Cell Biologist and UC Berkeley Nobel Laureate

Total Page:16

File Type:pdf, Size:1020Kb

Cell Biologist and UC Berkeley Nobel Laureate Oral History Center University of California The Bancroft Library Berkeley, California Randy Wayne Schekman: Cell Biologist and UC Berkeley Nobel Laureate Interviews conducted by Sally Smith Hughes in 2014 Copyright © 2015 by The Regents of the University of California ii Since 1954 the Oral History Center of the Bancroft Library, formerly the Regional Oral History Office, has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West, and the nation. Oral History is a method of collecting historical information through tape-recorded interviews between a narrator with firsthand knowledge of historically significant events and a well-informed interviewer, with the goal of preserving substantive additions to the historical record. The tape recording is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The corrected manuscript is bound with photographs and illustrative materials and placed in The Bancroft Library at the University of California, Berkeley, and in other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. ********************************* All uses of this manuscript are covered by a legal agreement between The Regents of the University of California and Randy Wayne Schekman dated April 5, 2013. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley. Excerpts up to 1000 words from this interview may be quoted for publication without seeking permission as long as the use is non-commercial and properly cited. Requests for permission to quote for publication should be addressed to The Bancroft Library, Head of Public Services, Mail Code 6000, University of California, Berkeley, 94720-6000, and should follow instructions available online at http://bancroft.berkeley.edu/ROHO/collections/cite.html It is recommended that this oral history be cited as follows: Randy Wayne Schekman, “Randy Wayne Schekman: Cell Biologist and UC Berkeley Nobel Laureate” conducted by Sally Smith Hughes in 2014, Oral History Center of the Bancroft Library, The Bancroft Library, University of California, Berkeley, 2015. iii Randy Wayne Schekman, 2011 Photo courtesy Hadar Goren, Hadar Goren Photography iv Randy Schekman has devoted his research career at UC Berkeley to working out the biochemistry, genetics, and molecular biology of the intricate system that transports proteins through the living cell. For this body of work, he was awarded the Nobel Prize in Physiology or Medicine in 2013. He is a vocal advocate of the public university and the editor-in-chief of eLife, an open-access, electronic journal in bioscience. v Table of Contents—Randy Wayne Schekman Interview History by Sally Smith Hughes x Randy Wayne Schekman Curriculum Vitae xiii Interview 1: February 10, 2014 Audio File 1 1 Parents Alfred and Esther Schekman, both from Minnesota — maternal grandparents from Bessarabia, paternal grandparents from Russia — father’s post WWII engineering training at University of Minnesota on the GI Bill — Randy’s birth in 1948, nine years in Minneapolis — younger sister, two brothers — sister’s death from leukemia as a college sophomore — father’s 1959 Southern California job offer — his work in early computer science — early fascination with electron microscope images — parents were labor democrats but largely a- political — more on maternal grandparents’ 1927 immigration to Minnesota, observant but not orthodox Judaism — childhood in a Jewish enclave of Minneapolis — move to California and becoming an atheist as a teenager: “I think my interest in science overwhelmed any belief in religion.” — earliest interest in science: seventh grade — determination to save money for a professional microscope — culturing pond scum — the importance of science fairs — conducting bigger and more complex experiments at home — support from family friend who worked as a medical technician — long-time support from high school biology teacher Jack Hoskins — winning at county science fairs —starting