated for the first time in 1815, while low absorption and poor bioavailability. The present its chemical structure was determined in 1973 by Rough- review highlights on the methods for the fabrication of ley and Whiting (Figure 1). The melting point of curcumin curcumin nanoparticles and their applications in treat- is 176–177°C, and it forms red to brown-colored salts when ment of cancer and wound infections. Curcumin nano- treated with alkalis [4]. Commercial curcumin possess particles possess remarkable antibacterial, antiviral, and approximately 77% diferuloylmethane, 17% demethoxy- antiprotozoan activity. Hence, curcumin nanoparticle- curcumin (Figure 2), and 6% bisdemethoxycurcumin [5] loaded nano-gel, microemulsion, and nano-cream can be (Figure 3). Curcumin is a natural compound, which is used for drug delivery. hydrophobic in nature. It consists of two polyphenolic rings, which are substituted by methoxy ether at the Keywords: antimicrobial activity; curcumin; curcumin ortho position, and tautomerization of curcumin arises nanoparticles. in a pH-dependent condition [6]; in neutral and acidic conditions, curcumin possesses a bis-keto form [1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione]. DOI 10.1515/ntrev-2015-0001 Received January 2, 2015; accepted February 4, 2015; previously pub- Curcumin functions as an antioxidant, anti-inflamma- lished online March 19, 2015 tory, and anti-atherosclerotic.
    [Show full text]
  • Antioxidant Efficacy of Curcuminoids from Turmeric ( Curcuma Longa L
    Downloaded from British Journal of Nutrition (2009), 102, 1629–1634 doi:10.1017/S0007114509990869 q The Authors 2009 https://www.cambridge.org/core Antioxidant efficacy of curcuminoids from turmeric (Curcuma longa L.) powder in broiler chickens fed diets containing aflatoxin B1 Nisarani K. S. Gowda1*, David R. Ledoux2, Goerge E. Rottinghaus2, Alex J. Bermudez2 and Yin C. Chen2 . IP address: 1National Institute of Animal Nutrition and Physiology, Bangalore 560030, India 2Fusarium/Poultry Research Laboratory, University of Missouri, Columbia, MO 65211, USA 170.106.35.76 (Received 6 November 2008 – Revised 21 May 2009 – Accepted 28 May 2009 – First published online 17 August 2009) , on A 3-week-feeding study (1–21 d post-hatch) was conducted to evaluate the efficacy of total curcuminoids (TCMN), as an antioxidant, to amelio- 29 Sep 2021 at 12:56:31 rate the adverse effects of aflatoxin B1 (AFB1) in broiler chickens. Turmeric powder (Curcuma longa L.) that contained 2·55 % TCMN was used as a source of TCMN. Six cage replicates of five chicks each were assigned to each of six dietary treatments, which included: basal diet; basal diet supplemented with 444 mg/kg TCMN; basal diet supplemented with 1·0 mg/kg AFB1; basal diet supplemented with 74 mg/kg TCMN and 1·0 mg/kg AFB1; basal diet supplemented with 222 mg/kg TCMN and 1·0 mg/kg AFB1; basal diet supplemented with 444 mg/kg TCMN and 1·0 mg/kg AFB1. The addition of 74 and 222 mg/kg TCMN to the AFB1 diet significantly (P,0·05) improved weight gain and feed efficiency.
