Ep 2270226 B1

Total Page:16

File Type:pdf, Size:1020Kb

Ep 2270226 B1 (19) TZZ Z _T (11) EP 2 270 226 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12Q 1/68 (2006.01) G01N 33/569 (2006.01) 18.05.2016 Bulletin 2016/20 G01N 33/68 (2006.01) (21) Application number: 10013575.5 (22) Date of filing: 30.03.2006 (54) Method for distinguishing mesenchymal stem cell using molecular marker and use thereof Verfahren zur Unterscheidung mesenchymaler Stammzellen mittels molekularem Marker und Nutzung dieses Marker Procédé de distinction d’une cellule souche mésenchymateuse en utilisant un marqueur moléculaire et son usage (84) Designated Contracting States: (74) Representative: Müller Hoffmann & Partner AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Patentanwälte mbB HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI St.-Martin-Strasse 58 SK TR 81541 München (DE) (30) Priority: 31.03.2005 JP 2005104563 (56) References cited: EP-A1- 1 475 438 WO-A1-02/46373 (43) Date of publication of application: WO-A1-03/016916 WO-A1-03/106492 05.01.2011 Bulletin 2011/01 WO-A2-2004/025293 WO-A2-2004/044142 JP-A- 2004 290 189 US-A1- 2003 161 817 (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: • DESCHASEAUX FREDERIC ET AL: "Direct 06730606.8 / 1 870 455 selection of human bone marrow mesenchymal stem cells using an anti-CD49a antibody reveals (73) Proprietor: Two Cells Co., Ltd their CD45med,low phenotype", BRITISH Minami-ku JOURNAL OF HAEMATOLOGY, Hiroshima City WILEY-BLACKWELL PUBLISHING LTD, GB, vol. Hiroshima 732-0816 (JP) 122, no. 3, 1 August 2003 (2003-08-01), pages 506-517, XP002499042, ISSN: 0007-1048 (72) Inventors: • SEGUCHI T ET AL: "DECREASED EXPRESSION •Kato,Yukio OF FILAGGRIN IN ATOPIC SKIN", ARCHIVES OF Hiroshima-shi DERMATOLOGICAL RESEARCH, SPRINGER, Hiroshima 734-8551 (JP) INTERNATIONAL, BERLIN, DE, vol. 288, 1 • Kawamoto, Takeshi January 1996 (1996-01-01), pages 442-446, Hiroshima-shi XP002950708, ISSN: 0340-3696, DOI: Hiroshima 734-8551 (JP) DOI:10.1007/S004030050080 • Tsuji, Koichiro • "AFFYMETRIX CATALOG; PRODUKT: HUMAN Hiroshima-shi GENOME U133A ARRAY; ARRAY FINDER", Hiroshima 732-0811 (JP) AFFYMETRIX PRODUCT CATALOG, XX, XX, 1 • Igarashi, Akira July 2002 (2002-07-01), page 1, XP002267612, & Saitama 350-0209 (JP) "genecards", , 13 October 2009 (2009-10-13), • Shimizu, Masakazu Retrieved from the Internet: Kyoto-shi URL:http://www.genecards.org/cgi-bin/cardd Kyoto 606-8304 (JP) isp.pl?gene=FLG&search=filaggrin [retrieved on 2011-02-02] Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 270 226 B1 Printed by Jouve, 75001 PARIS (FR) (Cont. next page) EP 2 270 226 B1 • HIROSHI KUBO ET AL: "Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry", GENES TO CELLS, vol. 14, no. 3, 1 March 2009 (2009-03-01), pages 407-424, XP055104674, ISSN: 1356-9597, DOI: 10.1111/j.1365-2443.2009.01281.x 2 EP 2 270 226 B1 Description TECHNICAL FIELD 5 [0001] The present invention relates to a method for detecting, distinguishing, and separating mesenchymal stem cells, especially, to a method for distinguishing mesenchymal stem cells from connective tissue cells such as fibroblasts, osteoblasts, chondrocytes, adipose cells, etc. by using a gene marker, a protein marker, and/or the like marker for detecting mesenchymal stem cells, the markers being expressed in a different way in mesenchymal stem cells and in the other connective tissue cells. 