Population Genetic Analysis of Red Foxes (Vulpes Vulpes)

Total Page:16

File Type:pdf, Size:1020Kb

Population Genetic Analysis of Red Foxes (Vulpes Vulpes) Population Genetic Analysis of Red Foxes (Vulpes vulpes ) in Hedmark Country, Norway - A Pilot Study Aarathi Manivannan Master Degree in Applied & Commercial Biotechnology HEDMARK UNIVERSITY COLLEGE Department of Natural Sciences and Technology 2013 Acknowledgement Coming to the end of my journey through the master program in Applied and Commercial Biotechnology, I would like to express my gratitude to all those who have encouraged me through it. A special thanks to my parents, S. Manivannan and M. Revathi who trusted me and gave me this opportunity to study in a privileged university, Hedmark University College. Thank you Appa for giving me a priceless gift “my studies” no matter whatever obstacles I came across. Thank you Amma for taking care of me no matter the distance between us. This achievement could not be possible without the guidance of my supervisor Robert C. Wilson. I am grateful for your never-ending support, excellent and enthusiastic supervision during this project. I would also like to thank my Associate Professor, Arne Linløkken for guiding me through the statistical part of my project. I dedicate this thesis to my fiancé, Aravindh Suryamoorthy. Thank you for your support, assistance and motivation in completing this thesis. Love you! Last but not the least, special thanks to all my friends in Norway and India who proved that “wherever you are, friends will never let you down”. Thank you for being with me at every possible situation! Hamar, May 31 st 2013 Aarathi Manivannan 2 Table of Contents Abstract ...................................................................................................................................... 5 1. Introduction ........................................................................................................................ 6 1.1. Fox ................................................................................................................................. 6 1.1.1. Physical characteristics of Foxes ...................................................................................................... 6 1.1.2. Distribution of Foxes ........................................................................................................................ 7 1.1.3. Diet of the Foxes .............................................................................................................................. 7 1.2. Vulpes Species ................................................................................................................ 7 1.2.1. Red Fox and its Distribution ............................................................................................................. 8 1.2.2. Physical Characteristics of Red Foxes ............................................................................................... 9 1.2.3. Diet of Red foxes ............................................................................................................................ 10 1.2.4. Reproduction ................................................................................................................................. 10 1.2.5. Predation ........................................................................................................................................ 11 1.3. DNA markers and Genotyping ....................................................................................... 12 1.3.1. Application of Microsatellite markers ............................................................................................ 15 1.3.2. Sex Determination ......................................................................................................................... 16 1.4. Advantages of microsatellites ....................................................................................... 19 1.5. Microsatellite marker/ primer design ............................................................................ 19 1.6. Common techniques used for genotyping...................................................................... 20 1.6.1. Applications of Multiplex PCR ........................................................................................................ 22 1.7. PCR Inhibitors ............................................................................................................... 22 1.7.1. Methods to overcome Inhibition ................................................................................................... 22 1.8. 16-capillary 3130 xl Genetic Analyzer (Applied Biosystems) ............................................ 23 2. Aim of Study ..................................................................................................................... 26 3. Materials and Methods .................................................................................................... 27 3.1. Scheme of the study ..................................................................................................... 27 3.2. Extraction of DNA ......................................................................................................... 27 3.2.1. From tissue ..................................................................................................................................... 27 3.2.2. From Hair ....................................................................................................................................... 28 3.2.3. From Scat ....................................................................................................................................... 28 3.3. Multiplex Primer Design ............................................................................................... 