UCLA with plans to go to medical school — choosing UCLA — freshman year: living in a co-op, chemistry instructor Kenneth Trueblood, honors chemistry with Willard Libby, working in the lab — influence of James Watson’s Molecular Biology of the Gene, recommended by Michael Konrad — summer lab project with Dan Ray exploring bacteriophage DNA — sophomore year graduate genetics class and decision to study abroad in Edinburgh with William Hayes — genetics work in 1969: limitations, new discoveries, scientists working in the field — Watson’s controversial The Double Helix Audio File 2 18 More on the year in Edinburgh at the Medical Research Council Unit: exciting times for bacterial genetics and molecular biology — feeling the need for biochemistry, exposure to and admiration for Arthur Kornberg — completing the Edinburgh year — summer job at Harvard’s Biological Laboratories with David Denhardt — the contentious interpersonal climate at Harvard: “I knew there was another way that people could relate to each other” — return to UCLA for senior year, work with Dan Ray, focus on lab work and publication, neglecting classes and grades — leaving UCLA without completing foreign language requirement, starting Stanford — background on Kornberg’s DNA polymerase work and Nobel Prize controversy surrounding Cain’s subsequent work in 1969-1970 — vi beginning graduate school at Stanford — socializing, youthful arrogance, meeting Costa Georgopoulous and being brought down to earth: “It didn’t diminish my passion, but I had to behave myself.” — collaboration with Doug Brutlag on M13 and then phiX174 — bringing Denhardt’s work on dnaB and Yukinori’s research into the mix — resultant publication in PNAS — working with Kornberg: “I learned a great deal from Kornberg…but that didn’t mean I got along with him.” — Kornberg’s reaction to Schekman’s thesis defense Interview 2: February 26, 2014 Audio File 3 37 Developing an interest in biological membranes at Kornberg’s Stanford lab — discovering the electron microscopy work of S. J. Singer at UC San Diego — wife Nancy’s nursing schooling, decision to move to San Diego in 1974 — Palade’s work and Nobel Prize, attending the 1974 American Society for Cell Biology annual meeting — frustrations of switch to mammalian cells after years of E. Coli research — interest in yeast and the work of Lee [Leland] Hartwell — applying to UC Berkeley in the early months of UCSD postdoc — other notable applicants: Roger Kornberg, Keith Yamamoto, Janet E. Mertz — working in Singer’s lab — Günter Blobel’s signal hypothesis — planning work on yeast for UC Berkeley job, a rejected NIH grant proposal — job offers with UCLA and Berkeley, negotiating start-up grant money with Dan Koshland — meeting Lee Hartwell during a three week Cold Spring Harbor yeast genetics class — starting at Berkeley with small grants from the NSF and Cancer Research Coordinating Committee — later (1978) successful NIH grant — 1977 Peter Novick joins the lab to study yeast secretion — early frustrations: “So at this point I said all right, well I guess I’ve got to isolate mutants.” — investigating temperature-sensitive colonies and producing the first mutant sec1 — visit from George Palade, suggestion to Novick to examine by thin-section microscopy — eureka moment and publication in April 1979 Proceedings — skeptical Dan Koshland became an advocate — publishing in PNAS and Cell Audio File 4 57 Seymour Benzer’s cis-trans test, gene-mapping in yeast — Novick’s 1979 Cell paper on sec1 — continued research on temperature-sensitive mutants — using Susan A. Henry’s findings on using Ludox floor polish and a centrifuge to separate cells by density — Novick’s experiments to map genes — possible tactical error in focusing lab tech Charles Field on genetic mapping of existing mutants rather than on isolating more — Novick’s continued work applying a genetic epistasis test to the mutants and findings published in 1981 in Cell — kudos from the yeast community, some skepticism from mammalian field — early method for cloning