Für Unseren Enkel Bennet

Total Page:16

File Type:pdf, Size:1020Kb

Für Unseren Enkel Bennet Sternbild PFEIL ( Sagitta – Sge ) Der Pfeil ist ein Sommersternbild am nördlichen Himmel. Er ist flächenmäßig das drittkleinste Sternbild am Himmel. Der Sage nach wurde der Pfeil von Herkules abgeschossen. Es befindet sich in einer sternreichen Gegend der Milchstraße. Interessant ist das Objekt M71, das als Kugelsternhaufen geführt wird, aber auch als Offener Sternhaufen durchgeht. Der Pfeil kulminiert im Juli gegen 24:00Uhr und befindet sich innerhalb der Koordinaten RE 18h58 – 20h20 und DE +16°04' bis +21°38'; Die Nachbarsternbilder sind im Norden FÜCHSCHEN, im Westen HERKULES, im Süden ADLER und im Osten DELPHIN. Der PFEIL ist 74° nördlicher geografischer Breite zirkumpolar und südlich von –68° nicht mehr vollständig sichtbar. Die Objekte: 1. Die „Pfeilsterne“ 2. Die übrigen beiden Alphabethsterne 3. Sterne bis 6mag 4. Doppelsterne 5. Die Veränderlichen 6. Der „Kugelsternhaufen“ M71 1. Die „Pfeilsterne“ werden von 5 Sternen 4. und 5. Größe markiert. Obwohl es nicht gerade die visuell hellsten Sterne sind, ist diese kleine markante Figuration westlich vom Sternbild Delfin eine auffällige Erscheinung inmitten des Milchstraßenbandes. SHAM, Alpha (α) Sagittae, 5 Sge; RE 19h 40' 06“ / DE +18°00' Sham, auch Al Sahm (arabisch „der Pfeil“) bezieht sich auf das gesamte Sternbild. Scham ist ein gelber G0II Heller Riesenstern in 473LJ Entfernung. Seine Helligkeit beträgt 4,39mag. Scham hat 307fache Sonnenleuchtkraft und eine Abs. Hell. von -1,4Mag. Die Masse beträgt das 4,1fache und der Radius das 20fache unserer Sonne .Der Stern ist an seiner Oberfläche 5400K heiß. Die Eigenbewegung beträgt 0,023“ im Jahr, die Radialgeschwindigkeit +1,9km/s. Scham ist der obere Pfeilfederstern. In 31“ Distanz (PW= 200°/ 1985) befindet sich ein Begleiter 13. Größe. Beta (β) Sagittae, 6 Sge; RE 19h 41' 03“ / DE +17° 28' Beta ist ein orangegelber G8II- Heller Riesenstern in 467LJ Distanz. Die Helligkeit beträgt 4,39mag. Er hat die 299fache Leuchtkraft unserer Sonne und eine Abs. Hell. von -1,4Mag.Beta hat etwa 4fache MS und 25-64fachen RS. Die Oberfläche ist 4860K heiß. Die EB beträgt 0,034“/Jhr. und die RG - 22,4km/s. Beta markiert den unteren Pfeilfeder. Der Stern ist etwa 140Mill. Jahre alt. Gamma (γ) Sagittae, 12 Sge; RE 19h 58' 45“ / DE +19° 39' Gamma ist mit 3,51mag der hellste Pfeilstern. Es ist ein orangeroter K5III- Riesenstern in 274LJ Entfernung. Gamma hat 232fache LS und eine Abs. Hell. von -1,1Mag. Gamma hat die 2,5fache Masse und den 55fachen Radius unserer Sonne. Die Oberflächentemperatur beträgt 3890K, die EB 0,069“/Jhr. und die RG -33,4km/s. Gamma gehört zur Hyadengruppe und ist der 2. Schaftstern. Der Stern ist ca. 750Mill. Jahre