PDF Hosted at the Radboud Repository of the Radboud University Nijmegen

Total Page:16

File Type:pdf, Size:1020Kb

PDF Hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/101517 Please be advised that this information was generated on 2021-09-26 and may be subject to change. ULTRACOMPACT X-RAY BINARY STARS LENNART VAN HAAFTEN Copyright c 2013 by Lennart van Haaften Ultracompact X-ray binary stars PhD thesis, Radboud University Nijmegen Illustrated; with bibliographic information and Dutch summary ISBN: 978-90-9027332-7 Cover: Milky Way panorama, with the Galactic Bulge on the front. Credit: ESO/S. Brunier Typeset using LATEX 2e Printed in the Netherlands ULTRACOMPACT X-RAY BINARY STARS PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S. C. J. J. Kortmann, volgens besluit van het College van Decanen in het openbaar te verdedigen op dinsdag 12 maart 2013 om 10.30 uur precies door LENNART MARIUS VAN HAAFTEN geboren op 22 mei 1980 te Sleeuwijk PROMOTORES: Prof. dr. G. Nelemans Prof. dr. P. J. Groot COPROMOTOR: Dr. R. Voss MANUSCRIPTCOMMISSIE: Prof. dr. W. J. van der Zande Dr. E. G. Körding Prof. dr. S. F. Portegies Zwart Universiteit Leiden Dr. T. M. Tauris Universität Bonn Prof. dr. F. W. M. Verbunt This research was supported by the Netherlands Organisation for Scientific Research (NWO). To my ancestors, especially my parents CONTENTS 1 Introduction1 1.1 The Universe.............................1 1.2 Galaxies................................2 1.3 Stars..................................3 1.3.1 Massive stars.........................3 1.3.2 Intermediate-mass and low-mass stars............5 1.4 Binary stars..............................6 1.4.1 Roche lobes..........................6 1.4.2 Roche-lobe overflow.....................7 1.4.3 Accretion...........................9 1.5 X-ray binaries.............................9 1.6 Ultracompact X-ray binaries..................... 11 1.6.1 Known population...................... 13 1.6.2 Importance.......................... 14 1.7 Millisecond pulsars.......................... 15 1.8 Population synthesis......................... 17 1.9 This thesis............................... 17 1.9.1 Unsolved problems...................... 17 1.9.2 Approach........................... 18 1.9.3 Overview of scales...................... 20 i CONTENTS 2 The evolution of ultracompact X-ray binaries 23 2.1 Introduction.............................. 24 2.1.1 Evolutionary history..................... 25 2.1.2 Present research....................... 26 2.2 Overview of UCXB orbital mechanics................ 27 2.2.1 Angular momentum flows.................. 27 2.2.2 Stable mass transfer..................... 28 2.2.3 Dynamical stability...................... 30 2.2.4 Isotropic re-emission..................... 31 2.2.5 The deciding stability criterion at the onset of mass transfer 32 2.2.6 Complications........................ 32 2.3 Method................................ 36 2.3.1 Isotropic re-emission..................... 36 2.3.2 Response of Roche-lobe radius to mass transfer....... 37 2.3.3 White dwarf radius...................... 41 2.3.4 Propeller effect........................ 42 2.3.5 Disk Instability Model.................... 44 2.4 Results................................. 45 2.4.1 Feedback of angular momentum............... 45 2.4.2 The evolution of ultracompact X-ray binaries........ 47 2.4.3 System evolution during the propeller phase......... 56 2.5 Discussion and conclusions...................... 64 2.A Fitted tracks.............................. 66 2.B Approximate analytic solution.................... 68 2.B.1 Luminosity.......................... 70 2.C First Lagrangian point location approximations........... 70 2.D Roche-lobe potential approximations................. 71 3 Formation of the planet around the millisecond pulsar J1719–1438 73 3.1 Introduction.............................. 74 3.2 Problems with the standard UCXB scenario............. 75 3.3 Possible resolutions.......................... 79 3.3.1 Bloated donor scenario.................... 80 3.3.2 Additional angular momentum loss scenario......... 80 3.3.3 Detachment at very low donor mass............. 81 3.3.4 Detachment due to thermal-viscous disk instability..... 82 3.4 Discussion and conclusions...................... 83 ii CONTENTS 4 Long-term luminosity behavior of 14 ultracompact X-ray binaries 85 4.1 Introduction.............................. 