29 3.4. Multiplex PCR ............................................................................................................... 30 3.5. Agarose Gel Electrophoresis .......................................................................................... 30 3.6. Sequencing of PCR Amplicons ....................................................................................... 30 3.7. Genotyping .................................................................................................................. 31 3.8. Bioinformatics Analysis ................................................................................................. 32 4. Results............................................................................................................................... 33 4.1. Isolation of DNA ........................................................................................................... 33 4.2. Development of new primers for the established markers ............................................. 34 4.2.1. Marker choice ................................................................................................................................ 34 4.2.2. Primer design ................................................................................................................................. 34 4.2.3. Primer Testing ................................................................................................................................ 36 4.2.4. Multiplexes ..................................................................................................................................... 38 4.3. Genotyping .................................................................................................................. 40 4.3.1. Sex Differentiation ......................................................................................................................... 45 4.4. Sequencing Analysis ..................................................................................................... 47 4.5. Bioinformatics Analysis ................................................................................................. 49 4.5.1. LOSITAN Analysis ............................................................................................................................ 50 4.5.2. MICRO-CHECKER Analysis .............................................................................................................. 51 4.5.3. Population Diversity Analysis on the genotype data ..................................................................... 52 4.6. Relationship Analysis .................................................................................................... 62 5. Discussion......................................................................................................................... 66 5.1. Isolation of DNA ........................................................................................................... 66 5.2. Microsatellite Primers .................................................................................................. 66 5.3. Genotype Analysis ........................................................................................................ 67 5.4. Sex Differentiation ....................................................................................................... 68 5.5. Sequencing Analysis ..................................................................................................... 68 5.6. Population Genetics ..................................................................................................... 69 5.6.1. Selection of Markers ...................................................................................................................... 69 5.6.2. Identification of Genotyping
Recommended publications
  • Small Carnivores in Tinjure-Milke-Jaljale, Eastern Nepal
    SMALL CARNIVORES IN TINJURE-MILKE-JALJALE, EASTERN NEPAL The content of this booklet can be used freely with permission for any conservation and education purpose. However we would be extremely happy to get a hard copy or soft copy of the document you have used it for. For further information: Friends of Nature Kathmandu, Nepal P.O. Box: 23491 Email: [email protected], Website: www.fonnepal.org Facebook: www.facebook.com/fonnepal2005 First Published: April, 2018 Photographs: Friends of Nature (FON), Jeevan Rai, Zaharil Dzulkafly, www.pixabay/ werner22brigitte Design: Roshan Bhandari Financial support: Rufford Small Grants, UK Authors: Jeevan Rai, Kaushal Yadav, Yadav Ghimirey, Som GC, Raju Acharya, Kamal Thapa, Laxman Prasad Poudyal and Nitesh Singh ISBN: 978-9937-0-4059-4 Acknowledgements: We are grateful to Zaharil Dzulkafly for his photographs of Marbled Cat, and Andrew Hamilton and Wildscreen for helping us get them. We are grateful to www.pixabay/werner22brigitte for giving us Binturong’s photograph. We thank Bidhan Adhikary, Thomas Robertson, and Humayra Mahmud for reviewing and providing their valuable suggestions. Preferred Citation: Rai, J., Yadav, K., Ghimirey, Y., GC, S., Acharya, R., Thapa, K., Poudyal, L.P., and Singh, N. 2018. Small Carnivores in Tinjure-Milke-Jaljale, Eastern Nepal. Friends of Nature, Nepal and Rufford Small Grants, UK. Small Carnivores in Tinjure-Milke-Jaljale, Eastern Nepal Why Protect Small Carnivores! Small carnivores are an integral part of our ecosystem. Except for a few charismatic species such as Red Panda, a general lack of research and conservation has created an information gap about them. I am optimistic that this booklet will, in a small way, be the starting journey of filling these gaps in our knowledge bank of small carnivore in Nepal.