alt. Delta (δ) Sagittae, 7 Sge; RE 19h 47' 23“ / DE +18° 32' Delta ist mit 3,68mag der 2.hellste Pfeilstern. Es ist ein roter M2II- Heller Riese in 448LJ Distanz. Die LS beträgt das 530fache unserer Sonne, die Mv= -2,0Mag. Delta hat die 3,8fache Masse und den 152fachen Radius unserer Sonne. die Oberflächenzemperatur beträgt 3630K, dieEB 0,012“/Jhr. und die RG +2,5km/s. Delta ist spektrobinär. In 3725 Tagen umkreisen sich der M2II- Riese und ein bläulichweißer 4,32mag heller A0V HrSt.in nur 0,1“ Distanz. Der Partnerstern hat 2,9fache MS und 2,6fachen RS. Die mittlere Halbachse beträgt 8,8AE (1,32Mrd. km). Delta (A) ist außerdem Lb- veränderlich und der 1. Pfeilschaftstern. Siehe 5. Die Veränderlichen Eta (η) Sagittae, 16 Sge; RE 20h 05' 09“ / DE +19° 59' Eta ist ein 5,09mag heller orangefarbener K2III- Riesenstern in 161,7LJ Entfernung. Er hat 19fache LS und eine Abs. Hell. von 1,9Mag; Er hat 1,8fache MS und 7,5fachen RS. Die OT beträgt 4741K, die EB 0,087“/Jhr. und die RG -40,8km/s. Eta gehört zur Hyadengruppe und markiert die Pfeilspitze. 2. Epsilon, Zeta und Theta, die übrigen Alphabethsterne Epsilon (ε) Sagittae, 4 Sge; RE 19h 37' 17“ / DE +16° 27' Eta ist ein gelborangfarbener G8IIIvar- Riesenstern in 473LJ Entfernung. Seine Helligkeit beträgt 5,67mag. Er hat 95fache LS und eine Mv von -0,1Mag. Epsilon hat 3,1fache MS und 19fachen RS. Die OT beträgt 4978K, die EB 0,024“/Jhr.und die RG -32,6km/s. Opt. Doppelstern; Siehe 3. Doppelsterne Zeta (ζ) Sagittae, RE 19h 58' 59“ / DE +19°08' Zeta ist ein weißer A1V- HrST in 326LJ Distanz. Seine mv= 5,01mag. Er hat 83fache LS und eine Abs. Hell. von 0,0Mag. Zeta hat 2,1MS und 2,4RS. Die OT beträgt 8800K, die EB 0,036“/Jhr., die RG - 13,5km/s. Zeta ist ein Dreifachsystem mit einer engen Komponente 6. Größe und einem kleinen blauen Begleiter 9. Größe. Siehe 3. Doppelsterne Theta (θ) Sagittae, 17 Sge; RE 20h 09' 57“ / DE +20° 55' Theta ist ein weißgelber Unterriese im Spektrum F5IV in 146,8LJ Distanz. Theta ist ein Doppelstern. Die Gesamthelligkeit beträgt 6,51mag. Die Leuchtkraft ist 4,2X stärker als die unserer Sonne. Die Abs. Hell. beträgt 3,2Mag. Die EB= 0,009“/Jhr., die RG= -40,2km/s. Theta ist von Eta aus die verlängerte Pfeilspitze. Siehe 3. Doppelsterne 3. Sterne bis 6mag 13 Sagittae, VZ Sge; RE 20h 00' 03“ / DE +17° 31' mv= 5,33mag; Spektrum= M4IIIa; Distanz= 750LJ; LS= 320fach; Mv= -1,5Mag; MS= 1,8fach; RS= 152fach; OT= 3330K; EB= 0,010“/Jhr.; RG= -17,4km/s; Lb- veränderlich; siehe 5. Die Veränderlichen 11 Sagittae, RE 19h 57' 45“ / DE ++16° 47' mv= 5,54mag; Spektrum= B9III; Distanz= 405LJ; LS= 78fach; Mv= 0,1Mag; EB= 0,020“/Jhr.; RG= - 26,1km/s; 1 Sagittae, RE 19h 15' 17“ / DE +21° 14' mv= 5,65mag; Spektrum= A4V; Distanz= 318LJ; LS= 43Xfach; Mv= 0,7Mag; EB= 