AL SERAIHI, a Phd Final 010519
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Activated Peripheral-Blood-Derived Mononuclear Cells
Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays. -
An Unbiased Reconstruction of the T Helper Cell Type 2 Differentiation Network
bioRxiv preprint doi: https://doi.org/10.1101/196022; this version posted October 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. An unbiased reconstruction of the T helper cell type 2 differentiation network 1,3 1 1 1 1 Authors: Johan Henriksson , Xi Chen , Tomás Gomes , Kerstin Meyer , Ricardo Miragaia , 4 1 4 1 1,2,* Ubaid Ullah , Jhuma Pramanik , Riita Lahesmaa , Kosuke Yusa , Sarah A Teichmann Affiliations: 1 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom 2 EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom 3 Karolinska Institutet, Department. of Biosciences and Nutrition, Hälsovägen 7, Novum, SE-141 83, Huddinge, Sweden 4 Turku Centre for Biotechnology, Tykistokatu 6 FI-20520, Turku, Finland *To whom correspondence should be addressed: [email protected] Tomas: [email protected] Ricardo: [email protected] Ubaid Ullah: [email protected] Jhuma: [email protected] -
The Ire1a-XBP1 Pathway Promotes T Helper Cell Differentiation by Resolving Secretory Stress and Accelerating Proliferation
bioRxiv preprint doi: https://doi.org/10.1101/235010; this version posted December 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The IRE1a-XBP1 pathway promotes T helper cell differentiation by resolving secretory stress and accelerating proliferation Jhuma Pramanik1, Xi Chen1, Gozde Kar1,2, Tomás Gomes1, Johan Henriksson1, Zhichao Miao1,2, Kedar Natarajan1, Andrew N. J. McKenzie3, Bidesh Mahata1,2*, Sarah A. Teichmann1,2,4* 1. Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom 2. EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom 3. MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 OQH, United Kingdom 4. Theory of Condensed Matter, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom. *To whom correspondence should be addressed: [email protected] and [email protected] Keywords: Th2 lymphocyte, XBP1, Genome wide XBP1 occupancy, Th2 lymphocyte proliferation, ChIP-seq, RNA-seq, Th2 transcriptome Summary The IRE1a-XBP1 pathway, a conserved adaptive mediator of the unfolded protein response, is indispensable for the development of secretory cells. It maintains endoplasmic reticulum homeostasis by facilitating protein folding and enhancing secretory capacity of the cells. Its role in immune cells is emerging. It is involved in dendritic cell, plasma cell and eosinophil development and differentiation. Using genome-wide approaches, integrating ChIPmentation and mRNA-sequencing data, we have elucidated the regulatory circuitry governed by the IRE1a-XBP1 pathway in type-2 T helper cells (Th2). -
Identification of Candidate Genes and Pathways Associated with Obesity
animals Article Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis Sunirmal Sheet y, Srikanth Krishnamoorthy y , Jihye Cha, Soyoung Choi and Bong-Hwan Choi * Animal Genome & Bioinformatics, National Institute of Animal Science, RDA, Wanju 55365, Korea; [email protected] (S.S.); [email protected] (S.K.); [email protected] (J.C.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +82-10-8143-5164 These authors contributed equally. y Received: 10 October 2020; Accepted: 6 November 2020; Published: 9 November 2020 Simple Summary: Obesity is a serious health issue and is increasing at an alarming rate in several dog breeds, but there is limited information on the genetic mechanism underlying it. Moreover, there have been very few reports on genetic markers associated with canine obesity. These studies were limited to the use of a single breed in the association study. In this study, we have performed a GWAS and supplemented it with gene-set enrichment and pathway-based analyses to identify causative loci and genes associated with canine obesity in 18 different dog breeds. From the GWAS, the significant markers associated with obesity-related traits including body weight (CACNA1B, C22orf39, U6, MYH14, PTPN2, SEH1L) and blood sugar (PRSS55, GRIK2), were identified. Furthermore, the gene-set enrichment and pathway-based analysis (GESA) highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) which were found to be shared among all the traits. -
