National Invasive Ant Surveillance Programme Annual Report: 2014 Contract No.: 15740
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appreciably Modified
VI1.-KEYS TO THE GESER.1 AND SUBGEKERA OF ASTS BY WM. 31. WHEELER KEYTO THE SUBFAMILIES~ 8, 0 1. Cloacal orifice round, tefminal, surrounded by a fringe of hairs; sting transformed into a sustentacular apparatus for the orifice of the poison vesicle, which has a peculiar structure called by Fore1 '' pulviniferous vesicle" (vessie 2 coussinet) . Abdominal pedicel consisting of a single segment; no constriction between the second and third segments. Male genitalia not retractile. Nymphs rarely naked, most frequently enclosed in a cocoon. FORMICINA3. Cloacal orifice in the shape of a slit. ........................ .2. 2. Sting rudimentary (except Aneuretus) ; abdominal pedicel con- sisting of a single segment; no constriction between the second and third segments of the abdomen; the poison glands are often vestigial and there are anal glands which secrete an aromatic product of characteristic odor (Tapinoma-odor). Nymphs without a cocoon. ..........DOLICHODERINAE. Sting developed, though sometimes very small, but capable never- theless of being exserted from the abdomen. The first two segments of the abdomen usually modified, either forming together a two-jointed pedicel, or the first alone (petiole) forming the pedicel, the second (postpetiole) being merely constricted posteriorly and articulating with a spheroidal surface of the third segment, which is usually transversely striated (stridulatory organ) ; rarely the second segment is not appreciably modified. .................................... .3. 3. Pedicel of two segments, the petiole and the postpetiole; rarely (in Melissotarsus, e. 9.) the postpetiole is attached to the follow- ing segment over its whole extent. Frontal carin= usually separated from each other (except in the Melissotarsini and certain Attini). In the male the copulatory organs are almost always exserted (being entirely retractile in certain genera of the Solenopsidini only) ; cerci nearly always present (except Anergates) . -
New Zealand's Genetic Diversity
1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses). -
Variation in the Persistence and Effects of Argentine Ants Throughout Their Invaded Range in New Zealand
Variation in the persistence and effects of Argentine ants throughout their invaded range in New Zealand A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Ecology and Biodiversity at Victoria University of Wellington January 2012 by Meghan Dawn Cooling School of Biological Sciences Victoria University of Wellington, New Zealand Abstract Invasive ants are a serious ecological problem around the world. The Argentine ant has had devastating effects on resident ant communities and may negatively impact other invertebrates in its introduced range. First detected in Auckland in 1990, this invader has since spread widely around the country. The effect of Argentine ants on invertebrates in New Zealand was investigated by comparing ground-dwelling arthropod species richness and abundance between and among paired uninvaded and invaded sites in seven cities across this invader’s New Zealand range. In order to study density-dependent effects, invaded sites were chosen so as to differ in Argentine ant population density. The effects of rainfall and mean maximum temperature on Argentine ant abundance and the species richness and abundance were also examined. Argentine ant population persistence in New Zealand was examined by re-surveying sites of past infestation across this species range. The influence of climate on population persistence was investigated, and how this effect may vary after climate change. Additionally, the potential of community recovery after invasion was also examined. Epigaeic (above ground foraging) ant species richness and abundance was negatively associated with Argentine ant abundance; however, no discernable impact was found on hypogaeic (below ground foraging) ant species. -
Ant Type Specimens (Hymenoptera, Formicidae) Deposited in the Museu De Zoologia Da Universidade De São Paulo, Brazil