yeast genes in 1978 — 1970s recombinant DNA scare and research moratorium — Schekman’s reluctance to spend time on DNA sequencing, mid 1980s trying to convince researchers to focus on biochemistry — background with Jim Rothman — competition, similar objectives and divergent vii approaches — “My approach is to develop a technique that will lead to discovery of the truth.” — Rothman’s work on clathrin Interview 3: March 7, 2014 Audio File 5 73 Early to mid-1980s work on translocation engine, exceptional grad students and postdocs: Ray Deshaies, David Baker, Linda Hicke, Chris Kaiser, Greg Paine — Deshaies’ translocation study, discoveries about hsp70s — discovery of SEC61 — David Baker’s breakthroughs — “It was just a wonderful time. I just got these great people and my job was to stay out of their way.” — morale in the lab, competition and cooperation — Chris Kaiser’s SNARE hypothesis — stipulations of the Nobel: recent work, discovery vs a body of work — graduate student Michael Rexach — Linda Hicke’s discovery — Akihiko Nakano, Nancy Pryor, Nina Salama — collaboration
Recommended publications
  • RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA
    GENES AND PROTEINS THAT CONTROL THE SECRETORY PATHWAY Nobel Lecture, 7 December 2013 by RANDY SCHEKMAN Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, USA. Introduction George Palade shared the 1974 Nobel Prize with Albert Claude and Christian de Duve for their pioneering work in the characterization of organelles interrelated by the process of secretion in mammalian cells and tissues. These three scholars established the modern field of cell biology and the tools of cell fractionation and thin section transmission electron microscopy. It was Palade’s genius in particular that revealed the organization of the secretory pathway. He discovered the ribosome and showed that it was poised on the surface of the endoplasmic reticulum (ER) where it engaged in the vectorial translocation of newly synthesized secretory polypeptides (1). And in a most elegant and technically challenging investigation, his group employed radioactive amino acids in a pulse-chase regimen to show by autoradiograpic exposure of thin sections on a photographic emulsion that secretory proteins progress in sequence from the ER through the Golgi apparatus into secretory granules, which then discharge their cargo by membrane fusion at the cell surface (1). He documented the role of vesicles as carriers of cargo between compartments and he formulated the hypothesis that membranes template their own production rather than form by a process of de novo biogenesis (1). As a university student I was ignorant of the important developments in cell biology; however, I learned of Palade’s work during my first year of graduate school in the Stanford biochemistry department.
    [Show full text]
  • Research Counts, Not the Journal Miguel Abambres, Tiago Ribeiro, Ana Sousa, Eva Lantsoght
    Research Counts, Not the Journal Miguel Abambres, Tiago Ribeiro, Ana Sousa, Eva Lantsoght To cite this version: Miguel Abambres, Tiago Ribeiro, Ana Sousa, Eva Lantsoght. Research Counts, Not the Journal. 2018. hal-02074859v3 HAL Id: hal-02074859 https://hal.archives-ouvertes.fr/hal-02074859v3 Preprint submitted on 15 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Abambres M, et al. (2018). Research Counts, Not the Journal, hal-02074859 © 2018 by Abambres et al. (CC BY 4.0) Research Counts, Not the Journal Miguel Abambres 1, Tiago Ribeiro 2, Ana Sousa 2 and Eva Lantsoght 3, 4 1 R&D, Abambres’ Lab, 1600-275 Lisbon, Portugal; [email protected] 2 Independent Researcher, Lisbon, Portugal 3 Researcher, Department of Engineering Structures, Delft University of Technology, The Netherlands; [email protected] 4 Professor, Politécnico, Universidad San Francsico de Quito, Quito, Ecuador Abstract: ‘If there is one thing every bibliometrician agrees, is that you should never use the journal impact factor (JIF) to evaluate research performance for an article or an individual – that is a mortal sin’.
