30 Simsek Corr 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methods and Work Profile
REVIEW OF THE KNOWN AND POTENTIAL BIODIVERSITY IMPACTS OF PHYTOPHTHORA AND THE LIKELY IMPACT ON ECOSYSTEM SERVICES JANUARY 2011 Simon Conyers Kate Somerwill Carmel Ramwell John Hughes Ruth Laybourn Naomi Jones Food and Environment Research Agency Sand Hutton, York, YO41 1LZ 2 CONTENTS Executive Summary .......................................................................................................................... 8 1. Introduction ............................................................................................................ 13 1.1 Background ........................................................................................................................ 13 1.2 Objectives .......................................................................................................................... 15 2. Review of the potential impacts on species of higher trophic groups .................... 16 2.1 Introduction ........................................................................................................................ 16 2.2 Methods ............................................................................................................................. 16 2.3 Results ............................................................................................................................... 17 2.4 Discussion .......................................................................................................................... 44 3. Review of the potential impacts on ecosystem services ....................................... -
Ladybirds, Ladybird Beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1
Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-170 Ladybirds, Ladybird beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1 J. H. Frank R. F. Mizell, III2 Introduction Ladybird is a name that has been used in England for more than 600 years for the European beetle Coccinella septempunctata. As knowledge about insects increased, the name became extended to all its relatives, members of the beetle family Coccinellidae. Of course these insects are not birds, but butterflies are not flies, nor are dragonflies, stoneflies, mayflies, and fireflies, which all are true common names in folklore, not invented names. The lady for whom they were named was "the Virgin Mary," and common names in other European languages have the same association (the German name Marienkafer translates Figure 1. Adult Coccinella septempunctata Linnaeus, the to "Marybeetle" or ladybeetle). Prose and poetry sevenspotted lady beetle. Credits: James Castner, University of Florida mention ladybird, perhaps the most familiar in English being the children's rhyme: Now, the word ladybird applies to a whole Ladybird, ladybird, fly away home, family of beetles, Coccinellidae or ladybirds, not just Your house is on fire, your children all gone... Coccinella septempunctata. We can but hope that newspaper writers will desist from generalizing them In the USA, the name ladybird was popularly all as "the ladybird" and thus deluding the public into americanized to ladybug, although these insects are believing that there is only one species. There are beetles (Coleoptera), not bugs (Hemiptera). many species of ladybirds, just as there are of birds, and the word "variety" (frequently use by newspaper 1. -
COLEOPTERA COCCINELLIDAE) INTRODUCTIONS and ESTABLISHMENTS in HAWAII: 1885 to 2015
AN ANNOTATED CHECKLIST OF THE COCCINELLID (COLEOPTERA COCCINELLIDAE) INTRODUCTIONS AND ESTABLISHMENTS IN HAWAII: 1885 to 2015 JOHN R. LEEPER PO Box 13086 Las Cruces, NM USA, 88013 [email protected] [1] Abstract. Blackburn & Sharp (1885: 146 & 147) described the first coccinellids found in Hawaii. The first documented introduction and successful establishment was of Rodolia cardinalis from Australia in 1890 (Swezey, 1923b: 300). This paper documents 167 coccinellid species as having been introduced to the Hawaiian Islands with forty-six (46) species considered established based on unpublished Hawaii State Department of Agriculture records and literature published in Hawaii. The paper also provides nomenclatural