Volume 48(11):75-88, 2008 Catalogue of “poneromorph” ant type specimens (Hymenoptera, Formicidae) deposited in the Museu de Zoologia da Universidade de São Paulo, Brazil Cristiane P. Scott-Santos Flávia A. Esteves Carlos Roberto F. Brandão AbsTracT The present catalogue lists the type specimes of 112 nominal “poneromorph” ant species housed in the Formicidae collection of the Hymenoptera laboratory, Museu de Zoologia da Universidade de São Paulo (MZSP). The catalogue includes types of Amblyoponinae, Ectatomminae, Heteroponerinae, Ponerinae, and Proceratiinae, that is, all poneromorph (sensu Bolton, 2003) but for the monotypic Paraponerinae, of which the collection bears no type specimens. We present here information on type categories (holotype, paratype, syntype, lectotype, and paralectotype), label data, nomenclatural changes since the original description and type specimens conservation status. At last we present indexes for the taxa names presented. Keywords: Hymenoptera, ants, types, MZSP, Amblyoponinae, Ectatomminae, Heteroponerinae, Ponerinae, Proceratiinae. INTRODucTION The purpose of the present catalogue is to pro- vide updated information on poneromorph type The Formicidae collection housed in the Hy- specimes of the MZSP collection, following Article menoptera laboratory of the Museu de Zoologia da 72 F.4 of the International Code for Zoological No- Universidade de São Paulo (MZSP) is under con- menclature (1999). struction since the end of the 19th century and is to- The poneromorph group of ants, as defined by day one of the largest and more representative ant col- Bolton (2003), is distributed worldwide and consists lections in and for the Neotropical region, as regard of circa 1,700 described species in 49 genera of six to the number of specimens, including types, and subfamilies: Amblyoponinae, Ectatomminae, Hetero- localities (Brandão, 2000). -
Phylogeny and Classification of the Melastomataceae and Memecylaceae
Nord. J. Bot. - Section of tropical taxonomy Phylogeny and classification of the Melastomataceae and Memecy laceae Susanne S. Renner Renner, S. S. 1993. Phylogeny and classification of the Melastomataceae and Memecy- laceae. - Nord. J. Bot. 13: 519-540. Copenhagen. ISSN 0107-055X. A systematic analysis of the Melastomataceae, a pantropical family of about 4200- 4500 species in c. 166 genera, and their traditional allies, the Memecylaceae, with c. 430 species in six genera, suggests a phylogeny in which there are two major lineages in the Melastomataceae and a clearly distinct Memecylaceae. Melastomataceae have close affinities with Crypteroniaceae and Lythraceae, while Memecylaceae seem closer to Myrtaceae, all of which were considered as possible outgroups, but sister group relationships in this plexus could not be resolved. Based on an analysis of all morph- ological and anatomical characters useful for higher level grouping in the Melastoma- taceae and Memecylaceae a cladistic analysis of the evolutionary relationships of the tribes of the Melastomataceae was performed, employing part of the ingroup as outgroup. Using 7 of the 21 characters scored for all genera, the maximum parsimony program PAUP in an exhaustive search found four 8-step trees with a consistency index of 0.86. Because of the limited number of characters used and the uncertain monophyly of some of the tribes, however, all presented phylogenetic hypotheses are weak. A synapomorphy of the Memecylaceae is the presence of a dorsal terpenoid-producing connective gland, a synapomorphy of the Melastomataceae is the perfectly acrodro- mous leaf venation. Within the Melastomataceae, a basal monophyletic group consists of the Kibessioideae (Prernandra) characterized by fiber tracheids, radially and axially included phloem, and median-parietal placentation (placentas along the mid-veins of the locule walls). -
Sistemática Y Ecología De Las Hormigas Predadoras (Formicidae: Ponerinae) De La Argentina
UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en el área CIENCIAS BIOLÓGICAS PRISCILA ELENA HANISCH Directores de tesis: Dr. Andrew Suarez y Dr. Pablo L. Tubaro Consejero de estudios: Dr. Daniel Roccatagliata Lugar de trabajo: División de Ornitología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Buenos Aires, Marzo 2018 Fecha de defensa: 27 de Marzo de 2018 Sistemática y ecología de las hormigas predadoras (Formicidae: Ponerinae) de la Argentina Resumen Las hormigas son uno de los grupos de insectos más abundantes en los ecosistemas terrestres, siendo sus actividades, muy importantes para el ecosistema. En esta tesis se estudiaron de forma integral la sistemática y ecología de una subfamilia de hormigas, las ponerinas. Esta subfamilia predomina en regiones tropicales y neotropicales, estando presente en Argentina desde el norte hasta la provincia de Buenos Aires. Se utilizó un enfoque integrador, combinando análisis genéticos con morfológicos para estudiar su diversidad, en combinación con estudios ecológicos y comportamentales para estudiar la dominancia, estructura de la comunidad y posición trófica de las Ponerinas. Los resultados sugieren que la diversidad es más alta de lo que se creía, tanto por que se encontraron nuevos registros durante la colecta de nuevo material, como porque nuestros análisis sugieren la presencia de especies crípticas. Adicionalmente, demostramos que en el PN Iguazú, dos ponerinas: Dinoponera australis y Pachycondyla striata son componentes dominantes en la comunidad de hormigas. Análisis de isótopos estables revelaron que la mayoría de las Ponerinas ocupan niveles tróficos altos, con excepción de algunas especies arborícolas del género Neoponera que dependerían de néctar u otros recursos vegetales. -