10 BACKGROUND ART [0002] Mesenchymal stem cells are present in mammalian marrows etc. and known as pluripotential stem cells, which can differentiate into adipose cells, cartilage cells, and bone cells. Due to its pluripotency, mesenchymal stem cells are 15 highly expected as transplantation material for use in regenerative medicine for many kinds of tissues. That is, the use of mesenchymal stem cell enables "regenerative medicine by cell transplantation" for regenerating lost tissues lost due to diseases or impairment and have not been able to be regenerated by a conventional remedy method. More specifically, therapeutic treatments have been started or planed, which are for example, transplantation of marrow mesenchymal stem cells to a patient of lower limb ischemia (Buerger’s disease), transplantation of marrow mesenchymal stem cells 20 to a patient of a periodontal disease, transplantation of marrow mesenchymal stem cells to a patient of osteoarthritis, transportation of amniotic epithelium sheet to burn injured portion, transportation of amniotic stem cells to a patient of diabetes mellitus, and the other transplantation. [0003] In order to use mesenchymal stem cells for regenerative medicine, the stem cells should be collected from a living tissue and then multiplied without differentiation, and the multiplied and undifferentiated stem cells should be 25 induced to differentiate to desired cells in order to prepare tissue for the regenerative medicine. [0004] The inventors of the present invention have reported a method of easily collecting mesenchymal stem cells by separating mesenchymal stem cells from an oral cavity tissue, which method is safe for an individual from which the mesenchymal stem cells are collected (see Patent Citation 1). Moreover, the inventors of the present invention have reported a culturing method, which can give a significantly larger amount of mesenchymal stem cells than can a con- 30 ventional culturing method. The culturing method having been reported by the inventors of the present invention is based on a fact found by the inventors that mesenchymal stem cells can be multiplied at a dramatically fast rate by culturing the mesenchymal stem cells in the presence of an extracellular matrix of a basement membrane or in a medium containing fibroblast growth factor (FGF) etc. and this culturing method can multiply mesenchymal stem cells without the differen- tiating ability thereof (see Patent Citation 2). 35 [0005] These arts are not enough to make the regenerative medicine using the mesenchymal stem cells practically applicable. To speak specifically, for the preparation of the tissue for regenerative medicine by inducing the differentiation of the cultured and multiplied mesenchymal stem cells to desired cells, the cultured cells should be confirmed beforehand that they are mesenchymal stem cells. That is, it is necessary to develop a method of detecting and distinguishing the mesenchymal stem cells after the culturing and multiplication. 40 [0006] To solve this technical problem, the inventors of the present invention have developed a method of effectively identifying and separating mesenchymal stem cells and fibroblast, which are morphologically similar and thus difficult to be distinguish, the method using a gene maker and/or a protein marker for detecting mesenchymal stem cells (see Patent Citation 3). 45 [Patent Citation 1] Japanese Patent Application Publication, Tokukai, No. 2003-52365 (published on February 25, 2003). [Patent Citation 2] Japanese Patent Application Publication, Tokukai, No. 2003-52360 (published on February 25, 2003). [Patent Citation 3] Japanese Patent Application Publication, Tokukai, No. 2005-27579 (published on February 3, 50 2005). WO 03/106492 A1 discloses a marker for mesenchymal stem cells (MSC) comprising an integrin alpha 10 chain and/or an integrin alpha 11 chain expressed on the cell surface of or intracellular in a MSC. The marker is used in methods for identification of mammalian MSC and in methods for isolation of MSC. Also included are isolated cellular populations 55 of mammalian MSC and a cellular composition comprising the latter. Moreover, uses of said marker for isolation, mod- ulation and identification of mammalian MSC are disclosed. 