and taxonomic changes that have occurred in the Hawaiian records through time. INTRODUCTION The Coccinellidae comprise a large family in the Coleoptera with about 490 genera and 4200 species (Sasaji, 1971). The majority of coccinellid species introduced into Hawaii are predacious on insects and/or mites. Exceptions to this are two mycophagous coccinellids, Calvia decimguttata (Linnaeus) and Psyllobora vigintimaculata (Say). Of these, only P. vigintimaculata (Say) appears to be established, see discussion associated with that species’ listing. The members of the phytophagous subfamily Epilachninae are pests themselves and, to date, are not known to be established in Hawaii. None of the Coccinellidae in Hawaii are thought to be either endemic or indigenous. All have been either accidentally or purposely introduced. Three species, Scymnus discendens (= Diomus debilis LeConte), Scymnus ocellatus (=Scymnobius galapagoensis (Waterhouse)) and Scymnus vividus (= Scymnus (Pullus) loewii Mulsant) were described by Sharp (Blackburn & Sharp, 1885: 146 & 147) from specimens collected in the islands. There are, however, no records of introduction for these species prior to Sharp’s descriptions. -
Aspidiotus Nerii Bouchè (Insecta: Hemipthera: Diaspididae)
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2003 Molecular systematics of a sexual and parthenogenetic species complex : Aspidiotus nerii Bouchè (Insecta: Hemipthera: Diaspididae). Lisa M. Provencher University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Provencher, Lisa M., "Molecular systematics of a sexual and parthenogenetic species complex : Aspidiotus nerii Bouchè (Insecta: Hemipthera: Diaspididae)." (2003). Masters Theses 1911 - February 2014. 3090. Retrieved from https://scholarworks.umass.edu/theses/3090 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. MOLECULAR SYSTEMATICS OF A SEXUAL AND PARTHENOGENETIC SPECIES COMPLEX: Aspidiotus nerii BOUCHE (INSECTA: HEMIPTERA: DIASPIDIDAE). A Thesis Presented by LISA M. PROVENCHER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2003 Entomology MOLECULAR SYSTEMATICS OF A SEXUAL AND PARTHENOGENETIC SPECIES COMPLEX: Aspidiotus nerii BOUCHE (INSECTA: HEMIPTERA: DIASPIDIDAE). A Thesis Presented by Lisa M. Provencher Roy G. V^n Driesche, Department Head Department of Entomology What is the opposite of A. nerii? iuvf y :j3MSuy ACKNOWLEDGEMENTS I thank Edward and Mari, for their patience and understanding while I worked on this master’s thesis. And a thank you also goes to Michael Sacco for the A. nerii jokes. I would like to thank my advisor Benjamin Normark, and a special thank you to committee member Jason Cryan for all his generous guidance, assistance and time. -
Coccinellidae)
ECOLOGY AND BEHAVIOUR OF THE LADYBIRD BEETLES (COCCINELLIDAE) Edited by I. Hodek, H.E van Emden and A. Honek ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication CONTENTS Detailed contents, ix 8. NATURAL ENEMIES OF LADYBIRD BEETLES, 375 Contributors, xvii Piotr Ccryngier. Helen E. Roy and Remy L. Poland Preface, xviii 9. COCCINELLIDS AND [ntroduction, xix SEMIOCHEMICALS, 444 ]an Pettcrsson Taxonomic glossary, xx 10. QUANTIFYING THE IMPACT OF 1. PHYLOGENY AND CLASSIFICATION, 1 COCCINELLIDS ON THEIR PREY, 465 Oldrich Nedved and Ivo Kovdf /. P. Mid'laud and James D. Harwood 2. GENETIC STUDIES, 13 11. COCCINELLIDS IN BIOLOGICAL John J. Sloggett and Alois Honek CONTROL, 488 /. P. Midland 3. LIFE HISTORY AND DEVELOPMENT, 54 12. RECENT PROGRESS AND POSSIBLE Oldrkli Nedved and Alois Honek FUTURE TRENDS IN THE STUDY OF COCCINELLIDAE, 520 4. DISTRIBUTION AND HABITATS, 110 Helmut /; van Emden and Ivo Hodek Alois Honek Appendix: List of Genera in Tribes and Subfamilies, 526 5. FOOD RELATIONSHIPS, 141 Ivo Hodek and Edward W. Evans Oldrich Nedved and Ivo Kovdf Subject index. 532 6. DIAPAUSE/DORMANCY, 275 Ivo Hodek Colour plate pages fall between pp. 250 and pp. 251 7. INTRAGUILD INTERACTIONS, 343 Eric Lucas VII DETAILED CONTENTS Contributors, xvii 1.4.9 Coccidulinae. 8 1.4.10 Scymninae. 9 Preface, xviii 1.5 Future Perspectives, 10 References. 10 Introduction, xix Taxonomic glossary, xx 2. GENETIC STUDIES, 13 John J. Sloggett and Alois Honek 1. PHYLOGENY AND CLASSIFICATION, 1 2.1 Introduction, 14 Oldrich Nedved and Ivo Kovdf 2.2 Genome Size. 14 1.1 Position of the Family. 2 2.3 Chromosomes and Cytology. -