    [Show full text]
  • Radiation Friction: Shedding Light on Dark Energy
    The African Review of Physics (2015) 10 :0044 361 Radiation Friction: Shedding Light on Dark Energy Randy Wayne * Laboratory of Natural Philosophy, Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA In 1909, while working on the quantum nature of light, Einstein developed the notion of “radiation friction.” Radiation friction becomes significant when the temperature of the radiation and the velocities of the galaxies moving through it are great. Here I suggest that the decrease in the velocity-dependent radiation friction occurring as a result of the expansion of the universe may be the cause of the observed acceleration of the expansion of the universe. Interestingly, the decrease in the density of light energy and the apparent domination of dark energy, become one and the same. 1. Introduction 2. Results and Discussion Over the past two decades, observations of the I have recently reinterpreted the three crucial tests relationship between the luminosity (m) of type Ia of the General Theory of Relativity [7]: the supernovae and the redshift ( ) of their host precession of the perihelion of Mercury [8], the galaxies have provided strong evidence that the deflection of starlight [9], and the gravitational expansion of the universe is accelerating [1, 2]. The redshift [9] in terms of Euclidean space and cause of the acceleration however remains a Newtonian time. I have also reinterpreted the mystery [3]. Naming one of the possible causes of relativity of simultaneity [10], the optics of moving acceleration “dark energy” may be a first step in bodies [11,12], the inertia of energy [13] and the describing the acceleration [4], but is a panchreston reason charged particles cannot exceed the speed of that gives no deeper understanding to the problem light [14] in terms of the second order relativistic since there is no independent evidence of the Doppler effect occurring in Euclidean space and properties or even the existence of dark energy [5].
    [Show full text]
  • Biochemistrystanford00kornrich.Pdf
    University of California Berkeley Regional Oral History Office University of California The Bancroft Library Berkeley, California Program in the History of the Biosciences and Biotechnology Arthur Kornberg, M.D. BIOCHEMISTRY AT STANFORD, BIOTECHNOLOGY AT DNAX With an Introduction by Joshua Lederberg Interviews Conducted by Sally Smith Hughes, Ph.D. in 1997 Copyright 1998 by The Regents of the University of California Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West, and the Nation. Oral history is a method of collecting historical information through tape-recorded interviews between a narrator with firsthand knowledge of historically significant events and a well- informed interviewer, with the goal of preserving substantive additions to the historical record. The tape recording is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The corrected manuscript is indexed, bound with photographs and illustrative materials, and placed in The Bancroft Library at the University of California, Berkeley, and in other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. ************************************ All uses of this manuscript are covered by a legal agreement between The Regents of the University of California and Arthur Kornberg, M.D., dated June 18, 1997. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley.
    [Show full text]
  • Die Woche Spezial
    In cooperation with DIE WOCHE SPEZIAL >> Autographs>vs.>#NobelSelfie Special >> Big>Data>–>not>a>big>deal,> Edition just>another>tool >> Why>Don’t>Grasshoppers> Catch>Colds? SCIENCE SUMMIT The>64th>Lindau>Nobel>Laureate>Meeting> devoted>to>Physiology>and>Medicine More than 600 young scientists came to Lindau to meet 37 Nobel laureates CAREER WONGSANIT > Women>to>Women: SUPHAKIT > / > Science>and>Family FOTOLIA INFLAMMATION The>Stress>of>Ageing > FLASHPICS > / > MEETINGS > FOTOLIA LAUREATE > CANCER RESEARCH NOBEL > LINDAU > / > J.>Michael>Bishop>and GÄRTNER > FLEMMING > JUAN > / the>Discovery>of>the>first> > CHRISTIAN FOTOLIA Human>Oncogene EDITORIAL IMPRESSUM Chefredakteur: Prof. Dr. Carsten Könneker (v.i.S.d.P.) Dear readers, Redaktionsleiter: Dr. Daniel Lingenhöhl Redaktion: Antje Findeklee, Jan Dönges, Dr. Jan Osterkamp where>else>can>aspiring>young>scientists> Ständige Mitarbeiter: Lars Fischer Art Director Digital: Marc Grove meet>the>best>researchers>of>the>world> Layout: Oliver Gabriel Schlussredaktion: Christina Meyberg (Ltg.), casually,>and>discuss>their>research,>or>their> Sigrid Spies, Katharina Werle Bildredaktion: Alice Krüßmann (Ltg.), Anke Lingg, Gabriela Rabe work>–>or>pressing>global>problems?>Or> Verlag: Spektrum der Wissenschaft Verlagsgesellschaft mbH, Slevogtstraße 3–5, 69126 Heidelberg, Tel. 06221 9126-600, simply>discuss>soccer?>Probably>the>best> Fax 06221 9126-751; Amtsgericht Mannheim, HRB 338114, UStd-Id-Nr. DE147514638 occasion>is>the>annual>Lindau>Nobel>Laure- Geschäftsleitung: Markus Bossle, Thomas Bleck Marketing und Vertrieb: Annette Baumbusch (Ltg.) Leser- und Bestellservice: Helga Emmerich, Sabine Häusser, ate>Meeting>in>the>lovely>Bavarian>town>of> Ute Park, Tel. 06221 9126-743, E-Mail: [email protected] Lindau>on>Lake>Constance. Die Spektrum der Wissenschaft Verlagsgesellschaft mbH ist Kooperati- onspartner des Nationalen Instituts für Wissenschaftskommunikation Daniel>Lingenhöhl> GmbH (NaWik).