86 4.1.1 Present research....................... 87 4.2 Method................................ 87 4.2.1 Known UCXB population.................. 87 4.2.2 Observations......................... 90 4.2.3 Data analysis......................... 90 4.2.4 Theoretical evolution..................... 94 4.3 Results................................. 95 4.3.1 Signal-to-noise threshold................... 95 4.3.2 Average luminosity...................... 97 4.3.3 Faint-end power-law function................ 99 4.4 Implications for population studies.................. 100 4.5 Discussion and conclusions...................... 101 5 Population synthesis of ultracompact X-ray binaries in the Galactic Bulge105 5.1 Introduction.............................. 106 5.2 Method................................ 107 5.2.1 Population synthesis..................... 108 5.2.2 Star formation history and initial binary parameters..... 108 5.2.3 Formation scenarios..................... 110 5.2.4 Behavior of old UCXBs................... 118 5.2.5 Present-day population.................... 118 5.3 Results................................. 123 5.3.1 Birth rates and total number of systems........... 123 5.3.2 Present-day population.................... 124 5.3.3 Observable population.................... 127 5.3.4 Donor surface composition.................. 132 5.3.5 Collective emission as function of orbital period...... 133 5.4 Discussion............................... 134 5.4.1 Comparison with previous studies.............. 137 5.4.2 Overprediction of UCXBs with long orbital period..... 138 5.4.3 Overprediction of UCXBs with short orbital period..... 140 5.4.4 Consequences for the population of millisecond radio pulsars 141 5.5 Summary and conclusions...................... 142 5.A Binary initial mass function and normalization of the simulation.. 144 iii CONTENTS 6 Population synthesis of classical low-mass X-ray binaries in the Galactic Bulge 147 6.1 Introduction.............................. 148 6.2 Method................................ 149 6.3 Results................................. 152 6.3.1 The total population of LMXBs............... 152 6.3.2 The observable population of LMXBs............ 155 6.4 Discussion............................... 156 6.4.1 Comparison with the population of UCXBs......... 160 6.5 Conclusions.............................. 163 7 Summary and conclusions 167 7.1 Prospects............................... 172 8 Samenvatting in het Nederlands 175 8.1 De levensloop van sterren....................... 175 8.2 Dubbelsterren en massa-overdracht.................. 178 8.3 Ultracompacte röntgendubbelsterren................. 179 8.4 Mijn proefschrift........................... 181 Bibliography 185 List of publications 205 Acknowledgments 207 Curriculum vitae 209 iv CHAPTER 1 INTRODUCTION This thesis aims to increase our knowledge of ultracompact X-ray binaries, a class of close binary star systems that are bright sources of X-ray radiation. This introduction provides background information about astronomy in general, and the topics dis- cussed in this thesis. A discussion of the unsolved problems related to ultracompact X-ray binaries is given, followed by an outline of the thesis. 1.1 THE UNIVERSE By terrestrial standards, the Universe is an extremely empty and dark place. From almost any location in the Universe there are no celestial objects such as stars or even galaxies to be seen (see e.g. Einasto et al. 1994). Even though the Universe started in a very homogeneous state, after 13:75 billion years of expansion and gravitational in- teraction, matter is now distributed highly inhomogeneously. Astronomers, by virtue of being material themselves, are located in one of the small, bright, matter-rich parts of the Universe. Even with the naked eye one can see several thousands of stars, as well as a handful of planets and galaxies. These are the objects traditionally studied by astronomers, but with the arrival of the optical telescope, and later telescopes and detectors sensitive to other electromagnetic radiation and particles, more and more objects and phenomena could be observed and subsequently explained theoretically. Precise observations have revealed that the type of matter we are familiar with (and of which the Sun, the Earth, and