Mites and Insects Affecting Tree Establishment
Mites and Insects Affecting Tree Establishment Kris E. Tollerup, UC Area Advisor, Kearney Agricultural Research and Extension Center Arthropod Pests on Pistachio • Arthropod pest management during orchard establishment – Considering the immediate, or within-season needs to prevent economic damage. Principles of IPM Principles of IPM Using Pesticides • Disclaimer: Labels often change and reflect the law how pesticide can be legally applied. The following information in this presentation is for the purpose of general education only and does not constitute an endorsement or recommendation for use. Arthropod Pests on Pistachio • Species that can affect establishment of trees – Hemipterans, soft scale and aphids 1. Brown soft, Coccus hesperidum. 2. Black scale, Saissetia oleae. 3. Frosted scale, Parthenolecanium pruinosum. 4. European fruit, lecanium, P. corni. 5. Cotton aphid, Aphis gossypii Arthropod Pests on Pistachio Black scale • Damage – Produce large amount of honeydew in spring • Provides substrate for black sooty mold. • Can result in reduction of photosynthesis. • Large populations can reduce shoot growth. Arthropod Pests on Pistachio Metaphycus luteolus Black scale • Management – Biological: usually keep populations under economic levels. Rhyzobius sp. – Chemical: narrow range oil, insect growth regulators are effective. Arthropod Pests on Pistachio False chinch bug • Damage – Feeding on young trees can cause trees to wilt and die. – Feeding on older trees can result in severe leaf- drop. Arthropod Pests on Pistachio False chinch bug • Management – Cultural: mow ground cover before bloom in spring. – Chemical: primarily broad- spectrum insecticides • Apply morning or early evening. • More effective if trunk guards removed. Arthropod Pests on Pistachio Adult darkling beetle Darkling beetles • Damage – Feeds on 3 to 4 week-old Kerman bud of newly- grafted trees. -
PEST ALERT Cycad Aulacaspis Scale
PEST ALERT Cycad Aulacaspis Scale Scale covers, male & female (3 mm long) Adult female (1 mm long) & egg after removal of scale cover Scientific name: Aulacaspis yasumatsui Takagi (Order: Hemiptera; Family: Diaspididae) Other common names: Asian cycad scale, snow scale, Thai scale Description: Adult females are immobile, with a white, waxy, ovate cover 3 mm in diameter (above left). Underneath, the living female is 1 mm long and orange in color (above right). Adult males are immobile, elongate, 1 mm long, white with three longitudinal ridges. Infestations on leaves first appear as flecks of white (below left) and may rapidly cover foliage and reproductive parts within days or weeks, giving them a snow-covered appearance (below right). Native range and hosts; artificial introductions: Native to tropical SE Asia including India, Andaman Islands, Thailand, Vietnam, and probably Cambodia, Laos, Myanmar, southern China, and peninsular Malaysia, where it specializes on cycads of the genus Cycas. Recent introductions outside of its natural range include the United States (Florida, Alabama, California, Georgia, Hawaii, Louisiana, South Carolina, Texas) and its territories (Guam, Puerto Rico, U.S. Virgin Islands), as well as the Cayman Islands, St. Kitts, Singapore, and Taiwan. Mode of attack: Living mainly on the surface of leaves and sucking plant juices, in the absence of effective control this scale will multiply rapidly and engulf foliage within a few weeks. Repeated attacks on successive flushes of leaves, without intervention of effective control, are fatal to Cycas plants within a year. This insect also feeds on reproductive parts and will persist on stems and roots. -
Biological Control of Insect Pests in Hawaii Crop Protection Services 10Th Annual Seminar and Trade Show May 13, 2010 Arnold H