    [Show full text]
  • Wild Animal, Birds and Reptiles Rescues from Unprotected Open Wells, Bore Wells and Water Tanks for Last Three Years by Animal Rahat
    JOURNAL OF WILDLIFE RESEARCH Journal homepage: www.jakraya.com/journal/jwr STUDY REPORT Wild Animal, Birds and Reptiles Rescues from Unprotected Open Wells, Bore Wells and Water Tanks for Last Three Years by Animal Rahat 1* Chittora R.K., 2Upreti N.C., 3Jadhav A.S., 4Yadav C.D., 5Bhise P.R., 6Naik K.P. and 7Pol K.K. 1Senior Veterinary Trainer, 2Chief Operating Officer, 3Veterinary Field Officer, 4Clinical Quality Assurance Manager, 5Veterinary Field Officer, 6Community Facilitator and Animal Rescue Officer, 7Animal Welfare Inspector, Animal Rahat, Post Box No-30 Pin 416416, Maharashtra, India. Abstract The open wells, bore wells and water tanks (storage of water in big ponds on ground in advance system of agriculture) are the means of irrigation in most part of India but on the other hand these open wells, bore wells and water tanks are unprotected from top, while guidelines for *Corresponding Author: protecting of these structures are in the system. These unprotected open wells, bore wells and water tanks are nightmare for wild animals, they fall Chittora R. K. down into these structures accidentally when they are chased by other Email: [email protected] predator species or while playing or fighting with each other. Animal Rahat has rescued 43 wild animals, birds and reptiles including 10 species; namely Indian foxes, Jackals, Civets, Wolf, Indian spectacled cobra, Received: 11/05/2020 Russell’s viper, Indian rat snakes, Monitor lizard, Crocodile, Pea fowls Accepted: 25/05/2020 from these unprotected structures in last 3 years’ period i.e. from April 2017 to March 2020. Appropriate equipment’s, trained persons, and veterinarians along with rapid actions are necessary for rescue of these wild species without harming them as well as humans.
    [Show full text]
  • Mammals of Chitwan National Park Compiled By: Laxman Prasad Poudyal SN Order/ Family/ Name Scientific Name C IT E S IU C N S Ta
    www.chitwannationalpark.gov.np Mammals of Chitwan National Park Compiled by: Laxman Prasad Poudyal SN Order/ Family/ Name Scientific Name CITES IUCN Status NRDB Nepal Act ORDER : PHOLIDOTA, Family - Manidae 1 Indian Pangolin Manis crassicaudata II NT SU P 2 Chinese Pangolin Manis pentadacyla II EN SU P ORDER : INSECTIVORA, Family - Soricidae 3 Eurasian Pygmy Shrew Sorex minutus ORDER : CHIROPTERA, Family – Pteropodidae 4 Indian Short-nosed Fruit Bat Cynopterus sphinx LC 5 Indian Flying Fox Pteropus giganteus LC 6 Fulvous Fruit Bat Rousettus leschenaulti LC Family – Rhinolophidae 7 Greater Woolly Horseshoe Bat Rhinolophus luctus LC Family – Vespertilionidae 8 Painted bat Kerivoula picta LC 9 Indian pipistrelle Pipistrellus coromandra LC 10 Greater Asiatic Yellow Bat Scotophilus heathi LC 11 Lesser Asiatic Yellow Bat Scotophilus kuhlii LC 12 Round-eared Tubenosed Bat Murina cyclotis LC ORDER : PRIMATES, Family – Cercopithecidae 13 Rhesus Macaque Macaca mulatta LC SU 14 Tarai Gray Langur Semnopithecus hector I NT ORDER : CARNIVORA, Family – Canidae 15 Golden Jackal Canis aureus LC 16 Asiatic Wild-dog, Dhole Cuon alpinus II EN VU 17 Bengal Fox Vulpes bengalensis LC SU Family – Ursidae 18 Sloth Bear Ursus ursinus/ Melursus ursinus I VU VU Family – Mustelidae 19 Smooth Coated Otter Lutrogale perspicillata VU SU 20 Honey Badger, Ratel Mellivora capensis LC SU 21 Asian Small-clawed Otter Aonyx cinerea VU SU 22 Yellow-throated Marten Martes flavigula LC Family – Viverridae 23 Masked Palm Civet Paguma larvata LC 24 Toddy Cat Paradoxurus hermaphroditus LC 25 Spotted Lingsang Prionodon pardicolor I LC P 26 Large Indian Civet Viverra zibetha NT 27 Small Indian Civet Viverricula indica LC Family - Herpestidae 28 Indian Grey Mongoose Herpestes edwardsii LC 29 Small Asian Mongoose Herpestes javanicus/ H.