humans consist) occupies only about five per- cent of the content of the Universe (Hinshaw et al. 2012). The remaining part consists of the enigmatic ‘dark energy’, which is distributed homogeneously throughout the 1 CHAPTER 1 : INTRODUCTION Universe, and the also mysterious and probably unrelated ‘dark matter’, which is clustered in roughly the same way as normal (baryonic) matter. Another unknown is whether the Universe has a finite or infinite volume. Astronomers can only observe the part of the Universe from which light reaches us today, the ‘observable Universe’, and the Universe as a whole may be much larger. Either way, the Universe is expected to have no spatial boundaries. As for boundaries in time, even though the Universe had a beginning, the Big Bang,
Recommended publications
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • A Hot Subdwarf-White Dwarf Super-Chandrasekhar Candidate
    A hot subdwarf–white dwarf super-Chandrasekhar candidate supernova Ia progenitor Ingrid Pelisoli1,2*, P. Neunteufel3, S. Geier1, T. Kupfer4,5, U. Heber6, A. Irrgang6, D. Schneider6, A. Bastian1, J. van Roestel7, V. Schaffenroth1, and B. N. Barlow8 1Institut fur¨ Physik und Astronomie, Universitat¨ Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany 2Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 3Max Planck Institut fur¨ Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching bei Munchen¨ 4Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 5Texas Tech University, Department of Physics & Astronomy, Box 41051, 79409, Lubbock, TX, USA 6Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany 7Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 8Department of Physics and Astronomy, High Point University, High Point, NC 27268, USA *[email protected] ABSTRACT Supernova Ia are bright explosive events that can be used to estimate cosmological distances, allowing us to study the expansion of the Universe. They are understood to result from a thermonuclear detonation in a white dwarf that formed from the exhausted core of a star more massive than the Sun. However, the possible progenitor channels leading to an explosion are a long-standing debate, limiting the precision and accuracy of supernova Ia as distance indicators. Here we present HD 265435, a binary system with an orbital period of less than a hundred minutes, consisting of a white dwarf and a hot subdwarf — a stripped core-helium burning star.
    [Show full text]
  • DIRECT DETECTION of the L-DWARF DONOR in WZ SAGITTAE Thomas E
    The Astrophysical Journal, 816:4 (6pp), 2016 January 1 doi:10.3847/0004-637X/816/1/4 © 2016. The American Astronomical Society. All rights reserved. DIRECT DETECTION OF THE L-DWARF DONOR IN WZ SAGITTAE Thomas E. Harrison1 Department of Astronomy, New Mexico State University, Box 30001, MSC 4500, Las Cruces, NM 88003-8001, USA Received 2015 September 15; accepted 2015 November 20; published 2015 December 21 ABSTRACT Analysis of a large set of phase-resolved K-band spectra of the cataclysmic variable WZ Sge shows that the secondary star of this system appears to be an L-dwarf. Previous K-band spectra of WZ Sge found that the CO 12 overtone bandheads were in emission. We show that absorption from the CO(2,0) bandhead of the donor star 12 creates a dip in the CO(2,0) emission feature. Measuring the motion of this feature over the orbital period, we −1 construct a radial velocity curve that gives a velocity amplitude of Kabs = 520±35 km s , consistent with the previously published values for this parameter. Key words: brown dwarfs – novae, cataclysmic variables – stars: dwarf novae 1. INTRODUCTION Harrison et al. 2004a) and has a very low accretion rate (Patterson 1998), the donor object has remained elusive. Cataclysmic variables (CVs) are short period binaries where While direct photospheric absorption features from the donor the white dwarf primary is accreting matter from a lower mass in WZ Sge have not previously been detected, Hα emission, secondary star. An angular momentum loss process keeps the ( ) due to the irradiation of the companion during the 2001 system in contact c.f., King & Kolb 1995 , and the orbital outburst, were clearly seen, and led to the first quantitative period shortens over time as the secondary continues to lose constraints on the nature of the secondary.