    [Show full text]
  • Impact of High Pressure on the Infusion of Curcuminoids in Pineapple Slices
    George JM and Rastogi NK, J Food Sci Nutr 2017, 3: 027 DOI: 10.24966/FSN-1076/100027 HSOA Journal of Food Science and Nutrition Research Article by many research workers. However, it is relatively a slow and time Impact of High Pressure on the consuming process. Hence, a few techniques have been acknowledged in order to enhance the rate of osmotically induced mass transfer that Infusion of Curcuminoids in include partial vacuum [10,11], pulsed vacuum [12], high pressure [13-15], high intensity pulsed electric field [16,17], ohmic heating Pineapple Slices [18,19] or ultrasound [20-23]. Application of high pressure treatment Jincy M George1,2 and Navin K Rastogi1,2* accelerated the diffusion of bioactive components into the solid food 1ACSIR, Central Food Technological Research Institute, Mysore, India due to cell membranes permeabilisation resulting in decline in the re- sistance to infusion [24,25]. The application of high pressure pretreat- 2 Department of Food Engineering, Central Food Technological Research ment was described to increase the water and solute diffusion during Institute, Mysore, India osmotic dehydration of pineapples, potato, glutinous rice and turkey breast [26-29]. Sila et al., [30] demonstrated that combined effect of high pressure treatment and CaCl2 treatment improved the texture of carrots during thermal processing. High pressure-assisted infusion of pectin methyl esterase and calcium chloride in strawberry was shown to improve the firmness [13,31]. Mahadevan et al., [32] indicated that high pressure pretreatment increased infusion of quercetin by 3 times into cranberries as compared to untreated ones. Incorporation of synthetic antioxidants like Butylated Hydroxy- anisole (BHA) and Butylated Hydroxy Toluene (BHT) are restricted Abstract by legislative laws and regulations due to carcinogenic effects [33].
    [Show full text]
  • Curcumin and Resveratrol in the Management of Cognitive Disorders: What Is the Clinical Evidence?
    Review Curcumin and Resveratrol in the Management of Cognitive Disorders: What is the Clinical Evidence? Gabriela Mazzanti * and Silvia Di Giacomo Department of Physiology and Pharmacology, Sapienza - University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy. * Correspondence: [email protected]; Tel.: +39-064-991-2903 Academic Editor: Luigia Trabace Received: 26 July 2016; Accepted: 12 September 2016; Published: 17 September 2016 Abstract: A growing body of in vitro and in vivo evidences shows a possible role of polyphenols in counteracting neurodegeneration: curcumin and resveratrol are attractive substances in this regard. In fact, epidemiological studies highlight a neuroprotective effect of turmeric (rhizome of Curcuma longa L.), the main source of curcumin. Moreover, the consumption of red wine, the main source of resveratrol, has been related to a lower risk of developing dementia. In this review, we analyzed the published clinical trials investigating curcumin and resveratrol in the prevention or treatment of cognitive disorders. The ongoing studies were also described, in order to give an overview of the current search on this topic. The results of published trials (five for curcumin, six for resveratrol) are disappointing and do not allow to draw conclusions about the therapeutic or neuroprotective potential of curcumin and resveratrol. These compounds, being capable of interfering with several processes implicated in the early stages of dementia, could be useful in preventing or in slowing down the pathology. To this aim, an early diagnosis using peripheral biomarkers becomes necessary. Furthermore, the potential preventive activity of curcumin and resveratrol should be evaluated in long-term exposure clinical trials, using preparations with high bioavailability and that are well standardized.
    [Show full text]
  • Genome Sequencing of Turmeric Provides Evolutionary Insights Into Its Medicinal Properties
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.07.286245; this version posted September 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Genome sequencing of turmeric provides evolutionary insights into its medicinal properties 2 Authors: Abhisek Chakraborty, Shruti Mahajan, Shubham K. Jaiswal, Vineet K. Sharma* 3 4 Affiliation: 5 MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and 6 Research Bhopal 7 8 *Corresponding Author email: 9 Vineet K. Sharma - [email protected] 10 11 E-mail addresses of authors: 12 Abhisek Chakraborty - [email protected], Shruti Mahajan - [email protected], Shubham K. 13 Jaiswal - [email protected], Vineet K. Sharma - [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.09.07.286245; this version posted September 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 14 ABSTRACT 15 Curcuma longa, or turmeric, is traditionally known for its immense medicinal properties and has 16 diverse therapeutic applications. However, the absence of a reference genome sequence is a limiting 17 factor in understanding the genomic basis of the origin of its medicinal properties. In this study, we 18 present the draft genome sequence of Curcuma longa, the first species sequenced from 19 Zingiberaceae plant family, constructed using 10x Genomics linked reads. For comprehensive gene 20 set prediction and for insights into its gene expression, the transcriptome sequencing of leaf tissue 21 was also performed.