Borowiec Et Al-2020 Ants – Phylogeny and Classification
A Ants: Phylogeny and 1758 when the Swedish botanist Carl von Linné Classification published the tenth edition of his catalog of all plant and animal species known at the time. Marek L. Borowiec1, Corrie S. Moreau2 and Among the approximately 4,200 animals that he Christian Rabeling3 included were 17 species of ants. The succeeding 1University of Idaho, Moscow, ID, USA two and a half centuries have seen tremendous 2Departments of Entomology and Ecology & progress in the theory and practice of biological Evolutionary Biology, Cornell University, Ithaca, classification. Here we provide a summary of the NY, USA current state of phylogenetic and systematic 3Social Insect Research Group, Arizona State research on the ants. University, Tempe, AZ, USA Ants Within the Hymenoptera Tree of Ants are the most ubiquitous and ecologically Life dominant insects on the face of our Earth. This is believed to be due in large part to the cooperation Ants belong to the order Hymenoptera, which also allowed by their sociality. At the time of writing, includes wasps and bees. ▶ Eusociality, or true about 13,500 ant species are described and sociality, evolved multiple times within the named, classified into 334 genera that make up order, with ants as by far the most widespread, 17 subfamilies (Fig. 1). This diversity makes the abundant, and species-rich lineage of eusocial ants the world’s by far the most speciose group of animals. Within the Hymenoptera, ants are part eusocial insects, but ants are not only diverse in of the ▶ Aculeata, the clade in which the ovipos- terms of numbers of species. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Hymenoptera: Formicidae) Along an Elevational Gradient at Eungella in the Clarke Range, Central Queensland Coast, Australia
RAINFOREST ANTS (HYMENOPTERA: FORMICIDAE) ALONG AN ELEVATIONAL GRADIENT AT EUNGELLA IN THE CLARKE RANGE, CENTRAL QUEENSLAND COAST, AUSTRALIA BURWELL, C. J.1,2 & NAKAMURA, A.1,3 Here we provide a faunistic overview of the rainforest ant fauna of the Eungella region, located in the southern part of the Clarke Range in the Central Queensland Coast, Australia, based on systematic surveys spanning an elevational gradient from 200 to 1200 m asl. Ants were collected from a total of 34 sites located within bands of elevation of approximately 200, 400, 600, 800, 1000 and 1200 m asl. Surveys were conducted in March 2013 (20 sites), November 2013 and March–April 2014 (24 sites each), and ants were sampled using five methods: pitfall traps, leaf litter extracts, Malaise traps, spray- ing tree trunks with pyrethroid insecticide, and timed bouts of hand collecting during the day. In total we recorded 142 ant species (described species and morphospecies) from our systematic sampling and observed an additional species, the green tree ant Oecophylla smaragdina, at the lowest eleva- tions but not on our survey sites. With the caveat of less sampling intensity at the lowest and highest elevations, species richness peaked at 600 m asl (89 species), declined monotonically with increasing and decreasing elevation, and was lowest at 1200 m asl (33 spp.). Ant species composition progres- sively changed with increasing elevation, but there appeared to be two gradients of change, one from 200–600 m asl and another from 800 to 1200 m asl. Differences between the lowland and upland faunas may be driven in part by a greater representation of tropical and arboreal-nesting sp ecies in the lowlands and a greater representation of subtropical species in the highlands. -
Hymenoptera: Formicidae
16 The Weta 30: 16-18 (2005) Changes to the classification of ants (Hymenoptera: Formicidae) Darren F. Ward School of Biological Sciences, Tamaki Campus, Auckland University, Private Bag 92019, Auckland ([email protected]) Introduction This short note aims to update the reader on changes to the subfamily classification of ants (Hymenoptera: Formicidae). Although the New Zealand ant fauna is very small, these changes affect the classification and phylogeny of both endemic and exotic ant species in New Zealand. Bolton (2003) has recently proposed a new subfamily classification for ants. Two new subfamilies have been created, a revised status for one, and new status for four. Worldwide, there are now 21 extant subfamilies of ants. The endemic fauna of New Zealand is now classified into six subfamilies (Table 1), as a result