Regulation of Cat-1 Gene Transcription During Physiological
REGULATION OF CAT-1 GENE TRANSCRIPTION DURING PHYSIOLOGICAL AND PATHOLOGICAL CONDITIONS by CHARLIE HUANG Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Maria Hatzoglou Department of Nutrition CASE WESTERN RESERVE UNIVERSITY MAY 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. This workis dedicated to my parents (DICK and MEI-HUI), brother (STEVE), and sister (ANGELA) for their love and support during my graduate study. iii TABLE OF CONTENTS Dedication iii Table of Contents iv List of Tables vii List of Figures viii Acknowledgements ix List of Abbreviations xi Abstract xv CHAPTER 1: INTRODUCTION Amino acids and amino acid transporters 1 System y+ transporters 2 Physiological significance of Cat-1 6 Gene transcription in eukaryotic cells 7 Cat-1 gene structure 10 Regulation of Cat-1 expression 11 The Unfolded Protein Response (UPR) and Cat-1 expression 14 -
The Transrepression Arm of Glucocorticoid Receptor Signaling Is Protective in Mutant Huntingtin-Mediated Neurodegeneration
The transrepression arm of glucocorticoid receptor signaling is protective in mutant huntingtin-mediated neurodegeneration Shankar Varadarajan1, Carlo Breda2,3, Joshua L. Smalley3,4, Michael Butterworth4, Stuart N. Farrow5, Flaviano Giorgini2 and Gerald M. Cohen1* 1 Departments of Molecular and Clinical Cancer Medicine and Pharmacology, University of Liverpool, Liverpool, UK 2 Department of Genetics, University of Leicester, Leicester, UK 3 These authors contributed equally to the work 4 MRC Toxicology Unit, University of Leicester, Leicester, UK 5 Respiratory Therapy Area, GlaxoSmithKline, Stevenage, UK Running Title – Glucocorticoid therapy in neurodegeneration *To whom correspondence should be addressed Prof. Gerald M. Cohen Department of Molecular and Clinical Cancer Medicine, The Duncan Building, University of Liverpool, Daulby Street, Liverpool, L69 3GA, UK Telephone: 44-151-7064515 Fax: 44-151-7065826 E-mail: [email protected] 1 Abstract The unfolded protein response (UPR) occurs following the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and orchestrates an intricate balance between its pro-survival and apoptotic arms to restore cellular homeostasis and integrity. However, in certain neurodegenerative diseases, the apoptotic arm of the UPR is enhanced, resulting in excessive neuronal cell death and disease progression, both of which can be overcome by modulating the UPR. Here, we describe a novel crosstalk between glucocorticoid receptor signaling and the apoptotic arm of the UPR, thus highlighting the potential of glucocorticoid therapy in treating neurodegenerative diseases. Several glucocorticoids, but not mineralocorticoids, selectively antagonize ER stress-induced apoptosis in a manner that is downstream of and/or independent of the conventional UPR pathways. Using GRT10, a novel selective pharmacological modulator of glucocorticoid signaling, we describe the importance of the transrepression arm of the glucocorticoid signaling pathway in protection against ER stress-induced apoptosis. -
XBP1 Promotes Triple-Negative Breast Cancer by Controlling the Hif1a Pathway