3 EP 2 270 226 B1 DISCLOSURE OF INVENTION [Technical Problems] 5 [0007] As described above, mesenchymal stem cells, which differentiate to bones, cartilages, fats, muscles, ten- dons/ligaments, nerves, etc., have been highly expected to be applicable to the regenerative medicine as cells for transplantation to remedy impairment of these tissues. Conventionally, the confirmation of the mesenchymal stem cells can be carried out in vitro or by providing the differentiation ability thereof in vivo. The practical use of the tissue regen- erative medicine of the mesenchymal stem cells cannot be 10 DISCLOSURE OF INVENTION [Technical Problems] 15 [0008] As described above, mesenchymal stem cells, which differentiate to bones, cartilages, fats, muscles, ten- dons/ligaments, nerves, etc., have been highly expected to be applicable to the regenerative medicine as cells for transplantation to remedy impairment of these tissues. Conventionally, the confirmation of the mesenchymal stem cells can be carried out in vitro or by providing the differentiation ability thereof in vivo. The practical use of the tissue regen- erative medicine of the mesenchymal stem cells cannot be attained without exact, accurate, and easy method to confirm 20 that the cells are mesenchymal stem cells and the mesenchymal stem cells keep its pluripotentcy. [0009] It is true that the method disclosed in Patent Citation 3 is sufficient to identify and distinguish the mesenchymal stem cells and fibroblast. However, bone marrows etc. contain many other connective tissue cells other than fibroblasts, such as osteoblasts, chondrocytes, adipose cells, etc. [0010] Therefore, the art to distinguish the mesenchymal stem cells from fibroblast is not enough to realize practical 25 regenerative medicine using the mesenchymal stem cells. Accordingly, there have been a high demand to develop an art to distinguish and separate the undifferentiated mesenchymal stem cells from the other connective tissue cells such as fibroblasts, osteoblasts, chondrocytes, adipose cells, etc.
Recommended publications
  • A Genome-Wide Association Study of Bisphosphonate-Associated
    Calcifed Tissue International (2019) 105:51–67 https://doi.org/10.1007/s00223-019-00546-9 ORIGINAL RESEARCH A Genome‑Wide Association Study of Bisphosphonate‑Associated Atypical Femoral Fracture Mohammad Kharazmi1 · Karl Michaëlsson1 · Jörg Schilcher2 · Niclas Eriksson3,4 · Håkan Melhus3 · Mia Wadelius3 · Pär Hallberg3 Received: 8 January 2019 / Accepted: 8 April 2019 / Published online: 20 April 2019 © The Author(s) 2019 Abstract Atypical femoral fracture is a well-documented adverse reaction to bisphosphonates. It is strongly related to duration of bisphosphonate use, and the risk declines rapidly after drug withdrawal. The mechanism behind bisphosphonate-associated atypical femoral fracture is unclear, but a genetic predisposition has been suggested. With the aim to identify common genetic variants that could be used for preemptive genetic testing, we performed a genome-wide association study. Cases were recruited mainly through reports of adverse drug reactions sent to the Swedish Medical Products Agency on a nation- wide basis. We compared atypical femoral fracture cases (n = 51) with population-based controls (n = 4891), and to reduce the possibility of confounding by indication, we also compared with bisphosphonate-treated controls without a current diagnosis of cancer (n = 324). The total number of single-nucleotide polymorphisms after imputation was 7,585,874. A genome-wide signifcance threshold of p < 5 × 10−8 was used to correct for multiple testing. In addition, we performed candidate gene analyses for a panel of 29 genes previously implicated in atypical femoral fractures (signifcance threshold of p < 5.7 × 10−6). Compared with population controls, bisphosphonate-associated atypical femoral fracture was associated with four isolated, uncommon single-nucleotide polymorphisms.