    [Show full text]
  • Polyphenols of the Mediterranean Diet and Their Metabolites in the Prevention of Colorectal Cancer
    molecules Review Polyphenols of the Mediterranean Diet and Their Metabolites in the Prevention of Colorectal Cancer Aline Yammine 1,†, Amira Namsi 1,† , Dominique Vervandier-Fasseur 2 , John J. Mackrill 3 ,Gérard Lizard 1,‡ and Norbert Latruffe 1,* 1 Team Bio-PeroxIL, “Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism” (EA7270), University of Bourgogne Franche-Comté, Inserm, 21000 Dijon, France; [email protected] (A.Y.); [email protected] (A.N.); [email protected] (G.L.) 2 Team OCS, Institute of Molecular Chemistry of University of Burgundy (ICMUB UMR CNRS 6302), University of Bourgogne Franche-Comté, 21000 Dijon, France; [email protected] 3 Department of Physiology, University College Cork, BioScience Institute, College Road, T12 YT20 Cork, Ireland; [email protected] * Correspondence: [email protected]; Tel.:+33-380-396-237; Fax: +33-380-396-250 † These authors contributed equally to this work. ‡ Inserm Researcher; Researcher attached to the international network of the UNESCO Chair ‘Culture and tradition of wine’. Abstract: The Mediterranean diet is a central element of a healthy lifestyle, where polyphenols play a key role due to their anti-oxidant properties, and for some of them, as nutripharmacological compounds capable of preventing a number of diseases, including cancer. Due to the high prevalence of intestinal cancer (ranking second in causing morbidity and mortality), this review is focused on the beneficial effects of selected dietary phytophenols, largely present in Mediterranean cooking: apigenin, curcumin, epigallocatechin gallate, quercetin-rutine, and resveratrol. The role of the Citation: Yammine, A.; Namsi, A.; Vervandier-Fasseur, D.; Mackrill, J.J.; Mediterranean diet in the prevention of colorectal cancer and future perspectives are discussed in Lizard, G.; Latruffe, N.
    [Show full text]
  • Bright Side of Lignin Depolymerization: Toward New Platform Chemicals
    This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. Review Cite This: Chem. Rev. 2018, 118, 614−678 pubs.acs.org/CR Bright Side of Lignin Depolymerization: Toward New Platform Chemicals † † ‡ † ‡ † Zhuohua Sun, Balint́ Fridrich, , Alessandra de Santi, , Saravanakumar Elangovan, † and Katalin Barta*, † Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands *S Supporting Information ABSTRACT: Lignin, a major component of lignocellulose, is the largest source of aromatic building blocks on the planet and harbors great potential to serve as starting material for the production of biobased products. Despite the initial challenges associated with the robust and irregular structure of lignin, the valorization of this intriguing aromatic biopolymer has come a long way: recently, many creative strategies emerged that deliver defined products via catalytic or biocatalytic depolymerization in good yields. The purpose of this review is to provide insight into these novel approaches and the potential application of such emerging new structures for the synthesis of biobased polymers or pharmacologically active molecules. Existing strategies for functionalization or defunctionalization of lignin- based compounds are also summarized. Following the whole value chain from raw lignocellulose through depolymerization to application whenever possible, specific lignin-based compounds emerge that could be in the future considered as potential lignin- derived platform chemicals. CONTENTS 2.2.3. Influence of Additives 629 2.2.4. Influence of Solvents 634 1. Introduction 615 2.2.5.
    [Show full text]
  • Nutritional Approaches to Combat Oxidative Stress in Alzheimer's
    REVIEWS: CURRENT TOPICS Journal of Nutritional Biochemistry 13 (2002) 444–461 Nutritional approaches to combat oxidative stress in Alzheimer’s disease D. Allan Butterfielda,*, Alessandra Castegnaa, Chava B. Pocernicha, Jennifer Drakea, Giovanni Scapagninib, Vittorio Calabresec aDepartment of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA bBlanchette Rockefeller Neurosciences Institute, West Virginia University, Rockville, MD 20850, USA cSection of Biochemistry and Molecular Biology, Department of Chemistry, Faculty of Medicine, University of Catania, Catania, Italy Received 12 March 2002; received in revised form 4 April 2002; accepted 17 April 2002 Abstract Alzheimer’s disease (AD) brains are characterized by extensive oxidative stress. Additionally, large depositions of amyloid ␤-peptide (A␤) are observed, and many researchers opine that A␤ is central to the pathogenesis of AD. Our laboratory combined these two observations in a comprehensive model for neurodegeneration in AD brains centered around A␤-induced oxidative stress. Given the oxidative stress in AD and its potentially important role in neurodegeneration, considerable research has been conducted on the use of antioxidants to slow or reverse the pathology and course of AD. One source of antioxidants is the diet. This review examines the literature of the effects of endogenous and exogenous, nutritionally-derived antioxidants in relation to AD. In particular, studies of glutathione and other SH-containing antioxidants, vitamins, and polyphenolic compounds and their use in AD and modulation of A␤-induced oxidative stress and neurotoxicity are reviewed. © 2002 Elsevier Science Inc. All rights reserved. Keywords: Alzheimer’s disease; Antioxidants; Glutathione; Polyphenols; Vitamins; Oxidative stress; Amyloid beta-peptide; Cellular response genes 1.
