Interactions Between Cliques and Stable Sets in a Graph Aurelie Lagoutte

Total Page:16

File Type:pdf, Size:1020Kb

Interactions Between Cliques and Stable Sets in a Graph Aurelie Lagoutte Interactions between Cliques and Stable Sets in a Graph Aurelie Lagoutte To cite this version: Aurelie Lagoutte. Interactions between Cliques and Stable Sets in a Graph. Other [cs.OH]. Ecole normale supérieure de lyon - ENS LYON, 2015. English. NNT : 2015ENSL1012. tel-01208076 HAL Id: tel-01208076 https://tel.archives-ouvertes.fr/tel-01208076 Submitted on 1 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. -ÉCOLE NORMALE SUPÉRIEURE DE LYON - Laboratoire de l’Informatique du Parallélisme (LIP) - UMR 5668 THÈSE en vue d’obtenir le grade de Docteur de l’Université de Lyon, délivré par l’École Normale Supérieure de Lyon Discipline : Informatique au titre de l’École Doctorale Informatique et Mathématiques présentée et soutenue publiquement le 23 Septembre 2015 par Aurélie LAGOUTTE INTERACTIONS ENTRE LES CLIQUES ET LES STABLES DANS UN GRAPHE Directeur de thèse : Stéphan THOMASSÉ Devant la commission d’examen formée de : Samuel FIORINI Rapporteur Frédéric MAFFRAY Rapporteur Claire MATHIEU Examinatrice Mickaël MONTASSIER Examinateur Stéphan THOMASSÉ Directeur de thèse Contents Introduction (in French) 1 Introduction 11 1 Perfect graphs and Coloring 21 1.1 ContextandMotivations. ..... ...... ..... ...... .... 21 1.1.1 Perfectgraphs............................. 21 1.1.2 χ-boundedness ............................ 33 1.2 Excluding even holes except C4 ....................... 36 1.2.1 Forbidding5-holes . 38 1.2.2 Dealingwith5-holes . 43 2 The Erd˝os-Hajnal property 47 2.1 ContextandMotivations. ..... ...... ..... ...... .... 47 2.2 Strong Erd˝os-Hajnal property in (Pk, Pk)-freegraphs. 52 2.3 Usefultools .................................. 54 2.3.1 Unbalancing the Strong Erd˝os-Hajnal property . ..... 55 2.3.2 Easy neighborhood for the Erd˝os-Hajnal property . ..... 56 3 Clique-Stable Set Separation 59 3.1 DefinitionandContext ............................ 60 3.2 Randomgraphs ................................ 66 3.3 Forbiddingafixedsplitgraph. 69 3.4 Techniques in common with the Erd˝os-Hajnal property . ....... 75 3.4.1 (Pk, Pk)-freegraphs.......................... 76 3.4.2 The case of P5-freegraphs ...................... 77 3.4.3 Easyneighborhood..... ...... ..... ...... .... 78 3.4.4 Modules................................ 80 3.5 Perfectgraphswithnobalancedskew-partition . ...... 81 3.5.1 Definitions............................... 83 3.5.2 Decomposing trigraphs of .................... 87 F iv CONTENTS |v 3.5.3 Clique-StableSetseparation. 91 3.5.4 StrongErd˝os-Hajnalproperty. 97 4 Extended formulations 115 4.1 LinearProgramming ............................. 116 4.2 Polytopes.................................... 120 4.3 AlgorithmsforLP............................... 122 4.4 Totalunimodularity:whenIPmeetsLP . 123 4.5 STAB(G)inperfectgraphs . 125 4.6 ExtendedFormulation .. ...... ..... ...... ..... .... 130 4.7 TheSlackMatrixandtheFactorizationTheorem . 133 4.8 Linkwithcommunicationcomplexity . 137 4.9 ThebirthofCS-Separation. 139 5 Alon-Saks-Seymour conjecture 141 5.1 Fromoriginstodisproval . 142 5.2 Anorientedversion&equiv. with theCS-Separation . 144 5.3 Generalization to t-bicliquecovering . 148 6 Constraint Satisfaction Problems 151 6.1 Context..................................... 152 6.2 StubbornProblemandlinkwiththeCS-Separation . 