0,040“/Jhr.; RG= - 23,1km/s; 10 Sagittae, S Sge; RE 19h 56' 01“ / DE +16° 38' mv= 5,71mag; Spektrum= G5Ibvar; Distanz= 4289LJ; LS= 7.000fach; Mv= -4,9Mag; MS= 6,5fach; RS= 66fach; OT= 5500K; EB= 0,004“/Jhr.; RG= -9,9 km/s; Alter ca. 43Mill. Jahre; Doppelstern; Spektrum Komponente B= A7V; MS= 1,5fach; Orbitdauer= 1,85 Jahre; mittlere Halbachse= 2,9AE= 435Mill. km); Komponente B ist eventuell ebenfalls doppelt; Cδ- veränderlich; siehe 5. Die Veränderlichen 15 Sagittae, RE 20h 04' 06“ / DE +17° 04' mv= 5,80mag; Spektrum= G1V; Distanz= 57,62LJ; LS= 1,2Xfach; Mv= 4,6Mag; MS= 1,1fach; RS= 1,1fach; OT= 5900K; EB= 0,571“/Jhr.; RG= +4,8km/s; Alter ca. 2,5Mrd. Jahre; 15 Sge hat einen braunen Zwerg als Begleiter und ist ein optisches Dreifachsystem; siehe 4. Doppelsterne HD 193579 Sagittae, RE 20h 20' 21“ / DE +17° 47' mv= 5,82mag; Spektrum= K5III; Distanz= 478LJ; LS= 84fach; Mv= -0,0Mag; EB= 0,036“/Jhr.; RG= - 32,5km/s; HD 190211 Sagittae, RE 20h 03' 16“ / DE +18° 30' mv= 5,99mag; Spektrum= K3Iab; Distanz= 850LJ; LS= 227fach; Mv= -1,1Mag; EB= 0,033“/Jhr.; RG= +9,0km/s; Doppelstern; mv Komponenten A + B= 6,13mag + 10,38mag; Distanz A-B= 46,7“; PW= 207° (1991); 4. Doppelsterne Zeta Sagittae, RE 19h 58' 59“ / DE +19°08'; Gesamthelligkeit 5,01mag Zeta ist ein Dreifachsystem mit einer engen Komponente 6. Größe und einem kleinen blauen Begleiter 9. Größe. mv Kompente A+B+C= 5,49mag+6,18mag+9,01mag; Spektrum A+B+C= A1V+A3V+B8V; Distanz A- B= 0,2“ 141° (1991) A/B-C= 8,3“; PW= 310°(1999); Komponente B hat 19fache LS, 2fache MS, 2fachen RS, und 8600K OT; Sie umkreisen sich in 22,8 Jahren. Die mittlere Halbachse beträgt 10,6AE (2,4Mrd. km); mv Komponente D= 11,0mag; Distanz A/-D= 76“; PW= 248° (1991); siehe 2. Die übrigen Alphabethsterne 15 Sagittae, RE 20h 04' 06“ / DE +17° 04'; Gesamthelligkeit 5,08mag Komponente A hat einen Braunen Zwerg als Begleiter; Jupitermassen (MJ)= 69fach, Jupiterradius (JR)= 1fach; OT= 1750K; Orbitdauer= 73,3 Jahre; mittlere Halbachse= 18,3 AE (2,745Mrd. km); 15 Sge ist ein optisches Dreifachsystem mit einer Gesamthelligkeit von 5,80mag mv Komponente A+B+C= 5,86mag+6,91mag+9,37mag; Spektrum A+B+C= G1V+A2V+K0V; Distanz A-B/C= 168,7“/215“; PW B/C= 332° (1994)/ 287° (1991); Komponente A= 58LJ Distanz, Komponente B = 577LJ Distanz, Komponente C= 160LJ Distanz siehe 3. Sterne bis 6,5mag Epsilon Sagittae, RE 19h 37' 17“ / DE +16° 27'; Gesamthelligkeit 5,67mag; mv Komponenten A + B= 5,77mag + 7,80mag; Spektren A + B= G8III + B8V; Distanz A-B= 89,2“; PW= 81° (2003); Komponente B ist optisch doppelt mit Epsilon; Distanz= 300LJ; LS= 3,3fach; Mv= 3,5Mag; EB= 0,010“/Jhr-.; siehe 2. Die übrigen Alphabethsterne Theta Sagittae, RE 20h 09' 57“ / DE +20° 55'= 6,51mag mv Komponente A+B= 6,56mag+8,85mag; Spektrum A+B= F5IV+F3V; DistanzA-B= 