Chapter 7: Speleothems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Caves Are In- Herently Dangerous Environments, with Many Hazards We May Not Be Used to Dealing with from Our Above Ground Experience
KNOW Before You Go! Cave Safety Cave exploration can be fun and exciting, but it can also be quite dangerous. Caves are in- herently dangerous environments, with many hazards we may not be used to dealing with from our above ground experience. USDA Forest ServiceImagine you are deep in a cave. You are look- ing at a beautiful stalactite, you take a step back... you step on a loose rock...... you stum- ble...... you drop your flashlight..... it hits a rock...... it breaks.... TOTAL DARKNESS! It would be im- possible to crawl out to safety. It's cold.... it's dark.... your foot hurts.... you are beginning to get hungry. What are you going to do? The best way to get out of this situation is not to get into it in the first place. The following safety rules will keep you safe. They are the ones followed by the National Speleological Society, a group of professional cave explorers. Checklist Kids should never explore caves without an adult. Each person should have at least four reliable lights. Never, ever, go in a cave alone. The minimum is four people. If someone gets hurt, one person can stay with the hurt person while two go for help. One person should wait at the entrance to the cave while the fourth person notifies the Sheriff or Park Rangers. This makes it easier to find the cave again when the rescuers arrive. ALWAYS tell a responsible adult exactly where you are going and when you'll be back. Just because you don't come home for dinner doesn't mean anybody will think to look in a cave. -
Grade 11 Informational Mini-Assessment Stalagmite Trio This Grade 11 Mini-Assessment Is Based on Two Texts and an Accompanying Video About Cave Formations
Grade 11 Informational Mini-Assessment Stalagmite Trio This grade 11 mini-assessment is based on two texts and an accompanying video about cave formations. The subject matter, as well as the stimuli, allow for the testing of the Common Core State Standards (CCSS) for Literacy in Science and Technical Subjects and the Reading Standards for Informational Texts. The texts are worthy of students’ time to read, and the video adds a multimedia component to make the task a more complete and authentic representation of research. The texts meet the expectations for text complexity at grade 11. Assessments aligned to the CCSS will employ quality, complex texts such as these, and some assessments will include multimedia stimuli as demonstrated by this mini-assessment. Questions aligned to the CCSS should be worthy of students’ time to answer and therefore do not focus on minor points of the texts. Several standards may be addressed within the same question because complex texts tend to yield rich assessment questions that call for deep analysis. In this mini-assessment there are twelve questions that address the Reading Standards below. There is also one constructed response item that addresses Reading, Writing, and Language standards. We encourage educators to give students the time that they need to read closely and write to sources. Please note that this mini- assessment is likely to take at least two class periods. Note for teachers of English Language Learners (ELLs): This assessment is designed to measure students’ ability to read and write in English. Therefore, educators will not see the level of scaffolding typically used in instructional materials to support ELLs—these would interfere with the ability to understand their mastery of these skills. -
Underwater Speleology Journal of the Cave Diving Section of the National Speleological Society