    [Show full text]
  • Lecture Program
    EARL W. SUTHERLAND LECTURE EARL W. SUTHERLAND LECTURE The Earl W. Sutherland Lecture Series was established by the SPONSORED BY: Department of Molecular Physiology and Biophysics in 1997 DEPARTMENT OF MOLECULAR PHYSIOLOGY AND BIOPHYSICS to honor Dr. Sutherland, a former member of this department and winner of the 1971 Nobel Prize in Physiology or Medicine. This series highlights important advances in cell signaling. ROBERT J. LEFKOWITZ, MD NOBEL PRIZE IN CHEMISTRY, 2012 SPEAKERS IN THIS SERIES HAVE INCLUDED: SEVEN TRANSMEMBRANE RECEPTORS Edmond H. Fischer (1997) Alfred G. Gilman (1999) Ferid Murad (2001) Louis J. Ignarro (2003) MARCH 31, 2016 Paul Greengard (2007) 4:00 P.M. 208 LIGHT HALL Eric Kandel (2009) Roger Tsien (2011) Michael S. Brown (2013) 867-2923-Institution-Discovery Lecture Series-Lefkowitz-BK-CH.indd 1 3/11/16 9:39 AM EARL W. SUTHERLAND, 1915-1974 ROBERT J. LEFKOWITZ, MD JAMES B. DUKE PROFESSOR, Earl W. Sutherland grew up in Burlingame, Kansas, a small farming community DUKE UNIVERSITY MEDICAL CENTER that nourished his love for the outdoors and fishing, which he retained throughout INVESTIGATOR, HOWARD HUGHES MEDICAL INSTITUTE his life. He graduated from Washburn College in 1937 and then received his MEMBER, NATIONAL ACADEMY OF SCIENCES M.D. from Washington University School of Medicine in 1942. After serving as a MEMBER, INSTITUTE OF MEDICINE medical officer during World War II, he returned to Washington University to train NOBEL PRIZE IN CHEMISTRY, 2012 with Carl and Gerty Cori. During those years he was influenced by his interactions with such eminent scientists as Louis Leloir, Herman Kalckar, Severo Ochoa, Arthur Kornberg, Christian deDuve, Sidney Colowick, Edwin Krebs, Theodore Robert J.