    [Show full text]
  • Mode Changing and Giant Pulses Found in a Millisecond Pulsar 17 July 2018, by Tomasz Nowakowski
    Mode changing and giant pulses found in a millisecond pulsar 17 July 2018, by Tomasz Nowakowski between two or more quasi-stable modes of emission. To date, mode changing has been only observed in normal pulsars. However, a recent study conducted by a team of astronomers led by Nikhil Mahajan of the University of Toronto in Canada, shows the mode changing process could be also present in millisecond pulsars, as they observed that the pulse profile of pulsar PSR B1957+20 switches between two modes. Discovered in 1988, PSR B1957+20, also known as the "Black Widow Pulsar", is a 1.6 ms eclipsing binary millisecond pulsar in the constellation Sagitta. It orbits with a brown dwarf companion with a period of 9.2 hours with an eclipse duration of approximately 20 minutes. Mahajan's team observed this pulsar for over nine hours in four daily sessions between June 13 and 16, 2014 at the Arecibo Observatory in Puerto Rico, what Chandra image of PSR B1957+20. The blue and green resulted in uncovering new insights into its are optical images of the field in which the pulsar is behavior. found, the green indicating the H-alpha bow shock. The red and white are secondary shock structures "Here, we show that the millisecond pulsar PSR discovered in x-ray by the Chandra X-ray Observatory. B1957+20 shows mode changing, and that the Credit: X-ray: NASA/CXC/ASTRON/B.Stappers et al.; properties of the giant pulses that we found earlier Optical: AAO/J.Bland-Hawthorn & H.Jones (in the same data; Main et al.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Inhaltsverzeichnis
    Nachlass EDUARD SCHÖNFELD (1828-1891) Inhaltsverzeichnis Bearbeitet von Anne Hoffsümmer und Lea Korb Bonn, 2017 – 2018 zuletzt aktualisiert am 09.09.2020 Eduard Schönfeld wurde am 22.12.1828 in Hildburghausen geboren, wo er bis zu seinem Abitur 1847 die Schule besuchte. Er war Kind einer jüdischen Familie, trat jedoch nach seinem Schulabschluss dem evangelischen Glauben bei. Auf Anraten seines Vaters studierte Schönfeld zunächst Bauwesen, entschied sich aber nach kurzer Zeit für die Naturwissenschaften und begann, in Marburg bei dem Gauß-Schüler Christian Ludwig Gerling unter anderem Astronomie zu studieren. Nachdem Schönfeld auf einer Reise nach Bonn Bekanntschaft mit Friedrich Wilhelm August Argelander gemacht hatte, entschloss er sich, das Studium der Astronomie 1852 in Bonn fortzusetzen. Dort erhielt er schon ein Jahr später eine Stelle als Assistent, durch die er die Möglichkeit erhielt, gemeinsam mit Adalbert Krüger an der bekannten „Bonner Durchmusterung“, Argelanders großem Projekt, mitzuwirken. Mit einer Abhandlung über die Bahnelemente des Kleinplaneten Thetis promovierte Schönfeld 1854. Seine Habilitation folgte drei Jahre später. Eduard Schönfeld zog 1859 nach Mannheim, um dort die Stelle als Direktor der Mannheimer Sternwarte anzutreten. In der Mannheimer Zeit widmete er sich unter anderem der Bestimmung der Positionen von Nebelflecken mithilfe des Ringmikrometer. Eduard Schönfeld war Mitbegründer und Vorstandsmitglied der Astronomischen Gesellschaft sowie lange Jahre ihr Schriftführer und Herausgeber der Vierteljahrsschrift. Nach Argelanders Tod im Jahr 1875 übernahm Schönfeld dessen Stelle als Direktor der Bonner Sternwarte und ergänzte die Arbeit zur Bonner Durchmusterung, indem er die Bereiche -2°- -23° der südlichen Deklination erforschte. 1883 wurde er Geheimer Regierungsrat und war 1887/88 Rektor der Universität Bonn.