Biological Control of Insect Pests in Hawaii Crop Protection Services 10th Annual Seminar and Trade Show May 13, 2010 Arnold H. Hara University of Hawaii at Mānoa, College of Tropical Agriculture & Human Resources 875 Komohana St. Hilo, Hawaii E-mail: [email protected] Phone: 808 981-5199 Website: http://www.ctahr.hawaii.edu/haraa/index.asp There are 24 total slides. Click on “Outline” to close left pane. Use navigational buttons at the bottom of the slide OR Click on “Slide Show” at bottom right, then click on each slide to advance or right-click mouse to back up to previous slide or close slide show. What will this presentation cover? * Biological Control Classical Fortuitous Augumentative Inundative - flood Inoculative - inoculate * Biological Control in Hawaii * Conservation of Natural Enemies Minimize use of broad-spectrum insecticides Environmental vonditions detrimental to natural enemies * Biological or Microbial Insecticides * Summary Definition of Biological Control Biological Control - reduction of pest populations by natural enemies (predators, parasites or diseases). Classical Biological Control - introduction of natural enemies (from the pest‟s native home) to a new locality where they do not occur naturally. Fortuitous Biological Control – Do nothing biological control; natural enemies unintentionally arrives with pest to new locality or already in new locality. Augumentative Biological Control - Supplemental release of natural enemies. Innoculative Release: Release mass numbers of natural enemies to prey or parasitize target pest Inundative Releases: Release a few individuals and rely on their natural reproduction by preying or parasitizing target pest. Biological Control in Hawaii * Hawaii's government has been practicing classical biological control by purposely introducing and liberating natural enemies, for over a 100 years. -
General News
Biocontrol News and Information 31(1), 1N–8N www.cabi.org/BNI General News BNI News in 2010 Given the new understanding of cochineal–host plant specificity, the prospects for successful biolog- The new decade brings changes for BNI. The news ical control of Hudson pear seem good. In addition, and review sections are now on the main CABI web- the newly revealed host specificity of the cochineal site, at www.cabi.org/BNI, along with a link to the insect should make testing relatively straightfor- abstracts database on CAB Direct. To bring BNI in ward, especially as there are no Australian native line with CABI’s other news and information jour- Cactaceae, and a different biotype of D. tomentosus nals, the news section has been re-organized and has previously been approved for introduction. rationalized. Although now shorter than before, we hope it will be no less useful; our challenge is to use Contact: Bill Palmer, Biosecurity the space wisely to keep readers up to date with what Queensland/Alan Fletcher Research Station. is happening in the biocontrol world. We will con- ([email protected]). tinue to welcome readers’ contributions, although Web: www.dpi.qld.gov.au long articles will be rare and need to be agreed in advance. Please contact the Editor ([email protected]) Royce Holtkamp, NSW Department of Industry & about potential news items, conference announce- Investment. ([email protected]). ments and reports, and new publication notices. Web: www.dpi.nsw.gov.au New Cochineal Strain tested against Cactus in Biocontrol Agent Provides Canadian Lilies with Australia Protection against the Lily Leaf Beetle Recent research in South Africa lies behind a new The parasitic eulophid wasp Tetrastichus setifer was biocontrol project aimed at containing the spread of recently approved by the Canadian Food Inspection Hudson pear (Cylindropuntia rosea) in Australia. -
Mites and Insects Affecting Tree Establishment
Mites and Insects Affecting Tree Establishment Kris E. Tollerup, UC Area Advisor, Kearney Agricultural Research and Extension Center Pistachio Acreage, Statewide Acres Year Bearing Non‐bearing New plantings Change 2010 137,102 78,234 6,730 2011 152,944 73,392 11,000 4,270 2012 177,738 62,308 13,710 2,710 2013 202,997 68,068 24,500 10,790 2014 220,527 73,940 18,000 (6,500) 2015 232,655 69,312 7,500 (10,500) 2016 239,385 72,582 10,000 2,500 2017 250,385 79,582 18,000 8,000 2018 264,095 90,000 30,000 12,000 2019 288,595 105,000 35,000 5,000 Sources: CPC, ACP, NASS Principles of IPM 1 Using Pesticides • Disclaimer: Labels often change and reflect the law how pesticide can be legally applied. The following information in this presentation is for the purpose of general education only and does not constitute an endorsement or recommendation for use. Arthropod Pests on Pistachio • Species that can affect establishment of trees – Hemipterans, soft scale and aphids 1. Brown soft, Coccus hesperidum. 