    [Show full text]
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Universidad Nacional Autónoma De México Plan De Estudios Combinados En Medicina Instituto Nacional De Medicina Genómica
    UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PLAN DE ESTUDIOS COMBINADOS EN MEDICINA INSTITUTO NACIONAL DE MEDICINA GENÓMICA ESTUDIO POST-MORTEM DE LAS ALTERACIONES EN LA EXPRESIÓN DE RNA EN EL CEREBRO DE PACIENTES SUICIDAS TESIS QUE PARA OPTAR POR EL GRADO DE DOCTORA EN MEDICINA PRESENTA: BRENDA CABRERA MENDOZA DIRECTOR DE TESIS: DR. JOSÉ HUMBERTO NICOLINI SÁNCHEZ INSTITUTO NACIONAL DE MEDICINA GENÓMICA COMITÉ TUTOR: DRA. MARTHA PATRICIA OSTROSKY-SHEJET INSTITUTO DE INVESTIGACIONES BIOMÉDICAS DR. DAVID COLIN GLAHN ESCUELA DE MEDICINA DE HARVARD Ciudad Universitaria, CD. MX., diciembre de 2020 TABLA DE CONTENIDOS Resumen ........................................................................................................................................................................ 1 Abstract .......................................................................................................................................................................... 2 Definición y epidemiología del suicidio ............................................................................................................ 3 Epidemiología global del suicidio ..................................................................................................................... 5 Epidemiología del suicidio en América ........................................................................................................... 8 Epidemiología del suicidio en México ............................................................................................................10
    [Show full text]
  • Supplemental Table S1
    Entrez Gene Symbol Gene Name Affymetrix EST Glomchip SAGE Stanford Literature HPA confirmed Gene ID Profiling profiling Profiling Profiling array profiling confirmed 1 2 A2M alpha-2-macroglobulin 0 0 0 1 0 2 10347 ABCA7 ATP-binding cassette, sub-family A (ABC1), member 7 1 0 0 0 0 3 10350 ABCA9 ATP-binding cassette, sub-family A (ABC1), member 9 1 0 0 0 0 4 10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 1 0 0 0 0 5 10060 ABCC9 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 1 0 0 0 0 6 79575 ABHD8 abhydrolase domain containing 8 1 0 0 0 0 7 51225 ABI3 ABI gene family, member 3 1 0 1 0 0 8 29 ABR active BCR-related gene 1 0 0 0 0 9 25841 ABTB2 ankyrin repeat and BTB (POZ) domain containing 2 1 0 1 0 0 10 30 ACAA1 acetyl-Coenzyme A acyltransferase 1 (peroxisomal 3-oxoacyl-Coenzyme A thiol 0 1 0 0 0 11 43 ACHE acetylcholinesterase (Yt blood group) 1 0 0 0 0 12 58 ACTA1 actin, alpha 1, skeletal muscle 0 1 0 0 0 13 60 ACTB actin, beta 01000 1 14 71 ACTG1 actin, gamma 1 0 1 0 0 0 15 81 ACTN4 actinin, alpha 4 0 0 1 1 1 10700177 16 10096 ACTR3 ARP3 actin-related protein 3 homolog (yeast) 0 1 0 0 0 17 94 ACVRL1 activin A receptor type II-like 1 1 0 1 0 0 18 8038 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 1 0 0 0 0 19 8751 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 1 0 0 0 0 20 8728 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 1 0 0 0 0 21 81792 ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 1 0 0 0 0 22 9507 ADAMTS4 ADAM metallopeptidase with thrombospondin type 1
    [Show full text]
  • Comparison of Gene Expression Profiles in Chromate Transformed BEAS-2B Cells
    Comparison of Gene Expression Profiles in Chromate Transformed BEAS-2B Cells Hong Sun1, Harriet A. Clancy1, Thomas Kluz1, Jiri Zavadil2, Max Costa1* 1 Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, United States of America, 2 Department of Pathology, NYU Cancer Institute and Center for Health Informatics and Bioinformatics, NYU Langone Medical Center, New York, New York, United States of America Abstract Background: Hexavalent chromium [Cr(VI)] is a potent human carcinogen. Occupational exposure has been associated with increased risk of respiratory cancer. Multiple mechanisms have been shown to contribute to Cr(VI) induced carcinogenesis, including DNA damage, genomic instability, and epigenetic modulation, however, the molecular mechanism and downstream genes mediating chromium’s carcinogenicity remain to be elucidated. Methods/Results: We established chromate transformed cell lines by chronic exposure of normal human bronchial epithelial BEAS-2B cells to low doses of Cr(VI) followed by anchorage-independent growth. These transformed cell lines not only exhibited consistent morphological changes but also acquired altered and distinct gene expression patterns compared with normal BEAS-2B cells and control cell lines (untreated) that arose spontaneously in soft agar. Interestingly, the gene expression profiles of six Cr(VI) transformed cell lines were remarkably similar to each other yet differed significantly from that of either control cell lines or normal BEAS-2B cells. A total of 409 differentially expressed genes were identified in Cr(VI) transformed cells compared to control cells. Genes related to cell-to-cell junction were upregulated in all Cr(VI) transformed cells, while genes associated with the interaction between cells and their extracellular matrices were down-regulated.