    [Show full text]
  • Appendix: Spectroscopy of Variable Stars
    Appendix: Spectroscopy of Variable Stars As amateur astronomers gain ever-increasing access to professional tools, the science of spectroscopy of variable stars is now within reach of the experienced variable star observer. In this section we shall examine the basic tools used to perform spectroscopy and how to use the data collected in ways that augment our understanding of variable stars. Naturally, this section cannot cover every aspect of this vast subject, and we will concentrate just on the basics of this field so that the observer can come to grips with it. It will be noticed by experienced observers that variable stars often alter their spectral characteristics as they vary in light output. Cepheid variable stars can change from G types to F types during their periods of oscillation, and young variables can change from A to B types or vice versa. Spec­ troscopy enables observers to monitor these changes if their instrumentation is sensitive enough. However, this is not an easy field of study. It requires patience and dedication and access to resources that most amateurs do not possess. Nevertheless, it is an emerging field, and should the reader wish to get involved with this type of observation know that there are some excellent guides to variable star spectroscopy via the BAA and the AAVSO. Some of the workshops run by Robin Leadbeater of the BAA Variable Star section and others such as Christian Buil are a very good introduction to the field. © Springer Nature Switzerland AG 2018 M. Griffiths, Observer’s Guide to Variable Stars, The Patrick Moore 291 Practical Astronomy Series, https://doi.org/10.1007/978-3-030-00904-5 292 Appendix: Spectroscopy of Variable Stars Spectra, Spectroscopes and Image Acquisition What are spectra, and how are they observed? The spectra we see from stars is the result of the complete output in visible light of the star (in simple terms).
    [Show full text]
  • X-Ray Observations of Black Widow Pulsars
    UvA-DARE (Digital Academic Repository) X-Ray Observations of Black Widow Pulsars Gentile, P.A.; Roberts, M.S.E.; McLaughlin, M.A.; Camilo, F.; Hessels, J.W.T.; Kerr, M.; Ransom, S.M.; Ray, P.S.; Stairs, I.H. DOI 10.1088/0004-637X/783/2/69 Publication date 2014 Document Version Final published version Published in Astrophysical Journal Link to publication Citation for published version (APA): Gentile, P. A., Roberts, M. S. E., McLaughlin, M. A., Camilo, F., Hessels, J. W. T., Kerr, M., Ransom, S. M., Ray, P. S., & Stairs, I. H. (2014). X-Ray Observations of Black Widow Pulsars. Astrophysical Journal, 783(2), 69. https://doi.org/10.1088/0004-637X/783/2/69 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 The Astrophysical Journal, 783:69 (8pp), 2014 March 10 doi:10.1088/0004-637X/783/2/69 C 2014.
    [Show full text]
  • WZ Sge: HST Spectroscopy of the Cooling of the White Dwarf After The
    WZ Sge: HST Spectroscopy of the Cooling of the White Dwarf after the 2001 Outburst 1 Knox S. Long Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 Edward M. Sion Department of Astronomy & Astrophysics, Villanova University, Villanova, PA, 19085 Boris T. G¨ansicke Department of Physics & Astronomy, University of Southampton, Southampton SO17 1BJ UK and Paula Szkody Department of Astronomy, University of Washington, Seattle, WA 98195 arXiv:astro-ph/0310864v1 30 Oct 2003 ABSTRACT Following an outburst in 2001 July, the UV flux of WZ Sge has declined slowly toward pre-outburst levels. Here, we describe new 1150-1710 A˚ HST/STIS spec- tra of WZ Sge obtained between 2002 April and 2003 March to follow the decline. A combined analysis of these and spectra obtained in the fall of 2001 show that if log g=8.5, then the white dwarf temperature decreased from 23,400Kin 2001Oc- tober, shortly after the steady decline of the system began, to 15,900 K 17 months later. The UV flux in 2003 March was still 2.4 times higher than measured prior to the outburst and so the system was still recovering from the outburst. During this period, the shape of the spectrum and the flux from the system are con- sistent with a log g=8.5, 0.9 M⊙ white dwarf at the astrometrically-determined –2– distance to WZ Sge. Although the spectrum from 2001 September resembles that of a white dwarf with a temperature of 28,200 K, the implied radius is smaller than in the remainder of the observations.