11,7“; PW= 330° (2006); mv Komponente A + C= 6,56mag + 7,52mag; Spektren A + C= F5IV + K2III; Distanz A-C= 90,1“; PW= 222° (2006); siehe 2. Die übrigen Alphabethsterne 5. Die Veränderlichen Delta Sagittae, RE RE 19h 47' 23“ / DE +18° 32'; mittlere Helligkeit 3,68mag Typ Lb (langsam irregulär); Amplitude= 3,75mag -3,83mag (Komponente A); Periode= irregulär; siehe 1. Die Pfeilsterne VZ Sagittae, 13 Sge; RE 20h 00' 03“ / +17° 31'; mittlere Helligkeit 5,33mag Typ Lb(langsam irregulär); Amplitude= 5,27mag – 5,57mag; Periode= irregulär; siehe 3. Sterne bis 6,5mag S Sagittae, 10 Sge; RE 19h 56' 01“ / DE +16° 38'; mittlere Helligkeit 5,71mag Typ Cδ (Delta-Cepheide); Amplitude= 5,24mag – 6,,04mag; Periode= 8,382Tage; das Spektrum variiert zwischen F5Ib – G5Ib; siehe 3. Sterne bis 6,5mag U Sagittae, RE 19h 18' 48“ / DE +19° 36'; mittlere Helligkeit 6,50mag Typ EA (bedeckungsveränderlich Typ Algol); Amplitude= 6,45mag – 9,28mag; Periode= 3,381 Tage; halbge= trenntes System; Shellstar (Hüllenstern); siehe 3.
Recommended publications
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • A Hot Subdwarf-White Dwarf Super-Chandrasekhar Candidate
    A hot subdwarf–white dwarf super-Chandrasekhar candidate supernova Ia progenitor Ingrid Pelisoli1,2*, P. Neunteufel3, S. Geier1, T. Kupfer4,5, U. Heber6, A. Irrgang6, D. Schneider6, A. Bastian1, J. van Roestel7, V. Schaffenroth1, and B. N. Barlow8 1Institut fur¨ Physik und Astronomie, Universitat¨ Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany 2Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 3Max Planck Institut fur¨ Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching bei Munchen¨ 4Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 5Texas Tech University, Department of Physics & Astronomy, Box 41051, 79409, Lubbock, TX, USA 6Dr. Karl Remeis-Observatory & ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Sternwartstr. 7, 96049 Bamberg, Germany 7Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 8Department of Physics and Astronomy, High Point University, High Point, NC 27268, USA *[email protected] ABSTRACT Supernova Ia are bright explosive events that can be used to estimate cosmological distances, allowing us to study the expansion of the Universe. They are understood to result from a thermonuclear detonation in a white dwarf that formed from the exhausted core of a star more massive than the Sun. However, the possible progenitor channels leading to an explosion are a long-standing debate, limiting the precision and accuracy of supernova Ia as distance indicators. Here we present HD 265435, a binary system with an orbital period of less than a hundred minutes, consisting of a white dwarf and a hot subdwarf — a stripped core-helium burning star.