    [Show full text]
  • EGFR Phosphorylation of DCBLD2 Recruits TRAF6 and Stimulates AKT-Promoted Tumorigenesis
    The Journal of Clinical Investigation RESEARCH ARTICLE EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis Haizhong Feng,1,2 Giselle Y. Lopez,3 Chung Kwon Kim,2 Angel Alvarez,2 Christopher G. Duncan,3 Ryo Nishikawa,4 Motoo Nagane,5 An-Jey A. Su,6 Philip E. Auron,6 Matthew L. Hedberg,7 Lin Wang,7 Jeffery J. Raizer,2 John A. Kessler,2 Andrew T. Parsa,8 Wei-Qiang Gao,1 Sung-Hak Kim,9 Mutsuko Minata,9 Ichiro Nakano,9 Jennifer R. Grandis,7 Roger E. McLendon,3 Darell D. Bigner,3 Hui-Kuan Lin,10 Frank B. Furnari,11 Webster K. Cavenee,11 Bo Hu,2 Hai Yan,3 and Shi-Yuan Cheng1,2 1State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. 2Department of Neurology and Northwestern Brain Tumor Institute, Center for Genetic Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. 3Pediatric Brain Tumor Foundation Institute at Duke, The Preston Robert Tisch Brain Tumor Center, and Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA. 4Department of Neuro-Oncology/Neurosurgery, International Medical Center, Saitama Medical University, Saitama, Japan. 5Department of Neurosurgery, Kyorin University, Tokyo, Japan. 6Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA. 7Departments of Otolaryngology and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA. 8Department of Neurological Surgery and Northwestern Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
    [Show full text]
  • List of Genes Associated with Sudden Cardiac Death (Scdgseta) Gene
    List of genes associated with sudden cardiac death (SCDgseta) mRNA expression in normal human heart Entrez_I Gene symbol Gene name Uniprot ID Uniprot name fromb D GTEx BioGPS SAGE c d e ATP-binding cassette subfamily B ABCB1 P08183 MDR1_HUMAN 5243 √ √ member 1 ATP-binding cassette subfamily C ABCC9 O60706 ABCC9_HUMAN 10060 √ √ member 9 ACE Angiotensin I–converting enzyme P12821 ACE_HUMAN 1636 √ √ ACE2 Angiotensin I–converting enzyme 2 Q9BYF1 ACE2_HUMAN 59272 √ √ Acetylcholinesterase (Cartwright ACHE P22303 ACES_HUMAN 43 √ √ blood group) ACTC1 Actin, alpha, cardiac muscle 1 P68032 ACTC_HUMAN 70 √ √ ACTN2 Actinin alpha 2 P35609 ACTN2_HUMAN 88 √ √ √ ACTN4 Actinin alpha 4 O43707 ACTN4_HUMAN 81 √ √ √ ADRA2B Adrenoceptor alpha 2B P18089 ADA2B_HUMAN 151 √ √ AGT Angiotensinogen P01019 ANGT_HUMAN 183 √ √ √ AGTR1 Angiotensin II receptor type 1 P30556 AGTR1_HUMAN 185 √ √ AGTR2 Angiotensin II receptor type 2 P50052 AGTR2_HUMAN 186 √ √ AKAP9 