LETTER doi:10.1038/nature13119 XBP1 promotes triple-negative breast cancer by controlling the HIF1a pathway Xi Chen1,2, Dimitrios Iliopoulos3,4*, Qing Zhang5*, Qianzi Tang6,7*, Matthew B. Greenblatt8, Maria Hatziapostolou3,4, Elgene Lim9, Wai Leong Tam10, Min Ni9, Yiwen Chen11, Junhua Mai12, Haifa Shen12,13, Dorothy Z. Hu14, Stanley Adoro1,2, Bella Hu15, Minkyung Song1,2, Chen Tan1,2, Melissa D. Landis16, Mauro Ferrari2,12, Sandra J. Shin17, Myles Brown9, Jenny C. Chang2,16, X. Shirley Liu11 & Laurie H. Glimcher1,2 Cancer cells induce a set of adaptive response pathways to survive expression of two XBP1 short hairpin RNAs (shRNAs) in MDA-MB- in the face of stressors due to inadequate vascularization1. One such 231 cells. Tumour growth and metastasis to lung were significantly adaptive pathway is the unfolded protein (UPR) or endoplasmic retic- inhibited by XBP1 shRNAs (Fig. 1c–e and Extended Data Fig. 1d–g). ulum (ER) stress response mediated in part by the ER-localized trans- This was not due to altered apoptosis (caspase 3), cell proliferation (Ki67) membrane sensor IRE1 (ref. 2) and its substrate XBP1 (ref. 3). Previous or hyperactivation of IRE1 and other UPR branches (Fig. 1e and Extended studies report UPR activation in various human tumours4–6, but the Data Fig. 1h, i). Instead, XBP1 depletion impaired angiogenesis as dem- role of XBP1 in cancer progression in mammary epithelial cells is onstrated by the presence of fewer intratumoral blood vessels (CD31 largely unknown. Triple-negative breast cancer (TNBC)—a form of staining) (Fig. 1e). Subcutaneous xenograft experiments using two other breast cancer in which tumour cells do not express the genes for oes- TNBC cell lines confirmed our findings(Extended Data Fig. -
High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies
Manuscript High rate of recurrent de novo mutations in developmental and epileptic encephalopathies Fadi F. Hamdan1, Candace Myers2, Patrick Cossette3,4, Philippe Lemay1, Dan Spiegelman5, Alexandre Dionne Laporte5, Christina Nassif1, Ousmane Diallo5, Jean Monlong6,7, Maxime Cadieux-Dion3,8,9, Sylvia Dobrzeniecka3, Caroline Meloche3, Kyle Retterer10, Megan T. Cho10, Jill A. Rosenfeld11, Weimin Bi11,12, Christine Massicotte1, Marguerite Miguet1, Ledia Brunga13, Brigid M. Regan14, Kelly Mo14, Cory Tam14, Amy Schneider15, Georgie Hollingsworth15, DDD Study16, David R. FitzPatrick17, Alan Donaldson18, Natalie Canham19, Edward Blair20, Bronwyn Kerr21, Andrew E. Fry22, Rhys H. Thomas23, Joss Shelagh24, Jane A. Hurst25, Helen Brittain25, Moira Blyth26, Robert Roger Lebel27, Erica H. Gerkes28, Laura Davis-Keppen29, Quinn Stein30, Wendy K. Chung31, Sara J. Dorison32, Paul J. Benke33, Emily Fassi34, Nicole Corsten-Janssen28, Erik-Jan Kamsteeg35, Frederic T. Mau-Them36,37, Ange-Line Bruel36,37, Alain Verloes38, Katrin Õunap39, Monica H Wojcik40, Dara V.F. Albert41, Sunita Venkateswaran42, Tyson Ware43, Dean Jones44, Yu-Chi Liu45,46,, Shekeeb S. Mohammad47, Peyman Bizargity11, Carlos A. Bacino11,48, Vincenzo Leuzzi49, Simone Martinelli50, Bruno Dallapiccola51, Marco Tartaglia51, Lubov Blumkin52, Klaas J. Wierenga53, Gabriela Purcarin53, James J. O'Byrne54, Sylvia Stockler54, Anna Lehman55, Boris Keren56,57, Marie-Christine Nougues58, Cyril Mignot56,57, Stéphane Auvin59,60, Caroline Nava56,57, Susan M. Hiatt61, Martina Bebin62, Yunru Shao11, Fernando Scaglia11, Seema R. Lalani11, Richard E. Frye63,64, Imad T. Jarjour65, Stéphanie Jacques66, Renee- Myriam Boucher67, Emilie Riou68, Myriam Srour69,70, Lionel Carmant1,4,71, Anne Lortie4,71, Philippe Major4,71, Paola Diadori4,71, François Dubeau5, Guy D’Anjou4,71, Guillaume Bourque6,7, Samuel F. Berkovic15, Lynette G. -
Pumilio Protects Xbp1 Mrna from Regulated Ire1-Dependent Decay
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.08.430300; this version posted February 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Preprint Pumilio protects Xbp1 mRNA from regulated Ire1-dependent decay Fatima Cairrao1, Cristiana C Santos1, Adrien Le Thomas2, Scot Marsters2, Avi Ashkenazi2 and Pedro M. Domingos1 1 - Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal 2 - Cancer Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA Correspondence should be sent to [email protected] or [email protected] SUMMARY The unfolded protein response (UPR) maintains homeostasis of the endoplasmic reticulum (ER). Residing in the ER membrane, the UPR mediator Ire1 deploys its cytoplasmic kinase-endoribonuclease domain to activate the key UPR transcription