    [Show full text]
  • Searching for New Millisecond Pulsars with the Gbt in Fermi Unassociated Sources
    SEARCHING FOR NEW MILLISECOND PULSARS WITH THE GBT IN FERMI UNASSOCIATED SOURCES Siraprapa Sanpa-arsa Khon Kaen, Thailand B.A. Physics, Kasetsart University, 2009 M.S. Astronomy, University of Virginia, 2011 A Dissertation Presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Astronomy University of Virginia July 2016 Committee Members: Prof. Scott M. Ransom Vanderbilt Prof. Craig Sarazin VITA Assoc. Prof. Phil Arras Prof. Brad Cox c Copyright by Siraprapa Sanpa-arsa All rights reserved July 13, 2016 ii Abstract The launch of the Fermi satellite in 2008 revolutionized γ-ray pulsar astronomy by enabling the discovery of many new millisecond pulsars (MSPs). The Fermi Pulsar Search Consortium (PSC) has organized hundreds of radio observations of pulsar-like Large Area Telescope (LAT) unassociated sources. Over the past seven years, the PSC has discovered more than 70 new MSPs, compared to the 75 MSPs found in the 25 years prior to Fermi. The National Radio Astronomy Observatory's Robert C. Byrd Green Bank Telescope (GBT) has played the key role in the project by discovering almost half (34) of the new MSPs. In this thesis, I present the discovery and analysis of 16 new MSPs, 10 of which were uncovered by me personally. The pulsars were found in GBT searches within the positional error boxes of 266 Fermi LAT sources, both at high Galactic latitudes and closer to the Galactic plane. All new pulsars have phase-connected radio timing solutions, and for 12 of them, γ-ray pulsations were detected.
    [Show full text]
  • Among the Intrinsic Variables, the RV Tauri Stars Days
    496 ASTRONOMY: PA YNE-GAPOSCHKIN AND BRENTON PROC. N. A. S. A STUDY OF THE RV TAURI VARIABLES By CECILIA PAYNE-GAPOSCHKIN AND VIRGINIA K. BRENTON HARVARD COLLEGE OBSERVATORY Communicated October 16, 1942 1. Definitions.-Among the intrinsic variables, the RV Tauri stars stand out with rather definite characteristics. Three principal criteria may be used for assigning stars to the class. (a) Successive minima differ in depth. Deep and shallow minima are conventionally called "primary" and "secondary." (b) Primary and secondary minima interchange phases at intervals. (c) The stars are variable in spectrum and in radial velocity. The spectrum is of Class F, G or K at maximum. The shortest known period is 38 days (EZ Aquilae), the longest is 146 days (R Scuti). Although the period usually assigned to these stars is that from one primary minimum to the next, a comparison with the velocity curve shows that the star undergoes a type of pulsation with one-half that period. The brighter RV Tauri stars have recently been studied on the Harvard collection of stellar photographs. Of the twenty-nine stars now assigned to the class, fourteen proved to be bright enough for intensive study. A discussion of about sixteen thousand observations of these stars has been completed,' and the present note is intended to summarize some of the physical results. 2. The Secondary Characteristics.-Many RV Tauri stars show rather marked irregularities in period, and though over a long interval a mean period can always be assigned, instantaneous elements for short intervals may require periods differing by one or two per cent.
    [Show full text]