    [Show full text]
  • Divinus Lux Observatory Bulletin: Report #28 100 Dave Arnold
    Vol. 9 No. 2 April 1, 2013 Journal of Double Star Observations Page Journal of Double Star Observations VOLUME 9 NUMBER 2 April 1, 2013 Inside this issue: Using VizieR/Aladin to Measure Neglected Double Stars 75 Richard Harshaw BN Orionis (TYC 126-0781-1) Duplicity Discovery from an Asteroidal Occultation by (57) Mnemosyne 88 Tony George, Brad Timerson, John Brooks, Steve Conard, Joan Bixby Dunham, David W. Dunham, Robert Jones, Thomas R. Lipka, Wayne Thomas, Wayne H. Warren Jr., Rick Wasson, Jan Wisniewski Study of a New CPM Pair 2Mass 14515781-1619034 96 Israel Tejera Falcón Divinus Lux Observatory Bulletin: Report #28 100 Dave Arnold HJ 4217 - Now a Known Unknown 107 Graeme L. White and Roderick Letchford Double Star Measures Using the Video Drift Method - III 113 Richard L. Nugent, Ernest W. Iverson A New Common Proper Motion Double Star in Corvus 122 Abdul Ahad High Speed Astrometry of STF 2848 With a Luminera Camera and REDUC Software 124 Russell M. Genet TYC 6223-00442-1 Duplicity Discovery from Occultation by (52) Europa 130 Breno Loureiro Giacchini, Brad Timerson, Tony George, Scott Degenhardt, Dave Herald Visual and Photometric Measurements of a Selected Set of Double Stars 135 Nathan Johnson, Jake Shellenberger, Elise Sparks, Douglas Walker A Pixel Correlation Technique for Smaller Telescopes to Measure Doubles 142 E. O. Wiley Double Stars at the IAU GA 2012 153 Brian D. Mason Report on the Maui International Double Star Conference 158 Russell M. Genet International Association of Double Star Observers (IADSO) 170 Vol. 9 No. 2 April 1, 2013 Journal of Double Star Observations Page 75 Using VizieR/Aladin to Measure Neglected Double Stars Richard Harshaw Cave Creek, Arizona [email protected] Abstract: The VizierR service of the Centres de Donnes Astronomiques de Strasbourg (France) offers amateur astronomers a treasure trove of resources, including access to the most current version of the Washington Double Star Catalog (WDS) and links to tens of thousands of digitized sky survey plates via the Aladin Java applet.
    [Show full text]
  • Ioptron AZ Mount Pro Altazimuth Mount Instruction
    ® iOptron® AZ Mount ProTM Altazimuth Mount Instruction Manual Product #8900, #8903 and #8920 This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ......................................................................................................................................... 3 1. AZ Mount ProTM Altazimuth Mount Overview...................................................................................... 5 2. AZ Mount ProTM Mount Assembly ........................................................................................................ 6 2.1. Parts List .......................................................................................................................................... 6 2.2. Identification of Parts ....................................................................................................................... 7 2.3. Go2Nova® 8407 Hand Controller .................................................................................................... 8 2.3.1. Key Description .......................................................................................................................
    [Show full text]
  • DIRECT DETECTION of the L-DWARF DONOR in WZ SAGITTAE Thomas E
    The Astrophysical Journal, 816:4 (6pp), 2016 January 1 doi:10.3847/0004-637X/816/1/4 © 2016. The American Astronomical Society. All rights reserved. DIRECT DETECTION OF THE L-DWARF DONOR IN WZ SAGITTAE Thomas E. Harrison1 Department of Astronomy, New Mexico State University, Box 30001, MSC 4500, Las Cruces, NM 88003-8001, USA Received 2015 September 15; accepted 2015 November 20; published 2015 December 21 ABSTRACT Analysis of a large set of phase-resolved K-band spectra of the cataclysmic variable WZ Sge shows that the secondary star of this system appears to be an L-dwarf. Previous K-band spectra of WZ Sge found that the CO 12 overtone bandheads were in emission. We show that absorption from the CO(2,0) bandhead of the donor star 12 creates a dip in the CO(2,0) emission feature. Measuring the motion of this feature over the orbital period, we −1 construct a radial velocity curve that gives a velocity amplitude of Kabs = 520±35 km s , consistent with the previously published values for this parameter. Key words: brown dwarfs – novae, cataclysmic variables – stars: dwarf novae 1. INTRODUCTION Harrison et al. 2004a) and has a very low accretion rate (Patterson 1998), the donor object has remained elusive. Cataclysmic variables (CVs) are short period binaries where While direct photospheric absorption features from the donor the white dwarf primary is accreting matter from a lower mass in WZ Sge have not previously been detected, Hα emission, secondary star. An angular momentum loss process keeps the ( ) due to the irradiation of the companion during the 2001 system in contact c.f., King & Kolb 1995 , and the orbital outburst, were clearly seen, and led to the first quantitative period shortens over time as the secondary continues to lose constraints on the nature of the secondary.