    [Show full text]
  • April/May/June Issue Is $9.00
    Vol.48 | No.2 | Apr May Jun | 2013 the official publication of the Basenji Club of America, Inc. CO NTENTS GREAT DANE PHOTOS DANE GREAT BCOA BULLETIN On the cover a PR, maY, JUN 2013 Max, 2012 AKC/Eukanuba Agility Invitational Top Basenji flying high DEP ARTMENTS Agility Basenjis are shaped not born. Alyce Sumita shares what she has learned about training for agility F07 rom the President STORY PAGE 18 08 About this Issue 09 Contributors O 22 UT OF THE BOX AD brEAK OWN OF STRAIGHT anD OVAL TRACK racING 10 Letters BY PARRY TaLLMADGE 12 Junior Eye View 14 Points of View 24 ASFA JUDGES’ BREED RANKING SURVEY J RUDGING FO EXCELLENCE IN brEED TYPE 17 A Note BY SuSAN WEINKEIN UDP ATES 26 OBEDIENCE & BASENJIS BEJ AS N IS LEARN WHEN WE pay ATTENTION 46 Committee Reports BY SANDI ATKINSON 47 Club columns H30 W at it takes TO be OBEDIENT CLRF A I YING THE CLASSES Ta LLIES, TITLES & REPORTS BY BRENDA PHILLIPS 51 Conformation Honor Rolls 32 A TRACKER’S JOURNEY 56 Performance Honor Rolls OR U HOUNDS TURN THEIR SIGHT on SCENT 57 OFA Reports BY TERRY COX FIEDLER 60 New AKC Titles 36 A BASENJI DRAFT ODYSSEY 64 2013 Standings BEJ AS N IS PULL THEIR WEIGHT 63 New ASFA, LGRA, NOTRA Titles BY RENEE MERIauX 0 4 K9 NOSE WORK Sc ENT SEEKING MISSILES WITH CINDY SmITH OF THE RIGHT STEPS 66 BCOA & BHE Financials NT42 SA É SupporI T NG THE FOUNDATION FOR HEALTH RESEARCH BY LEEBETH CRANMER BCOA Bulletin (APR/MAY/JUN ’13) 1 The Official Publication of the Basenji Club of America, Inc.
    [Show full text]
  • Small Carnivores
    SMALL CARNIVORES IN TINJURE-MILKE-JALJALE, EASTERN NEPAL The content of this booklet can be used freely with permission for any conservation and education purpose. However we would be extremely happy to get a hard copy or soft copy of the document you have used it for. For further information: Friends of Nature Kathmandu, Nepal P.O. Box: 23491 Email: [email protected], Website: www.fonnepal.org Facebook: www.facebook.com/fonnepal2005 First Published: April, 2018 Photographs: Friends of Nature (FON), Jeevan Rai, Zaharil Dzulkafly, www.pixabay/ werner22brigitte Design: Roshan Bhandari Financial support: Rufford Small Grants, UK Authors: Jeevan Rai, Kaushal Yadav, Yadav Ghimirey, Som GC, Raju Acharya, Kamal Thapa, Laxman Prasad Poudyal and Nitesh Singh ISBN: 978-9937-0-4059-4 Acknowledgements: We are grateful to Zaharil Dzulkafly for his photographs of Marbled Cat, and Andrew Hamilton and Wildscreen for helping us get them. We are grateful to www.pixabay/werner22brigitte for giving us Binturong’s photograph. We thank Bidhan Adhikary, Thomas Robertson, and Humayra Mahmud for reviewing and providing their valuable suggestions. Preferred Citation: Rai, J., Yadav, K., Ghimirey, Y., GC, S., Acharya, R., Thapa, K., Poudyal, L.P., and Singh, N. 2018. Small Carnivores in Tinjure-Milke -Jaljale, Eastern Nepal. Friends of Nature, Nepal and Rufford Small Grants, UK. Small Carnivores in Tinjure-Milke-Jaljale, Eastern Nepal Why Protect Small Carnivore! Small carnivores are an integral part of our ecosystem. Except for a few charismatic species such as Red Panda, a general lack of research and conservation has created an information gap about them. I am optimistic that this booklet will, in a small way, be the starting journey of filling these gaps in our knowledge bank of small carnivore in Nepal.