Underwater Speleology Journal of the Cave Diving Section of the National Speleological Society INSIDE THIS ISSUE: Possible Explanations For The Lack Of Formations In Underwater Caves In FLA The Challenge At Challenge Cave Diving Science Visit with A Cave: Cannonball Cow Springs Clean Up Volume 41 Number 1 January/February/March 2014 Underwater Speleology NSS-CDS Volume 41 Number 1 BOARD OF DIRECTORS January/February/March 2014 CHAIRMAN contents Joe Citelli (954) 646-5446 [email protected] Featured Articles VICE CHAIRMAN Tony Flaris (904) 210-4550 Possible Explanations For The Lack Of Formations In Underwater Caves In FLA [email protected] By Dr. Jason Gulley and Dr. Jason Polk............................................................................6 TREASURER The Challenge At Challenge Terri Simpson By Jim Wyatt.................................................................................................................8 (954) 275-9787 [email protected] Cave Diving Science SECRETARY By Peter Buzzacott..........................................................................................................10 TJ Muller Visit With A Cave: Cannonball [email protected] By Doug Rorex.................................................................................................................16 PROGRAM DIRECTORS Book Review: Classic Darksite Diving: Cave Diving Sites of Britain and Europe David Jones By Bill Mixon..............................................................................................................24 -
Speleothem Evidence from Oman for Continental Pluvial Events During Interglacial Periods
Speleothem evidence from Oman for continental pluvial events during interglacial periods Stephen J. Burns Dominik Fleitmann Albert Matter Institute of Geology, University of Bern, CH-3012 Bern, Switzerland Ulrich Neff Augusto Mangini Heidelberg Academy of Sciences, D-69120 Heidelberg, Germany ABSTRACT Growth periods and stable isotope analyses of speleothems from Hoti Cave in northern Oman provide a record of continental pluvial periods extending back over the past four of Earth's glacial-interglacial cycles. Rapid speleothem growth occurred during the early to middle Holocene (6±10.5 ka B.P.), 78±82 ka B.P., 120±135 ka B.P., 180±200 ka B.P., and 300±325 ka B.P. The speleothem calcite deposited during each of these episodes is highly depleted in 18O compared to modern speleothems. The d18O values for calcite deposited within pluvial periods generally fall in the range of 24½ to 28½ relative to the Vienna Peedee belemnite standard, whereas modern speleothems range from 21½ to 23½. The growth and isotopic records indicate that during peak interglacial periods, the limit of the monsoon rainfall was shifted far north of its present location and each pluvial period was coincident with an interglacial stage of the marine oxygen isotope record. The association of continental pluvial periods with peak interglacial conditions suggests that glacial boundary conditions, and not changes in solar radiation, are the primary control on continental wetness on glacial-interglacial time scales. Keywords: speleothems, stable isotopes, Oman, monsoon, uranium-series method. INTRODUCTION rine and continental records show that its in- such as the extent of glaciation on the Hima- How climate in Earth's tropical regions var- tensity has varied considerably in the recent layan plateau or sea-surface temperatures? ied over the course of Earth's glacial-intergla- past. -
Novel Bacterial Diversity in an Anchialine Blue Hole On
NOVEL BACTERIAL DIVERSITY IN AN ANCHIALINE BLUE HOLE ON ABACO ISLAND, BAHAMAS A Thesis by BRETT CHRISTOPHER GONZALEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2010 Major Subject: Wildlife and Fisheries Sciences NOVEL BACTERIAL DIVERSITY IN AN ANCHIALINE BLUE HOLE ON ABACO ISLAND, BAHAMAS A Thesis by BRETT CHRISTOPHER GONZALEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Thomas Iliffe Committee Members, Robin Brinkmeyer Daniel Thornton Head of Department, Thomas Lacher, Jr. December 2010 Major Subject: Wildlife and Fisheries Sciences iii ABSTRACT Novel Bacterial Diversity in an Anchialine Blue Hole on Abaco Island, Bahamas. (December 2010) Brett Christopher Gonzalez, B.S., Texas A&M University at Galveston Chair of Advisory Committee: Dr. Thomas Iliffe Anchialine blue holes found in the interior of the Bahama Islands have distinct fresh and salt water layers, with vertical mixing, and dysoxic to anoxic conditions below the halocline. Scientific cave diving exploration and microbiological investigations of Cherokee Road Extension Blue Hole on Abaco Island have provided detailed information about the water chemistry of the vertically stratified water column. Hydrologic parameters measured suggest that circulation of seawater is occurring deep within the platform. Dense microbial assemblages which occurred as mats on the cave walls below the halocline were investigated through construction of 16S rRNA clone libraries, finding representatives across several bacterial lineages including Chlorobium and OP8. -