    [Show full text]
  • The State of Anthro–Earth
    The Rosette Gazette Volume 22,, IssueIssue 7 Newsletter of the Rose City Astronomers July, 2010 RCA JULY 19 GENERAL MEETING The State Of Anthro–Earth THE STATE OF ANTHRO-EARTH: A Visitor From Far, Far Away Reviews the Status of Our Planet In This Issue: A Talk (in Earth-English) By Richard Brenne 1….General Meeting Enrico Fermi famously wondered why we hadn't heard from any other planetary 2….Club Officers civilizations, and Richard Brenne, who we'd always suspected was probably from another planet, thinks he might know the answer. Carl Sagan thought it was likely …...Magazines because those on other planets blew themselves up with nuclear weapons, but Richard …...RCA Library thinks its more likely that burning fossil fuels changed the climates and collapsed the 3….Local Happenings civilizations of those we might otherwise have heard from. Only someone from another planet could discuss this most serious topic with Richard's trademark humor 4…. Telescope (in a previous life he was an award-winning screenwriter - on which planet we're not Transformation sure) and bemused detachment. 5….Special Interest Groups Richard Brenne teaches a NASA-sponsored Global Climate Change class, serves on 6….Star Party Scene the American Meteorological Society's Committee to Communicate Climate Change, has written and produced documentaries about climate change since 1992, and has 7.…Observers Corner produced and moderated 50 hours of panel discussions about climate change with 18...RCA Board Minutes many of the world's top climate change scientists. Richard writes for the blog "Climate Progress" and his forthcoming book is titled "Anthro-Earth", his new name 20...Calendars for his adopted planet.
    [Show full text]
  • Variable Star Classification and Light Curves Manual
    Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • Central Coast Astronomy Virtual Star Party December 19Th 7Pm Pacific
    Central Coast Astronomy Virtual Star Party December 19th 7pm Pacific Welcome to our Virtual Star Gazing session! We’ll be focusing on objects you can see with binoculars or a small telescope, so after our session, you can simply walk outside, look up, and understand what you’re looking at. CCAS President Aurora Lipper and astronomer Kent Wallace will bring you a virtual “tour of the night sky” where you can discover, learn, and ask questions as we go along! All you need is an internet connection. You can use an iPad, laptop, computer or cell phone. When 7pm on Saturday night rolls around, click the link on our website to join our class. CentralCoastAstronomy.org/stargaze Before our session starts: Step 1: Download your free map of the night sky: SkyMaps.com They have it available for Northern and Southern hemispheres. Step 2: Print out this document and use it to take notes during our time on Saturday. This document highlights the objects we will focus on in our session together. Celestial Objects: Moon: The moon is 5 days past new, really good for star gazing. Be sure to look at the moon tonight with your naked eyes and/or binoculars! Jupiter and Saturn are getting closer and closer, and on the 21st, they will be close enough to BOTH fit in the view of the eyepiece! If you start watching now, you’ll notice them draw closer and closer together. It’s pretty neat that this date also lines up with the Winter Solstice. This is the first Jupiter-Saturn conjunction since 2000, and the closest since 1623 (only 14 years after Galileo made this first telescope).
    [Show full text]
  • Binocular Double Star Logbook
    Astronomical League Binocular Double Star Club Logbook 1 Table of Contents Alpha Cassiopeiae 3 14 Canis Minoris Sh 251 (Oph) Psi 1 Piscium* F Hydrae Psi 1 & 2 Draconis* 37 Ceti Iota Cancri* 10 Σ2273 (Dra) Phi Cassiopeiae 27 Hydrae 40 & 41 Draconis* 93 (Rho) & 94 Piscium Tau 1 Hydrae 67 Ophiuchi 17 Chi Ceti 35 & 36 (Zeta) Leonis 39 Draconis 56 Andromedae 4 42 Leonis Minoris Epsilon 1 & 2 Lyrae* (U) 14 Arietis Σ1474 (Hya) Zeta 1 & 2 Lyrae* 59 Andromedae Alpha Ursae Majoris 11 Beta Lyrae* 15 Trianguli Delta Leonis Delta 1 & 2 Lyrae 33 Arietis 83 Leonis Theta Serpentis* 18 19 Tauri Tau Leonis 15 Aquilae 21 & 22 Tauri 5 93 Leonis OΣΣ178 (Aql) Eta Tauri 65 Ursae Majoris 28 Aquilae Phi Tauri 67 