A-kinase anchoring protein 9 Q99996 AKAP9_HUMAN 10142 √ √ √ ANK2/ANKB/ANKYRI Ankyrin 2 Q01484 ANK2_HUMAN 287 √ √ √ N B ANKRD1 Ankyrin repeat domain 1 Q15327 ANKR1_HUMAN 27063 √ √ √ ANKRD9 Ankyrin repeat domain 9 Q96BM1 ANKR9_HUMAN 122416 √ √ ARHGAP24 Rho GTPase–activating protein 24 Q8N264 RHG24_HUMAN 83478 √ √ ATPase Na+/K+–transporting ATP1B1 P05026 AT1B1_HUMAN 481 √ √ √ subunit beta 1 ATPase sarcoplasmic/endoplasmic ATP2A2 P16615 AT2A2_HUMAN 488 √ √ √ reticulum Ca2+ transporting 2 AZIN1 Antizyme inhibitor 1 O14977 AZIN1_HUMAN 51582 √ √ √ UDP-GlcNAc: betaGal B3GNT7 beta-1,3-N-acetylglucosaminyltransfe Q8NFL0
    [Show full text]
  • Familial Multiple Coagulation Factor Deficiencies
    Journal of Clinical Medicine Article Familial Multiple Coagulation Factor Deficiencies (FMCFDs) in a Large Cohort of Patients—A Single-Center Experience in Genetic Diagnosis Barbara Preisler 1,†, Behnaz Pezeshkpoor 1,† , Atanas Banchev 2 , Ronald Fischer 3, Barbara Zieger 4, Ute Scholz 5, Heiko Rühl 1, Bettina Kemkes-Matthes 6, Ursula Schmitt 7, Antje Redlich 8 , Sule Unal 9 , Hans-Jürgen Laws 10, Martin Olivieri 11 , Johannes Oldenburg 1 and Anna Pavlova 1,* 1 Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany; [email protected] (B.P.); [email protected] (B.P.); [email protected] (H.R.); [email protected] (J.O.) 2 Department of Paediatric Haematology and Oncology, University Hospital “Tzaritza Giovanna—ISUL”, 1527 Sofia, Bulgaria; [email protected] 3 Hemophilia Care Center, SRH Kurpfalzkrankenhaus Heidelberg, 69123 Heidelberg, Germany; ronald.fi[email protected] 4 Department of Pediatrics and Adolescent Medicine, University Medical Center–University of Freiburg, 79106 Freiburg, Germany; [email protected] 5 Center of Hemostasis, MVZ Labor Leipzig, 04289 Leipzig, Germany; [email protected] 6 Hemostasis Center, Justus Liebig University Giessen, 35392 Giessen, Germany; [email protected] 7 Center of Hemostasis Berlin, 10789 Berlin-Schöneberg, Germany; [email protected] 8 Pediatric Oncology Department, Otto von Guericke University Children’s Hospital Magdeburg, 39120 Magdeburg, Germany; [email protected] 9 Division of Pediatric Hematology Ankara, Hacettepe University, 06100 Ankara, Turkey; Citation: Preisler, B.; Pezeshkpoor, [email protected] B.; Banchev, A.; Fischer, R.; Zieger, B.; 10 Department of Pediatric Oncology, Hematology and Clinical Immunology, University of Duesseldorf, Scholz, U.; Rühl, H.; Kemkes-Matthes, 40225 Duesseldorf, Germany; [email protected] B.; Schmitt, U.; Redlich, A.; et al.