    [Show full text]
  • Philosophy in Biology and Medicine: Biological Individuality and Fetal Parthood, Part I
    Oslo, Norway July 7–12, 2019 ISHP SS B BOOK OF ABSTRACTS 2 Index 11 Keynote lectures 17 Diverse format sessions 47 Traditional sessions 367 Individual papers 637 Mixed media and poster presentations A Aaby, Bendik Hellem, 369 Barbosa, Thiago Pinto, 82 Abbott, Jessica, 298 Barker, Matthew, 149 Abir-Am, Pnina Geraldine, 370 Barragán, Carlos Andrés, 391 D’Abramo, Flavio, 371 Battran, Martin, 158 Abrams, Marshall, 372 Bausman, William, 129, 135 Acerbi, Alberto, 156 Baxter, Janella, 56, 57 Ackert, Lloyd, 185 Bayir, Saliha, 536 Agiriano, Arantza Etxeberria, 374 Beasley, Charles, 392 Ahn, Soohyun, 148 Bechtel, William, 259 El Aichouchi, Adil, 375 Bedau, Mark, 393 Airoldi, Giorgio, 376 Ben-Shachar, Erela Teharlev, 395 Allchin, Douglas, 377 Beneduce, Chiara, 396 Allen, Gar, 328 Berry, Dominic, 56, 58 Almeida, Maria Strecht, 377 Bertoldi, Nicola, 397 Amann, Bernd, 40 Betzler, Riana, 398 Andersen, Holly, 19, 20 Bich, Leonardo, 41 Anderson, Gemma, 28 LeBihan, Soazig, 358 Angleraux, Caroline, 378 Birch, Jonathan, 22 Ankeny, Rachel A., 225 Bix, Amy Sue, 399 Anker, Peder, 230 Blais, Cédric, 401 Ardura, Adrian Cerda, 380 Blancke, Stefaan, 609 Armstrong-Ingram, Tiernan, 381 Blell, Mwenza, 488 Arnet, Evan, 383 Blute, Marion, 59, 62 Artiga, Marc, 383 Bognon-Küss, Cécilia, 23 Atanasova, Nina, 20, 21 Bokulich, Alisa, 616 Au, Yin Chung, 384 Bollhagen, Andrew, 402 DesAutels, Lane, 386 Bondarenko, Olesya, 403 Aylward, Alex, 109 Bonilla, Jorge Armando Romo, 404 B Baccelliere, Gabriel Vallejos, 387 Bonnin, Thomas, 405 Baedke, Jan, 49, 50 Boon, Mieke, 235 Baetu,
    [Show full text]
  • Nobel Week Stockholm 2018 – Detailed Information for the Media
    Nobel Week Stockholm • 2018 Detailed information for the media December 5, 2018 Content The 2018 Nobel Laureates 3 The 2018 Nobel Week 6 Press Conferences 6 Nobel Lectures 8 Nobel Prize Concert 9 Nobel Day at the Nobel Museum 9 Nobel Week Dialogue – Water Matters 10 The Nobel Prize Award Ceremony in Stockholm 12 Presentation Speeches 12 Musical Interludes 13 This Year’s Floral Decorations, Concert Hall 13 The Nobel Banquet in Stockholm 14 Divertissement 16 This Year’s Floral Decorations, City Hall 20 Speeches of Thanks 20 End of the Evening 20 Nobel Diplomas and Medals 21 Previous Nobel Laureates 21 The Nobel Week Concludes 22 Follow the Nobel Prize 24 The Nobel Prize Digital Channels 24 Nobelprize org 24 Broadcasts on SVT 25 International Distribution of the Programmes 25 The Nobel Museum and the Nobel Center 25 Historical Background 27 Preliminary Timetable for the 2018 Nobel Prize Award Ceremony 30 Seating Plan on the Stage, 2018 Nobel Prize Award Ceremony 32 Preliminary Time Schedule for the 2018 Nobel Banquet 34 Seating Plan for the 2018 Nobel Banquet, City Hall 35 Contact Details 36 the nobel prize 2 press MeMo 2018 The 2018 Nobel Laureates The 2018 Laureates are 12 in number, including Denis Mukwege and Nadia Murad, who have been awarded the Nobel Peace Prize Since 1901, the Nobel Prize has been awarded 590 times to 935 Laureates Because some have been awarded the prize twice, a total of 904 individuals and 24 organisations have received a Nobel Prize or the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel
    [Show full text]
  • Moore Noller
    2002 Ada Doisy Lectures Ada Doisy Lecturers 2003 in BIOCHEMISTRY Sponsored by the Department of Biochemistry • University of Illinois at Urbana-Champaign Dr. Peter B. 1970-71 Charles Huggins* and Elwood V. Jensen A76 1972-73 Paul Berg* and Walter Gilbert* Moore 1973-74 Saul Roseman and Bruce Ames Department of Molecular carbonyl Biophysics & Biochemistry Phe 1974-75 Arthur Kornberg* and Osamu Hayaishi Yale University C75 1976-77 Luis F. Leloir* New Haven, Connecticutt 1977-78 Albert L. Lehninger and Efraim Racker 2' OH attacking 1978-79 Donald D. Brown and Herbert Boyer amino N3 Tyr 1979-80 Charles Yanofsky A76 4:00 p.m. A2486 1980-81 Leroy E. Hood Thursday, May 1, 2003 (2491) 1983-84 Joseph L. Goldstein* and Michael S. Brown* Medical Sciences Auditorium 1984-85 Joan Steitz and Phillip Sharp* Structure and Function in 1985-86 Stephen J. Benkovic and Jeremy R. Knowles the Large Ribosomal Subunit 1986-87 Tom Maniatis and Mark Ptashne 1988-89 J. Michael Bishop* and Harold E. Varmus* 1989-90 Kurt Wüthrich Dr. Harry F. 1990-91 Edmond H. Fischer* and Edwin G. Krebs* 1993-94 Bert W. O’Malley Noller 1994-95 Earl W. Davie and John W. Suttie Director, Center for Molecular Biology of RNA 1995-96 Richard J. Roberts* University of California, Santa Cruz 1996-97 Ronald M. Evans Santa Cruz, California 1998-99 Elizabeth H. Blackburn 1999-2000 Carl R. Woese and Norman R. Pace 2000-01 Willem P. C. Stemmer and Ronald W. Davis 2001-02 Janos K. Lanyi and Sir John E. Walker* 12:00 noon 2002-03 Peter B.
    [Show full text]
  • Presidential Files; Folder: 11/22/77; Container 52
    11/22/77 Folder Citation: Collection: Office of Staff Secretary; Series: Presidential Files; Folder: 11/22/77; Container 52 To See Complete Finding Aid: http://www.jimmycarterlibrary.gov/library/findingaids/Staff_Secretary.pdf TIIE PRESIDENT'S SCHEDULE Tuesday - November 22,1977 8:15 Dr. Zbigniew Brz.ezinski The Oval Office . 8:45 .Hr . Frank Moore The Oval Office. 10:00 Medal of Science Awards. (Dr. Frank Press). ·Room 450, EOB. I \ 10:30 Mr. Jody Powell The Oval Office. 11:00 Presentation of Diplomatic Credentials. (Dr. Zbigniew Brzezinski} - The Oval Office. 11:45 Vice President Walter F. Mondale, Admiral Stansfield Turner, and Dr. Zbigniew Brzezinski. The Oval Office. 12:30 Lunch \..,-::_ th Hrs. Rosalynn Carter ·- The Ovctl Office. 2:00 Budget Review Meeting. (Mr. James Mcintyre). ( 2 hrs.) The Cabinet Room. THE WHITE HOUSE WASHINGTON \"~ Date: November 22, 1977 l\ vo\ \'~ MEMORANDUM t)lDifll FOR ACTION: '" FOR INFORMATION: Stu Eizenstat ~t""'"' Frank Moore (Les Francis)~ The Vice President Jack Watson Bob Lipshutz Jim Mcintyre FROM: Rick Hutcheson, Staff Secretary SUBJECT: Adams memo dated 11/22/77 re Response to the Boston Plan and Location of Rail Maintenance Facilit.y in the Northeast Corridor YOUR RESPONSE MUST BE DELIVERED TO THE STAFF SECRETARY BY: TIME: 11:00 AM DAY: Monday DATE: November 28, 1977 ACTION REQUESTED: _x_ Your comments Other: STAFF RESPONSE: __ I concur. __ No comment: Please note other comments below: PLEASE ATTACH THIS COPY TO MATERIAL SUBMITTED. If you have any questions or if you anticipate a delay in submitting the required material, please telephone the Staff Secretary immediately.