    [Show full text]
  • Cougar 1 Cougar
    Cougar 1 Cougar Cougar[1] Temporal range: Middle Pleistocene to recent Conservation status [2] Least Concern (IUCN 3.1) Scientific classification Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Family: Felidae Genus: Puma Species: Puma concolor Binomial name Puma concolor (Linnaeus, 1771) Cougar 2 Cougar range The cougar (Puma concolor), also known as puma, mountain lion, mountain cat, catamount or panther, depending on the region, is a mammal of the family Felidae, native to the Americas. This large, solitary cat has the greatest range of any large wild terrestrial mammal in the Western Hemisphere,[3] extending from Yukon in Canada to the southern Andes of South America. An adaptable, generalist species, the cougar is found in every major American habitat type. It is the second heaviest cat in the Western Hemisphere, after the jaguar. Although large, the cougar is most closely related to smaller felines and is closer genetically to the domestic cat than to true lions. A capable stalk-and-ambush predator, the cougar pursues a wide variety of prey. Primary food sources include ungulates such as deer, elk, moose, and bighorn sheep, as well as domestic cattle, horses and sheep, particularly in the northern part of its range. It will also hunt species as small as insects and rodents. This cat prefers habitats with dense underbrush and rocky areas for stalking, but it can also live in open areas. The cougar is territorial and persists at low population densities. Individual territory sizes depend on terrain, vegetation, and abundance of prey. While it is a large predator, it is not always the dominant species in its range, as when it competes for prey with other predators such as the jaguar, grey wolf, American Black Bear, and the grizzly bear.
    [Show full text]
  • Lycaon Pictus) in HWANGE NATIONAL PARK(HNP
    THE EPIDEMIOLOGY OF GASTROINTERSTINAL PARASITES IN PAINTED DOGS (Lycaon pictus) IN HWANGE NATIONAL PARK(HNP). BY TAKUNDA.T. TAURO A thesis submitted in partial fulfilment for the requirements for the degree of BSc (Hons) Animal and Wildlife Sciences, Department of Animal and Wildlife Sciences, Faculty of Natural Resources Management and Agriculture Midlands State University May 2018 Page | i ABSTRACT An epidemiological survey was conducted on the prevalence and risk factors associated with intestinal parasites of African Painted dog in Hwange National Park between June 2016 and July 2017. Centrifugal flotation and McMaster techniques were employed to obtain comprehensive data on the prevalence and diversity of gastrointestinal parasites observed in faecal samples collected from painted dogs. A total of 58 painted dogs were surveyed. Out of these, all were infected with at least one intestinal parasite and 10 parasite genera of gastrointestinal i.e. Alaria, Physolaptera, Isospora, Spirocerca, Dipylidium, Uncinaria, Toxoscaris, Toxocara, Taenia, Ancylostoma and Sarcocystis spp were recorded. Two parasites (Physolaptera and Spirocerca) have been reported for the first time in this study. Sarcocystis had the highest prevalence (28.2%) and intensity (629.18±113.01), while the lowest prevalence was for Physolaptera and Alaria spp (0.6% prevalence and 50± 0 intensity). Level of parasitism was statistically significant across all parasites species (F=0.036; p<0.05). The findings also revealed significant difference in intensity between packs (F= 0.037; p <0.05), no significant difference in level of parasitism between season (F=0.275; p > 0.05). Results were comparable basing on location but with no statistical significance (P=0.132).