Caverns Measureless to Man: Interdisciplinary Planetary Science & Technology Analog Research Underwater Laser Scanner Survey (Quintana Roo, Mexico)
Caverns Measureless to Man: Interdisciplinary Planetary Science & Technology Analog Research Underwater Laser Scanner Survey (Quintana Roo, Mexico) by Stephen Alexander Daire A Thesis Presented to the Faculty of the USC Graduate School University of Southern California In Partial Fulfillment of the Requirements for the Degree Master of Science (Geographic Information Science and Technology) May 2019 Copyright © 2019 by Stephen Daire “History is just a 25,000-year dash from the trees to the starship; and while it’s going on its wild and woolly but it’s only like that, and then you’re in the starship.” – Terence McKenna. Table of Contents List of Figures ................................................................................................................................ iv List of Tables ................................................................................................................................. xi Acknowledgements ....................................................................................................................... xii List of Abbreviations ................................................................................................................... xiii Abstract ........................................................................................................................................ xvi Chapter 1 Planetary Sciences, Cave Survey, & Human Evolution................................................. 1 1.1. Topic & Area of Interest: Exploration & Survey ....................................................................12 -
Podgrad, Sw Slovenia Speleogeneza in Sedimentaci
COBISS: 1.01 SPELEOGENESIS AND DEPOSITIONAL HISTORY OF PALEOKARST PHREATIC CAVES/CAVITIES; PODGRAD, SW SLOVENIA SPELEOGENEZA IN SEDIMENTACIJSKA ZGODOVINA PALEOKRAŠKIH JAM/VOTLIN PREŽETE CONE; PODGRAD, JZ SLOVENIJA Bojan OTONIČAR1,* Abstract UDC 551.44:551.35(497.434) Izvleček UDK 551.44:551.35(497.434) Bojan Otoničar: Speleogenesis and depositional history of Bojan Otoničar: Speleogeneza in sedimentacijska zgodovina paleokarst phreatic caves/cavities; Podgrad, SW Slovenia paleokraških jam/votlin prežete cone; Podgrad, JZ Slovenija The studied paleokarst corresponds to an uplifted peripheral Raziskovani paleokras se je oblikoval na dvignjeni periferni foreland bulge when Upper Cretaceous diagenetically imma- izboklini, ko so bili diagenetsko nezreli zgornje kredni kar- ture eogenetic carbonates were subaerially exposed, karstified bonati dvignjeni nad morsko gladino in zakraseli. Kasneje je and subsequently overlain by upper Paleocene/lower Eocene bil ta zakraseli del periferne izbokline ponovno potopljen pod palustrine limestone. morsko gladino, paleokraško površje pa prekrito z zgornje pale- Among the subsurface paleokarstic features, both vadose and ocenskimi do spodnje eocenskimi palustrinimi apnenci. phreatic forms occur. The phreatic caves/cavities include fea- Na raziskovanem območju se pojavljajo podpovršinske tures characteristic of the mixing zone speleogenesis at the paleokraške oblike značilne tako za prežeto kot neprežeto interface between freshwater (brackish water) lenses and the hidrogeološko cono. Kraške jame in manjše votlinice prežete underlying seawater. They were found in various positions cone kažejo značilnosti speleogeneze v območju mešanja with respect to the paleokarstic surface, the deepest being meteorne in morske vode. Pojavljajo se v različnih nivo- about 75 m below the surface. Three indistinct horizons of jih glede na paleokraško površje, najgloblje približno 75 cavities/caves and intermediate vugs were recognized. -
Casleguard Cave 2005