2. Black scale, Saissetia oleae. 3. Frosted scale, Parthenolecanium pruinosum. 4. European fruit, lecanium, P. corni. 5. Cotton aphid, Aphis gossypii Arthropod Pests on Pistachio Black scale • Description (adult) – ~1/8” in length – Dark brown to black w/H‐shape on dorsum. • Damage – Honeydew in spring • Black sooty mold. – Reduction of photosynthesis. • Reduce shoot growth. 2 Arthropod Pests on Pistachio Black scale • Monitoring – Early to mid‐January • Examine one‐year‐old fruiting wood for live and parasitized scale. -
The Biology and Ecology of Armored Scales
Copyright 1975. All rights resenetl THE BIOLOGY AND ECOLOGY +6080 OF ARMORED SCALES 1,2 John W. Beardsley Jr. and Roberto H. Gonzalez Department of Entomology, University of Hawaii. Honolulu. Hawaii 96822 and Plant Production and Protection Division. Food and Agriculture Organization. Rome. Italy The armored scales (Family Diaspididae) constitute one of the most successful groups of plant-parasitic arthropods and include some of the most damaging and refractory pests of perennial crops and ornamentals. The Diaspididae is the largest and most specialized of the dozen or so currently recognized families which compose the superfamily Coccoidea. A recent world catalog (19) lists 338 valid genera and approximately 1700 species of armored scales. Although the diaspidids have been more intensively studied than any other group of coccids, probably no more than half of the existing forms have been recognized and named. Armored scales occur virtually everywhere perennial vascular plants are found, although a few of the most isolated oceanic islands (e.g. the Hawaiian group) apparently have no endemic representatives and are populated entirely by recent adventives. In general. the greatest numbers and diversity of genera and species occur in the tropics. subtropics. and warmer portions of the temperate zones. With the exclusion of the so-called palm scales (Phoenicococcus. Halimococcus. and their allies) which most coccid taxonomists now place elsewhere (19. 26. 99). the armored scale insects are a biologically and morphologically distinct and Access provided by CNRS-Multi-Site on 03/25/16. For personal use only. Annu. Rev. Entomol. 1975.20:47-73. Downloaded from www.annualreviews.org homogenous group. -
Population Features of Biparental and Uniparental Forms of the Oleander
Türk. entomol. derg., 2018, 42 (1): 13-22 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/entoted.341521 E-ISSN 2536-491X Original article (Orijinal araştırma) Population features of biparental and uniparental forms of the oleander scale, Aspidiotus nerii Bouché, 1833 (Hemiptera: Diaspididae) on squash Zakkum kabuklubiti, Aspidiotus nerii Bouché, 1833 (Hemiptera: Diaspididae)’nin tek ve çift eşeyli formlarının kabak üstünde popülasyon özellikleri Alime BAYINDIR EROL1 Mehmet Salih ÖZGÖKÇE2* Abstract Aspidiotus nerii Bouché, 1833 (Hemiptera: Diaspididae) is a cosmopolitan pest, mainly found in tropical and subtropical regions. It has been reported from hosts corresponding to more than 100 plant families. Particularly important is the damage caused on lemon and olive trees and ornamental plants such as oleander. It has both biparental and uniparental forms. To investigate the population dynamics of both forms of pest, life tables were constructed under controlled conditions in 2016. The studies were carried out on squash in climatic cabinet adjusted to 25±1ºC, 65±1% RH and 16:8 h L:D photoperiod. At the end of the study, life table parameters of both forms of pest were calculated. Namely intrinsic rate of increase (r), 0.039 and 0.042 d-1; finite rate of increase (λ), 1.040 and 1.043 -1 -1 d ; net reproductive rate (R0), 14.07 and 27.19 d ; mean generation time (T), 67.51 and 78.49 d, for biparental and uniparental forms, respectively. R0 and T were statistically significant different between the two populations. Given these differences, it was estimated that the population size of the uniparental form may be 1.9 times higher than the biparental form.