    [Show full text]
  • Paws for Reading What Is a Paw? Is It a Foot/Hand of an Animal? Can a Paw Be a Foot, and Can a Foot Be a Paw? a Paw Is the Lower Part Attached to the Leg of an Animal
    Paws for Reading What is a paw? Is it a foot/hand of an animal? Can a paw be a foot, and can a foot be a paw? A paw is the lower part attached to the leg of an animal. It is usually furry, ovoid (egg shaped) with soft pads on the bottom and claws. Paws could be the fore foot or hind foot of an animal. Fe et are elongated, not very hairy and have nails not claws. A paw can be a foot, but a foot cannot be paw. People do not have paws, but racoons do. So, what animals have paws? Cats, dogs, racoons, bears, weasels, mice (rodents), fox, wolves. How many toes do they have? They will have either four toes or five toes. Four toed animals are the cat, dog, fox, wolf, and coyotes (they also have a dewclaw, it is like our thumb). tRabbits have paws with four toes and a dewclaw but no pad on the bottom. It is furry. Other four toes animals are big cats like the cougar and lion. Five toed animals are weasels, skunks, otters, and bears. Plus, many more. Sometimes a cat or dog is born with extra toes. This cat/dog would be called a Polydactyl cat/dog. Polydactyl is Greek for many digits. Have you seen tracks in the dust or mud and wondered what animal made those? Some tracks are easy to identify, other are much harder. Size is a clue to identifying certain tracks. Number of toes is another clue. Does it have claws showing in the track? Are the front tracks inline with the back track or are they off set? Can an animal use it paws for other things besides walking/running? Yes, many animals use their paws to hit or swipe at another animal.
    [Show full text]
  • Secretary's Pages
    SECRETARY ’S PAGES MISSION STATEMENT The American Kennel Club is dedicated to upholding ATTENTION DELEGATES the integrity of Mits IRSeSgiIsOtryN, p romoting thSe TsApoTrtEoMf pEurNebT red dogs and breed - ing for type and function. ® NOTICE OF MEETING FToheu nAdmeed ricn a1n8 8K4e, ntnhel AKCCluba isn d deitds icaafftielida tteo d uoprhgoaldninizga tihoen is natedgvroitcy aotfe itfso rRtehge isptruyr,e p brroemdo dtiong athse as pfaormt iolyf pcuormebpraend iodnog, sadavnad nbcre ecdainng infeo r hteyapeltha nad ndfu wncetilol-nb. eing, work to protect the The next meeting of the Delegates will be held at Frioguhntdse od f ian ll1 8d8o4g, othwe nAKCers annd di tps raofmfiloiatete rd eosrpgoansiziabtlieo nds oagd ovwocnaetersfhoripth. e pure bred dog as a family companion, advance canine health and well-being, work to protect the rights of all the Doubletree Newark Airport Hotel on Tuesday, dog owners and 805prom1 oAtrec ore Csopropnosribaltee dDorgiv oew, Snueirtseh 1ip0. 0, Raleigh, NC 276 17 101 Park Avenue, New York, NY 10178 8051 Arco Corporate Drive, Suite 100, Raleigh, NC 276 17 September 14, 2021. For the sole purpose of con - Raleigh, NC Customer Call Center ..............................................................(919) 233-9767 260 Madison Avenue, New York, NY 10016 New York, NY Office ...................................................................................(212) 696-8200 Raleigh, NC Customer Call Center ..............................................................(919) 233-9767 ducting the vote for the Delegate
    [Show full text]
  • The Feasibility of Reintroducing African Wild Dogs (Lycaon Pictus) Into the Great Fish River Nature Reserve, Eastern Cape, South Africa
    The feasibility of reintroducing African wild dogs (Lycaon pictus) into the Great Fish River Nature Reserve, Eastern Cape, South Africa. A thesis submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE of RHODES UNIVERSITY By SAMANTHA KARIN PAGE February 2014 Abstract With a declining population of roughly 3000-5000 individuals in Africa, African wild dogs (Lycaon pictus) are one of the most endangered carnivores in the world. As the global human population expands, it is becoming increasingly unlikely that large portions of land will be set aside for conservation, especially in developing countries. Thus, recent wild dog conservation efforts in South Africa have concentrated on establishing a managed metapopulation. A metapopulation is a group of geographically isolated subpopulations of a species that are managed (using supplementation and harvesting) to mimic natural gene flow. The Great Fish River Nature Reserve (GFRNR) in the Eastern Cape Province of South Africa has been identified as a potential reserve to become part of the national wild dog metapopulation. My research aimed to conduct a feasibility assessment of the long-term (~ 25 years) success of a wild dog reintroduction into the GFRNR. This assessment included biological modelling of wild dogs and their expected prey, and determining the potential anthropogenic threats to wild dogs on the private and communal land surrounding the reserve. I used VORTEX population modelling and determined that the GFRNR is likely to have a wild dog carrying capacity of ~22 individuals. Using a 25-year modelling simulation, the most appropriate wild dog reintroduction scenario would be to reintroduce six females and four males initially and supplement the population with one female and two males in years 3, 10, 15 and 23.