factor Xbp1 through non-conventional splicing of Xbp1 mRNA. Ire1 also degrades diverse ER-targeted mRNAs through regulated Ire1-dependent decay (RIDD), but how it spares Xbp1 mRNA from this decay is unknown. We identified binding sites for the RNA-binding protein Pumilio in the 3’UTR Drosophila Xbp1. In the developing Drosophila eye, Pumilio bound both the Xbp1unspliced and Xbp1spliced mRNAs, but only Xbp1spliced was stabilized by Pumilio. Furthermore, Pumilio displayed Ire1 kinase-dependent phosphorylation during ER stress, which was required for its stabilization of Xbp1spliced. Human IRE1 could directly phosphorylate Pumilio, and phosphorylated Pumilio protected Xbp1spliced mRNA against RIDD. -
Derivation and Application of Molecular Signatures to Prostate Cancer: Opportunities and Challenges
cancers Review Derivation and Application of Molecular Signatures to Prostate Cancer: Opportunities and Challenges Dimitrios Doultsinos 1,* and Ian G. Mills 1,2 1 Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; [email protected] 2 Patrick G Johnston Centre for Cancer Research, Queen’s University of Belfast, Belfast BT9 7AE, UK * Correspondence: [email protected] Simple Summary: Prostate cancer continues to exert a significant public health burden across the globe with hundreds of thousands of new diagnoses per year. There have been many advances in prostate cancer treatment that have dramatically improved the outlook for a lot of patients, especially by targeting a key factor in prostate cancer development called the androgen receptor. However, with increasing of targeted therapies we see a shift in the spectrum of treatment resistance disease. Molecular signatures are essentially maps of the potential for tumor evolution. By analyzing patient and pre-clinical model derived data, we may put together lists of genetic determinants of cancer progression and predict if patients will be prone to develop aggressive disease. In this manuscript we are reviewing some of the ways that these signatures are generated and discuss the advantages and disadvantages of their utility in personalized medicine. Abstract: Prostate cancer is a high-incidence cancer that requires improved patient stratification to ensure accurate predictions of risk and treatment response. Due to the significant contributions Citation: Doultsinos, D.; Mills, I.G. of transcription factors and epigenetic regulators to prostate cancer progression, there has been Derivation and Application of considerable progress made in developing gene signatures that may achieve this. -
Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades. -
In Vitro Targeting of Transcription Factors to Control the Cytokine Release Syndrome in 2 COVID-19 3
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424728; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 In vitro Targeting of Transcription Factors to Control the Cytokine Release Syndrome in 2 COVID-19 3 4 Clarissa S. Santoso1, Zhaorong Li2, Jaice T. Rottenberg1, Xing Liu1, Vivian X. Shen1, Juan I. 5 Fuxman Bass1,2 6 7 1Department of Biology, Boston University, Boston, MA 02215, USA; 2Bioinformatics Program, 8 Boston University, Boston, MA 02215, USA 9 10 Corresponding author: 11 Juan I. Fuxman Bass 12 Boston University 13 5 Cummington Mall 14 Boston, MA 02215 15 Email: [email protected] 16 Phone: 617-353-2448 17 18 Classification: Biological Sciences 19 20 Keywords: COVID-19, cytokine release syndrome, cytokine storm, drug repurposing, 21 transcriptional regulators 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424728; this version posted December 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 22 Abstract 23 Treatment of the cytokine release syndrome (CRS) has become an important part of rescuing 24 hospitalized COVID-19 patients. Here, we systematically explored the transcriptional regulators 25 of inflammatory cytokines involved in the COVID-19 CRS to identify candidate transcription 26 factors (TFs) for therapeutic targeting using approved drugs.