of three subfamilies, Amblyoponinae, Heteroponerinae and Proceratiinae, being split from the traditional subfamily Ponerinae. Bolton’s (2003) classification also affects several exotic species in New Zealand. Three species have been transferred from Ponerinae: Amblyopone australis to Amblyoponinae, and Rhytidoponera chalybaea and R. metallica to Ectatomminae. Currently there are 28 exotic species in New Zealand (Table 1). Eighteen species have most likely come from Australia, where they are native. Eight are global tramp species, commonly transported by human activities, and two species are of African origin. Nineteen of the currently established exotic species are recorded for the first time in New Zealand as occurring outside their native range. This may result in difficulty in obtaining species-specific biological knowledge and assessing their likelihood of becoming successful invaders. In addition to the work by Bolton (2003), Phil Ward and colleagues at UC Davis have started to resolve the phylogenetic relationships among subfamilies and genera of all ants using molecular data (Ward et al, 2005). -
Elton's Insights Into the Ecology of Ant Invasions
P a r t 5 Poster - Child Invaders, Then and Now Fifty Y ears of Invasion Ecology: The Legacy of Charles Elton Edited by David M. Richardson © 2011 Blackwell Publishing Ltd. ISBN: 978-1-444-33585-9 237 Chapter 18 Elton ’ s Insights into the Ecology of Ant Invasions: Lessons Learned and Lessons Still to be Learned Nathan J. Sanders 1 and Andrew V. Suarez2 1 Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA 2 Departments of Entomology and Animal Biology, University of Illinois, Urbana, IL 61801, USA Fifty Y ears of Invasion Ecology: The Legacy of Charles Elton Edited by David M. Richardson © 2011 Blackwell Publishing Ltd. ISBN: 978-1-444-33585-9 239 240 Poster-child invaders, then and now 18.1 INTRODUCTION (Lowe et al. 2000 ). Additionally, two of these species – L. humile at second and S. invicta at fourth – are Charles Elton ’ s (1958) classic book, The Ecology of among the four most studied invasive species (Pysek et Invasions by Animals and Plants , provides numerous al. 2008 ). Of these fi ve notorious invasive ants, Elton case studies of biological invasions. Given the breadth mentioned only L. humile and P. megacephala in his of taxonomic coverage that appears in the book, it is book. However, this probably should not be held not surprising that Elton would mention several ant against him because at the time much less was known species and use them to illuminate several different about the other species. E.O. Wilson ’ s fi rst publication general points about invasions. -
Bauxite Mining Restoration with Natural Soils and Residue Sands: Comparison of the Recovery of Soil Ecosystem Function and Ground-Dwelling Invertebrate Diversity
School of Molecular and Life Sciences Bauxite Mining Restoration with Natural Soils and Residue Sands: Comparison of the Recovery of Soil Ecosystem Function and Ground-dwelling Invertebrate Diversity Dilanka Madusani Mihindukulasooriya Weerasinghe This thesis is presented for the Degree of Doctor of Philosophy of Curtin University May 2019 Author’s Declaration To the best of my knowledge and belief, this thesis contains no material previously published by any other person except where due acknowledgement has been made. This thesis contains no material that has been accepted for the award of any other degree or diploma in any university. Signature………………………………………………… Date………………………………………………………... iii Statement of authors’ contributions Experimental set up, data collection, data analysis and data interpretation for Chapter 2, 3,4 and 5 was done by D. Mihindukulasooriya. Experimental set up established by Lythe et al. (2017) used for experimental chapter 6. Data collection, data analysis and data interpretation for long term effect of woody debris addition was done by D. Mihindukulasooriya. iv Abstract Human destruction of the natural environment has been identified as a global problem that has triggered the loss of biodiversity. This degradation and loss has altered ecosystem processes and the resilience of ecosystems to environmental changes. Restoration of degraded habitats forms a significant component of conservation efforts. Open cut mining is one activity that can dramatically alter local communities, and successful vascular plant restoration does not necessarily result in restoration of other components of flora and fauna or result in a fully functioning ecosystem. Therefore, restoration studies should focus on improving ecological functions such as nutrient cycling and litter decomposition, seed dispersal and/ or pollination, and assess community composition beyond vegetation to attain fully functioning systems.