    [Show full text]
  • Pdf (856.12 K)
    EGYPTIAN Vol. 67, 1453:1462, April, 2021 DENTAL JOURNAL Print ISSN 0070-9484 • Online ISSN 2090-2360 Fixed Prosthodontics and Dental Materials www.eda-egypt.org • Codex : 48/21.04 • DOI : 10.21608/edj.2021.53752.1411 CHEMICAL CHARACTERIZATION OF BLEACHED TURMERIC HYDRO-ALCOHOLIC EXTRACT AND ITS EFFECT ON DENTIN MICROHARDNESS VERSUS SODIUM HYPOCHLORITE AS AN ENDODONTIC IRRIGANT: IN VITRO STUDY Walaa H. Salem* , Taheya A. Moussa** and Nehal L. Abou Raya*** ABSTRACT Aim: Chemical characterization of bleached turmeric hydro-alcoholic extract regarding amount of its curcuminoids, total phenols percent and antioxidant properties compared to unbleached turmeric hydro-alcoholic extract. Moreover, evaluate the effect of the bleached turmeric extract on dentin microhardness compared to sodium hypochlorite as an endodontic irrigant. Methods: Quantification of curcuminoids was done by HPLC/MS test, evaluation of total phenols percentage was done using Folin-Ciocalteu reagent while antioxidant properties were evaluated using DPPH free scavenging ability. For the evaluation of microhardness, a total of 14 teeth were used. Mechanical preparation with intervening irrigation according to the corresponding group was done. Each tooth was then sectioned vertically into two halves and equally divided into two groups to be immersed in the corresponding irrigant solution. VHN was recorded before and after immersion. Statistical analysis of data obtained from each test was performed on basis of p-value<0.05 for significance. Results: Quantification by HPLC/MS test showed that the amount of the curcuminoid was lower in the bleached turmeric extract than the unbleached turmeric extract. Also, total phenols percent in the bleached turmeric extract was the least among the test samples while the antioxidant properties of the bleached turmeric extract was the highest among the tested samples.
    [Show full text]
  • Comparative Studies on the Antioxidant Profiles of Curcumin
    animals Article Comparative Studies on the Antioxidant Profiles of Curcumin and Bisdemethoxycurcumin in Erythrocytes and Broiler Chickens Jingfei Zhang 1, Hongli Han 1, Mingming Shen 1, Lili Zhang 1 and Tian Wang 1,2,* 1 College of Animal Science and Technology, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, China; [email protected] (J.Z.); [email protected] (H.H.); [email protected] (M.S.); [email protected] (L.Z.) 2 National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, No. 6, Tongwei Road, Xuanwu District, Nanjing 210095, China * Correspondence: [email protected]; Tel./Fax: +86-25-84395156 Received: 16 October 2019; Accepted: 8 November 2019; Published: 11 November 2019 Simple Summary: Turmeric, which is the rhizome of Curcuma longa, has a long history for spice and medicine in China, India, and other tropical countries. Curcuminoids, as the principle active compounds of turmeric, consist of curcumin (about 77%), demethoxycurcumin (about 17%), and bisdemethoxycurcumin (about 3%). Studies showed that curcuminoids, especially curcumin, possesses antioxidant, free radical scavenging activities, and thus have a health-promoting effect in human and animals. Of the three curcuminoids, extensive research on the biological activity of curcumin was carried out for decades. However, its natural analogues bisdemethoxycurcumin was relatively less investigated. Based the records, there was still controversy regarding the relative potency of antioxidant activity of curcuminoid that is dependent on different cell types and animal models, which ultimately affected their beneficial effects on the intestinal health and animal production as well. Thus, whether curcumin and bisdemethoxycurcumin shared the same efficiency of antioxidant activity in chicken erythrocytes and broiler chickens remains unknown.