    [Show full text]
  • Alterations of Genetic Variants and Transcriptomic Features of Response to Tamoxifen in the Breast Cancer Cell Line
    Alterations of Genetic Variants and Transcriptomic Features of Response to Tamoxifen in the Breast Cancer Cell Line Mahnaz Nezamivand-Chegini Shiraz University Hamed Kharrati-Koopaee Shiraz University https://orcid.org/0000-0003-2345-6919 seyed taghi Heydari ( [email protected] ) Shiraz University of Medical Sciences https://orcid.org/0000-0001-7711-1137 Hasan Giahi Shiraz University Ali Dehshahri Shiraz University of Medical Sciences Mehdi Dianatpour Shiraz University of Medical Sciences Kamran Bagheri Lankarani Shiraz University of Medical Sciences Research Keywords: Tamoxifen, breast cancer, genetic variants, RNA-seq. Posted Date: August 17th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-783422/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/33 Abstract Background Breast cancer is one of the most important causes of mortality in the world, and Tamoxifen therapy is known as a medication strategy for estrogen receptor-positive breast cancer. In current study, two hypotheses of Tamoxifen consumption in breast cancer cell line (MCF7) were investigated. First, the effect of Tamoxifen on genes expression prole at transcriptome level was evaluated between the control and treated samples. Second, due to the fact that Tamoxifen is known as a mutagenic factor, there may be an association between the alterations of genetic variants and Tamoxifen treatment, which can impact on the drug response. Methods In current study, the whole-transcriptome (RNA-seq) dataset of four investigations (19 samples) were derived from European Bioinformatics Institute (EBI). At transcriptome level, the effect of Tamoxifen was investigated on gene expression prole between control and treatment samples.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0127257 A1 Schiemann Et Al
    US 2014O127257A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0127257 A1 Schiemann et al. (43) Pub. Date: May 8, 2014 (54) DERMATOLOGICALLY EFFECTIVE YEAST Publication Classification EXTRACT (51) Int. Cl. (75) Inventors: Yvonne Schiemann, Essen (DE); Mike A61E36/064 (2006.01) Farwick, Essen (DE); Thomas Haas, CI2P I/02 (2006.01) Muenster (DE); Mirja Wessel, Bochum A61E36/06 (2006.01) (DE) (52) U.S. Cl. CPC ............... A61K 36/064 (2013.01); A61K 36/06 (73) Assignee: EVONIK DEGUSSA GMBH, Essen (2013.01); CI2P I/02 (2013.01) (DE) USPC ...................................... 424/195.16; 435/171 (21) Appl. No.: 14/128,244 (22) PCT Fled: Jun. 14, 2012 (57) ABSTRACT (86) PCT NO.: PCT/EP2012/061263 The invention relates to a method for producing a dermato S371 (c)(1), logically active yeast extract, comprising the following steps: (2), (4) Date: Dec. 20, 2013 providing a preculture of the yeast cells, culturing the cells for (30) Foreign Application Priority Data at least fifteen minutes at a pH of 1.8-4, harvesting the cells and lysing the cells, and a yeast extract produced thereby and Jun. 29, 2011 (EP) .................................. 11171953.0 products comprising said yeast extract. Patent Application Publication May 8, 2014 Sheet 1 of 3 US 2014/O127257 A1 -0-Yarrowia------------ lipolytica -- Pichia CBS 1991 - A - Saccharomyces Cerevisiae Fig. 1 US 2014/O127257 A1 May 8, 2014 DERMATOLOGICALLY EFFECTIVE YEAST skin. Against the background of consumers’ uncertainty with EXTRACT respect to genetic engineering techniques, there is a particular demand for corresponding agents that can be regarded, 0001.
    [Show full text]
  • Downloaded the “Top Edge” Version
    bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Drosophila models of pathogenic copy-number variant genes show global and 2 non-neuronal defects during development 3 Short title: Non-neuronal defects of fly homologs of CNV genes 4 Tanzeen Yusuff1,4, Matthew Jensen1,4, Sneha Yennawar1,4, Lucilla Pizzo1, Siddharth 5 Karthikeyan1, Dagny J. Gould1, Avik Sarker1, Yurika Matsui1,2, Janani Iyer1, Zhi-Chun Lai1,2, 6 and Santhosh Girirajan1,3* 7 8 1. Department of Biochemistry and Molecular Biology, Pennsylvania State University, 9 University Park, PA 16802 10 2. Department of Biology, Pennsylvania State University, University Park, PA 16802 11 3. Department of Anthropology, Pennsylvania State University, University Park, PA 16802 12 4 contributed equally to work 13 14 *Correspondence: 15 Santhosh Girirajan, MBBS, PhD 16 205A Life Sciences Building 17 Pennsylvania State University 18 University Park, PA 16802 19 E-mail: [email protected] 20 Phone: 814-865-0674 21 1 bioRxiv preprint doi: https://doi.org/10.1101/855338; this version posted December 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 22 ABSTRACT 23 While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non- 24 neuronal phenotypes, functional studies evaluating these regions have focused on the molecular 25 basis of neuronal defects.
    [Show full text]