Castleguard Cave 2005 First ascent of the 200-foot aven Text by Marek Vokáˇc Photos by Christian Rushfeldt, Bjørn Myrvold, Jørn Halvorsen, Marek Vokáˇc First edition October 27, 2006 Copyright notice: Overall copyright © 2006 Marek Vokáˇc. Photographers retain their copy- right © to individual images as specified in photo credits/captions. Permission is generally granted for individual, non-commercial use of this report, provided due credit is given. Parks Canada is additionally granted permission for other non-commercial use and distribution. Author contact: Marek Vokáˇc Thorleifs Allé 5c 0489 Oslo Norway email: [email protected] Telephone: +47 934 92 857 Cover photo: Marek Vokáˇcclimbing the aven, by Christian Rushfeldt (CC05-064) Dedicated to all whose generous support made this trip possible, and a success: my wife and children; the team; their families; and our colleagues and employers Introduction Castleguard Cave lies in the heart of the Rocky Mountains, close to the Saskatchewan Glacier. To get to the cave from Calgary, one drives the beautiful Icefields Parkway, past Lake Louise and Banff, preferably staying at the Saksatchewan Crossing hotel. Getting to the cave entrance is a full-day ski trip. The cave itself was known early in the 1900’s, and was visited by tourists with horses and mules. The biggest attraction were the sudden floods coming out of the entrance, where the dry opening would change into a roaring river in a few seconds. Modern cave exploration started in 1967, during the summer. The explorers were caught by a sudden rise in the water and trapped inside the first drop. After 18 hours the water level dropped enough for them to get out; soon after that, the waters rose again and ran for weeks. -
Museum of Natural History & Science Interpretation Guide for the Cavern
Museum of Natural History & Science Interpretation Guide for The Cavern A cave is a naturally occurring hole in the ground large enough to be explored by humans. Caves can be found on every continent in the world. Caves, along with the objects found within them, are extremely fragile and take millions of years to form. They are home to unique organisms—many of which are still unknown to science; they are archaeological sites that preserve our cultural heritage; and geologic laboratories that demonstrate how water can both dissolve and deposit rock. Caves are a vital and non-renewable resource that must be conserved and protected. The Cavern is a recreation of a Kentucky limestone dissolution cave. It is the largest artificial cave in the United States—and some say the world—containing 535 feet of passage in an area 44 feet wide, 24 feet high and 64 feet long. Parts of the cave were modeled after two caves in Kentucky: Teamers Cave in Rockcastle County and Dyches Bridge Cave in Pulaski County. By modeling our cavern after these two caves, our dissolution cave has a realistic appearance. A dissolution cave is by far the most common type of cave. They can be found throughout the world if the right conditions present themselves. The formation of a dissolution cave requires four basic elements: rock, water, carbon dioxide and time. • Rock, especially carbonate rocks, such as limestone, is the first ingredient. These types of rocks were formed hundreds of millions of years ago. It is in the seas surrounding the continents that limestone is formed. -
Forgotten F1 Teams – Series 1 Omnibus Simtek Grand Prix
Forgotten F1 Teams – Series 1 Omnibus Welcome to Forgotten F1 Teams – a mini series from Sidepodcast. These shows were originally released over seven consecutive days But are now gathered together in this omniBus edition. Simtek Grand Prix You’re listening to Sidepodcast, and this is the latest mini‐series: Forgotten F1 Teams. I think it’s proBaBly self explanatory But this is a series dedicated to profiling some of the forgotten teams. Forget aBout your Ferrari’s and your McLaren’s, what aBout those who didn’t make such an impact on the sport, But still have a story to tell? Those are the ones you’ll hear today. Thanks should go to Scott Woodwiss for suggesting the topic, and the teams, and we’ll dive right in with Simtek Grand Prix. Simtek Grand Prix was Born from Simtek Research Ltd, the name standing for Simulation Technology. The company founders were Nick Wirth and Max Mosley, Both of whom had serious pedigree within motorsport. Mosley had Been a team owner Before with March, and Wirth was a mechanical engineering student who was snapped up By March as an aerodynamicist, working underneath Adrian Newey. When March was sold to Leyton House, Mosley and Wirth? Both decided to leave, and joined forces to create Simtek. Originally, the company had a single office in Wirth’s house, But it was soon oBvious they needed a Bigger, more wind‐tunnel shaped Base, which they Built in Oxfordshire. Mosley had the connections that meant racing teams from all over the gloBe were interested in using their research technologies, But while keeping the clients satisfied, Simtek Began designing an F1 car for BMW in secret. -