    [Show full text]
  • Antioxidant Efficacy of Curcuminoids from Turmeric ( Curcuma Longa L
    Downloaded from British Journal of Nutrition (2009), 102, 1629–1634 doi:10.1017/S0007114509990869 q The Authors 2009 https://www.cambridge.org/core Antioxidant efficacy of curcuminoids from turmeric (Curcuma longa L.) powder in broiler chickens fed diets containing aflatoxin B1 Nisarani K. S. Gowda1*, David R. Ledoux2, Goerge E. Rottinghaus2, Alex J. Bermudez2 and Yin C. Chen2 . IP address: 1National Institute of Animal Nutrition and Physiology, Bangalore 560030, India 2Fusarium/Poultry Research Laboratory, University of Missouri, Columbia, MO 65211, USA 170.106.33.22 (Received 6 November 2008 – Revised 21 May 2009 – Accepted 28 May 2009 – First published online 17 August 2009) , on A 3-week-feeding study (1–21 d post-hatch) was conducted to evaluate the efficacy of total curcuminoids (TCMN), as an antioxidant, to amelio- 30 Sep 2021 at 21:30:52 rate the adverse effects of aflatoxin B1 (AFB1) in broiler chickens. Turmeric powder (Curcuma longa L.) that contained 2·55 % TCMN was used as a source of TCMN. Six cage replicates of five chicks each were assigned to each of six dietary treatments, which included: basal diet; basal diet supplemented with 444 mg/kg TCMN; basal diet supplemented with 1·0 mg/kg AFB1; basal diet supplemented with 74 mg/kg TCMN and 1·0 mg/kg AFB1; basal diet supplemented with 222 mg/kg TCMN and 1·0 mg/kg AFB1; basal diet supplemented with 444 mg/kg TCMN and 1·0 mg/kg AFB1. The addition of 74 and 222 mg/kg TCMN to the AFB1 diet significantly (P,0·05) improved weight gain and feed efficiency.
    [Show full text]
  • CURCUMA LONGA L.) OILS from DIFFERENT SOURCES Yongxiang Yu Clemson University, [email protected]
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Clemson University: TigerPrints Clemson University TigerPrints All Theses Theses 12-2006 COMPARISON OF BIOACTIVITIES AND COMPOSITION OF CURCUMIN-FREE TURMERIC (CURCUMA LONGA L.) OILS FROM DIFFERENT SOURCES Yongxiang Yu Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Food Science Commons Recommended Citation Yu, Yongxiang, " COMPARISON OF BIOACTIVITIES AND COMPOSITION OF CURCUMIN-FREE TURMERIC (CURCUMA LONGA L.) OILS FROM DIFFERENT SOURCES" (2006). All Theses. 29. https://tigerprints.clemson.edu/all_theses/29 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. COMPARISON OF BIOACTIVITIES AND COMPOSITION OF CURCUMIN- FREE TURMERIC (CURCUMA LONGA L.) OILS FROM DIFFERENT SOURCES A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Food, Nutrition and Culinary Science by Yongxiang Yu December 2006 Accepted by: Dr. Feng Chen, Committee Chair Dr. Xi Wang Dr. Felix H Barron Dr. Jeff Adelberg ABSTRACT Composition, antioxidant capacities and cell inhibition properties of curcumin- free turmeric (Curcuma longa L.) oils from different sources were evaluated by chromatographic method, two different in vitro antioxidative activity assays (DPPH* free radical scavenging assay and reducing power assay) and two different cancer cell lines (Caco-2 and MCF-7). Turmeric oil A (TOA) contains zingiberene, turmerone, and ar- turmerone, while turmeric oil B (TOB) contains 1-phellandrene and α-terpinolene as the major compounds.
    [Show full text]