    [Show full text]
  • Arthur Kornberg Discovered (The First) DNA Polymerase Four
    Arthur Kornberg discovered (the first) DNA polymerase Using an “in vitro” system for DNA polymerase activity: 1. Grow E. coli 2. Break open cells 3. Prepare soluble extract 4. Fractionate extract to resolve different proteins from each other; repeat; repeat 5. Search for DNA polymerase activity using an biochemical assay: incorporate radioactive building blocks into DNA chains Four requirements of DNA-templated (DNA-dependent) DNA polymerases • single-stranded template • deoxyribonucleotides with 5’ triphosphate (dNTPs) • magnesium ions • annealed primer with 3’ OH Synthesis ONLY occurs in the 5’-3’ direction Fig 4-1 E. coli DNA polymerase I 5’-3’ polymerase activity Primer has a 3’-OH Incoming dNTP has a 5’ triphosphate Pyrophosphate (PP) is lost when dNMP adds to the chain E. coli DNA polymerase I: 3 separable enzyme activities in 3 protein domains 5’-3’ polymerase + 3’-5’ exonuclease = Klenow fragment N C 5’-3’ exonuclease Fig 4-3 E. coli DNA polymerase I 3’-5’ exonuclease Opposite polarity compared to polymerase: polymerase activity must stop to allow 3’-5’ exonuclease activity No dNTP can be re-made in reversed 3’-5’ direction: dNMP released by hydrolysis of phosphodiester backboneFig 4-4 Proof-reading (editing) of misincorporated 3’ dNMP by the 3’-5’ exonuclease Fidelity is accuracy of template-cognate dNTP selection. It depends on the polymerase active site structure and the balance of competing polymerase and exonuclease activities. A mismatch disfavors extension and favors the exonuclease.Fig 4-5 Superimposed structure of the Klenow fragment of DNA pol I with two different DNAs “Fingers” “Thumb” “Palm” red/orange helix: 3’ in red is elongating blue/cyan helix: 3’ in blue is getting edited Fig 4-6 E.
    [Show full text]
  • January/February 2011
    ASPB News THE NEWSLETTER OF THE AMERICAN SOCIETY OF PLANT BIOLOGISTS Volume 38, Number 1 January/February 2011 ASPB Members Among Those Honored by Inside This Issue President Obama President’s Letter Save the Date! Plant Biology 2011 Call for Abstracts: Plant Biology 2011 Susan Singer to Edit New ASPB–Wiley-Blackwell Book Series Jim Carrington Next President of Danforth Plant Science Center President Barack Obama poses for a group photo with the recipients of the Presidential Early The Plant Cell’s Teaching Career Award for Scientists and Engineers in the South Court Auditorium of the White House on Tools Garners Gold December 13, 2010. Among the awardees are ASPB members Dominique Bergmann and Award! Magdalena Bezanilla. (See page 9 for full coverage.) OFFICIAL WHITE HoUSE PHOTO BY CHUCK KENNEDY. Honoring Those Who Serve the Mission of ASPB As outlined in our established mission, the Ameri- scientist you’re thinking of served as a mentor who can Society of Plant Biologists was founded to pro- instilled in you a lifelong ambition and dedication mote the growth and development of plant biology, to our science. Or perhaps you envision a rising star to encourage and publish research in plant biology, who already demonstrates excellence early in his or and to promote the interests and growth of the plant her career. ASPB strives to recognize these individu- science discipline. Our members work in aca- als in many ways. One way is a call to service to the demia, government laboratories, and industrial and Society by nomination to ASPB’s Executive Com- commercial environments.
    [Show full text]