    [Show full text]
  • Anatomical Study of the Digits of Fore Limbs in Goat H
    AL-Qadisiya Journal of Vet.Med.Sci. Vol./12 No./2 2013 ______________________________________________________________________________ Anatomical Study of the Digits of Fore limbs in goat H. A. Al- Sharoot Th. A. Abid E. F. AL-Baghdady Coll. of Vet. Med.l/Univ. of Al-Qadisiya. Abstract The study aim to explain the anatomical description of the digit of fore limb in goat (Capra hircus). Left and right fore limbs of 10 Iraqi healthy male goats aging (6) months, with no history of lameness and without local swelling or joint distension were utilized in this study. The study reveals that the goats have two digits; each digit has three phalanges (pI, p II, p III) and sesamoid bones. The PI longer than the other phalanx while the pII was much shorter than the pI. PIII was uniquely triangular in shape with numerous vascular channels. The proximal sesamoid bones were elongated and each bone have three surfaces while distal sesamoid bones were shuttle in shape and situated palmer to the second interphalangeal joints. Key word: Anatomical, Digits, Goat (Capra hircus) Introduction Goats (Capra hircus) are small (Digitigrades) for example dog (5).While important domesticated ruminants which anther type of animals limb characteristic has served humans earlier and longer than by the stronger feet for the tension and cattle and sheep (1, 2).Goats are wide pressure, this type of animals located under spread across the world, having adapted to (Unguligrade) for example ruminant (6) many different climatic conditions and .The importance of the foot resides from econiches (3) .It can be found in all over the complex anatomical peculiarities, the the world particularly in arid semitropical biomechanical stress and the multitude of or mountainous countries (4) .More clinical conditions that are related to this differenced between types of animals in the region.
    [Show full text]
  • Gravettian Portable Art on Lithic Support
    PALEO Revue d'archéologie préhistorique 25 | 2014 Varia Gravettian portable art on lithic support from Isturitz cave (Saint-Martin-d’Arberoue, Pyrénées- Atlantiques, France) : a rediscovered collection L’art mobilier gravettien sur support lithique de la grotte d’Isturitz (Saint- Martin-d’Arberoue, Pyrénées-Atlantiques, France) : une collection redécouverte Olivia Rivero and Diego Garate Electronic version URL: http://journals.openedition.org/paleo/3016 DOI: 10.4000/paleo.3016 ISSN: 2101-0420 Publisher SAMRA Printed version Date of publication: 28 December 2014 Number of pages: 247-276 ISSN: 1145-3370 Electronic reference Olivia Rivero and Diego Garate, « Gravettian portable art on lithic support from Isturitz cave (Saint- Martin-d’Arberoue, Pyrénées-Atlantiques, France) : a rediscovered collection », PALEO [Online], 25 | 2014, Online since 28 July 2015, connection on 07 July 2020. URL : http://journals.openedition.org/ paleo/3016 ; DOI : https://doi.org/10.4000/paleo.3016 This text was automatically generated on 7 July 2020. PALEO est mis à disposition selon les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 4.0 International. Gravettian portable art on lithic support from Isturitz cave (Saint-Martin-d’... 1 Gravettian portable art on lithic support from Isturitz cave (Saint- Martin-d’Arberoue, Pyrénées- Atlantiques, France) : a rediscovered collection L’art mobilier gravettien sur support lithique de la grotte d’Isturitz (Saint- Martin-d’Arberoue, Pyrénées-Atlantiques, France) : une collection redécouverte Olivia Rivero and Diego Garate We wish to thank Catherine Schwab and Marie-Sylvie Larguèze from the National Archaeology Museum of Saint-Germain-en-Laye for access to the studied material and J.
    [Show full text]