Growth Mechanisms of Speleothems in Castleguard Cave, Columbia Icefields, Alberta, Canada
Arctic and Alpine Research ISSN: 0004-0851 (Print) 2325-5153 (Online) Journal homepage: https://www.tandfonline.com/loi/uaar19 Growth Mechanisms of Speleothems in Castleguard Cave, Columbia Icefields, Alberta, Canada T. C. Atkinson To cite this article: T. C. Atkinson (1983) Growth Mechanisms of Speleothems in Castleguard Cave, Columbia Icefields, Alberta, Canada, Arctic and Alpine Research, 15:4, 523-536 To link to this article: https://doi.org/10.1080/00040851.1983.12004379 Copyright 1983 Regents of the University of Colorado Published online: 01 Jun 2018. Submit your article to this journal Article views: 64 View related articles Citing articles: 4 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=uaar20 Arctic and Alpine Research, Vol. 15, No.4, 1983, pp. 523-536 GROWTH MECHANISMS OF SPELEOTHEMS IN CASTLEGUARD CAVE, COLUMBIA ICEFIELDS, ALBERTA, CANADA* T. C. ATKINSON School ofEnvironmental Sciences, University ofEast Anglia, Norwich NR4 7TJ, England, U.K. ABSTRACT In spite of its location beneath high alpine terrain and active glaciers, Castleguard Cave contains many actively growing calcite'speleothems. Four hypotheses as to their growth mechanism were tested against field data on water chemistry, temperatures, CO 2 content of cave air, and evaporation rates. The hypotheses were (1) that a biogenic source of high PC02 is unlikely, so calcite deposition by CO 2 degassing would require a nonbiogenic source; (2) warming of water after entering the cave, or in passage through the rocks above it might cause calcite supersaturation; (3) calcite might be deposited because of evaporation of seep age; and (4) waters dissolving several Ca-bearing minerals might precipitate calcite as the least soluble by the common-ion effect. -
FINAL -SIRS-Program-Book-2018-Online.Pdf
6th Schizophrenia International Research Society Conference Integrated Prevention and Treatment: Shifting the Way We Think FLORENCE, ITALY 4 – 8 APRIL 2018 6th Schizophrenia International Research Society Conference Integrated Prevention and Treatment: Shifting the Way We Think Opening Letter Dear Attendees, It is our great pleasure to welcome you to the 6th Biennial Schizophrenia International Research Society (SIRS) Conference. SIRS is a non-profit organization dedicated to promoting research and communication about schizophrenia among research scientists, clinicians, drug developers, and policy makers internationally. We sincerely appreciate your interest in the Society and in our conference. The fifth congress in 2016 was a major success for the field attracting more than 1800 attendees from 52 countries. We anticipate an even higher attendance at this congress with most of the best investigators in the world in attendance. SIRS was founded in 2005 with the goal of bringing together scientists from around the world to exchange the latest advances in biological and psychosocial research in schizophrenia. The Society is dedicated to facilitating international collaboration to discover the causes of, and better treatments for, schizophrenia and related disorders. Part of the mission of the Society is to promote educational programs in order to effectively disseminate new research findings and to expedite the publication of new research on schizophrenia. The focus of the 6th Biennial Conference is ‘Integrated Prevention and Treatment: Shifting the Way We Think’. Under the outstanding leadership of Program Committee Chairs, Paola Dazzan, Bita Moghaddam, and Eóin Killackey, we have an exciting scientific program planned for this year. The Program Committee selected thirty-five outstanding symposia sessions out of 103 submissions.