Ursae Majoris 12 6 (Alpha) & 8 Vul 62 Tauri 12 Comae Berenices Beta Cygni* Kappa 1 & 2 Tauri 17 Comae Berenices Epsilon Sagittae 19 Theta 1 & 2 Tauri 5 (Kappa) & 6 Draconis 54 Sagittarii 57 Persei 6 32 Camelopardalis* 16 Cygni 88 Tauri Σ1740 (Vir) 57 Aquilae Sigma 1 & 2 Tauri 79 (Zeta) & 80 Ursae Maj* 13 15 Sagittae Tau Tauri 70 Virginis Theta Sagittae 62 Eridani Iota Bootis* O1 (30 & 31) Cyg* 20 Beta Camelopardalis Σ1850 (Boo) 29 Cygni 11 & 12 Camelopardalis 7 Alpha Librae* Alpha 1 & 2 Capricorni* Delta Orionis* Delta Bootis* Beta 1 & 2 Capricorni* 42 & 45 Orionis Mu 1 & 2 Bootis* 14 75 Draconis Theta 2 Orionis* Omega 1 & 2 Scorpii Rho Capricorni Gamma Leporis* Kappa Herculis Omicron Capricorni 21 35 Camelopardalis ?? Nu Scorpii S 752 (Delphinus) 5 Lyncis 8 Nu 1 & 2 Coronae Borealis 48 Cygni Nu Geminorum Rho Ophiuchi 61 Cygni* 20 Geminorum 16 & 17 Draconis* 15 5 (Gamma) & 6 Equulei Zeta Geminorum 36 & 37 Herculis 79 Cygni h 3945 (CMa) Mu 1 & 2 Scorpii Mu Cygni 22 19 Lyncis* Zeta 1 & 2 Scorpii Epsilon Pegasi* Eta Canis Majoris 9 Σ133 (Her) Pi 1 & 2 Pegasi Δ 47 (CMa) 36 Ophiuchi* 33 Pegasi 64 & 65 Geminorum Nu 1 & 2 Draconis* 16 35 Pegasi Knt 4 (Pup) 53 Ophiuchi Delta Cephei* (U) The 28 stars with asterisks are also required for the regular AL Double Star Club.
    [Show full text]
  • Ioptron CEM40 Center-Balanced Equatorial Mount
    iOptron®CEM40 Center-Balanced Equatorial Mount Instruction Manual Product CEM40 (#7400A series) and CEM40EC (#7400ECA series, as shown) Please read the included CEM40 Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper operation will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while using a telescope. 2 Table of Contents Table of Contents ........................................................................................................................................ 3 1. CEM40 Introduction ............................................................................................................................... 5 2. CEM40 Overview ................................................................................................................................... 6 2.1. Parts List .........................................................................................................................................
    [Show full text]
  • Appendix: Spectroscopy of Variable Stars
    Appendix: Spectroscopy of Variable Stars As amateur astronomers gain ever-increasing access to professional tools, the science of spectroscopy of variable stars is now within reach of the experienced variable star observer. In this section we shall examine the basic tools used to perform spectroscopy and how to use the data collected in ways that augment our understanding of variable stars. Naturally, this section cannot cover every aspect of this vast subject, and we will concentrate just on the basics of this field so that the observer can come to grips with it. It will be noticed by experienced observers that variable stars often alter their spectral characteristics as they vary in light output. Cepheid variable stars can change from G types to F types during their periods of oscillation, and young variables can change from A to B types or vice versa. Spec­ troscopy enables observers to monitor these changes if their instrumentation is sensitive enough. However, this is not an easy field of study. It requires patience and dedication and access to resources that most amateurs do not possess. Nevertheless, it is an emerging field, and should the reader wish to get involved with this type of observation know that there are some excellent guides to variable star spectroscopy via the BAA and the AAVSO. Some of the workshops run by Robin Leadbeater of the BAA Variable Star section and others such as Christian Buil are a very good introduction to the field. © Springer Nature Switzerland AG 2018 M. Griffiths, Observer’s Guide to Variable Stars, The Patrick Moore 291 Practical Astronomy Series, https://doi.org/10.1007/978-3-030-00904-5 292 Appendix: Spectroscopy of Variable Stars Spectra, Spectroscopes and Image Acquisition What are spectra, and how are they observed? The spectra we see from stars is the result of the complete output in visible light of the star (in simple terms).
    [Show full text]