154 Conclusion 163 vi| CONTENTS Remerciements Cette thèse n’aurait pas pu voir le jour sans un grand nombre de personnes qui m’en- tourent. C’est maintenant l’occasion de leur dédier ces quelques pages. Je tiens à remercier en tout premier lieu les membres de mon jury de m’avoir fait l’honneur d’évaluer cette thèse : merci à mes rapporteurs Frédéric MAFFRAY et Samuel FIORINI d’avoir relu avec autant d’attention mon manuscrit ; merci à Claire MATHIEU et Mickaël MONTASSIER d’avoir apporté leur expertise en ce jour de ma soutenance. Je ne sais que dire, Stéphan, pour te remercier d’avoir été mon direc- teur de thèse pendant ces 3 ans et d’avoir partagé ton immense savoir avec moi. Je resterai toujours impressionnée par ton incroyable intuition, qui te permet de savoir dans quelle direction aller, et par ta mémoire infaillible pour les références biblio- graphiques. Merci beaucoup pour ces discussions scientifiques qui m’ont permis de mener à bien cette thèse, même s’il a fallu quelques fois faire preuve de patience pour m’expliquer plusieurs fois la même chose. Un grand merci également de m’avoir soutenue et rassurée dans les moments de doute, et d’avoir toujours été disponible lorsque je venais toquer à ta porte. Merci enfin de m’avoir permis, par ton influence, de me rendre aux quatre coins du monde pour rencontrer les plus grands chercheurs de notre domaine. Pour avoir fait du labo un endroit où l’on se sent presque comme chez soi, je remercie tous mes collègues du LIP ; c’est à la fois effrayant et rassurant d’être en- tourée de si brillants chercheurs, et c’est d’autant plus stimulant qu’il y règne une excellente ambiance de travail. Un merci tout particulier aux membres passés et pré- sents de l’équipe MC2 pour leur accueil chaleureux et bien sûr pour les goûters. J’ai eu la chance de partager mon bureau avec plusieurs d’entre vous : merci à Bruno d’avoir eu réponse à toutes mes questions sur le monde de la recherche au tout début de ma thèse; merci à Sébastien, Théophile et Émilie (même si l’on n’a jamais offi- ciellement partagé un bureau) pour les quizzs musicaux ; merci à Sebastiàn et Mat- thieu, et désolée de vous avoir abandonnés si vite; et enfin merci à Ararat, Nick et Nacho pour la formidable bonne humeur qui a régné dans notre bureau ces huit derniers mois. Je garderai un souvenir impérissable de ces improbables cours de français/anglais/espagnol/arménien, et de notre grand complicité. Merci également à Natacha pour les nombreuses discussions diverses et variées, pour les échanges vii viii| REMERCIEMENTS de recettes et pour les comparatifs zumba/step/7 Minutes Workout (bizzarement, les autres membres de l’équipe étaient beaucoup moins sensibles à ces probléma- tiques). Merci à Nicolas d’avoir répondu à toutes mes questions sur les graphes par- faits mais aussi pour les blind tests Nostalgie lors des trajets en voiture. Je n’ou- blie pas, bien sûr, l’équipe des assistant(e)s sans qui la vie entière du labo se se- rait déjà écroulée. En particulier, merci à Marie, Chiraz et Damien d’avoir toujours su répondre à mes questions, et de vous être occupés de tous les papiers de mis- sion/réinscription/soutenance/(ceux dont je ne connais pas l’existence), et toujours avec le sourire. Merci aux doctorants des autres équipes avec qui j’ai eu l’occasion d’échanger (scientifiquement ou non), notamment lors du tout nouveau Séminaire des Docto- rants, ou bien autour d’un verre au foyer; à ce titre, je remercie tout particulièrement Gopi et Jean-Marie. Merci à Laure pour les discussions au détour d’un couloir, et pour avoir essayé de me faire faire de l’Archi. Je remercie également les collègues avec qui j’ai eu la chance d’enseigner ici à l’ENS de Lyon : Yves, Adeline, Pascal, Petru (merci pour les Kinder avant les TD de 8h), Maxime, Antoine, Omar et Aurélien ; et Damien et Éric, les grands chefs. L’enseignement est vraiment une facette du métier qui me tient à coeur, et j’en profite pour remercier mes étudiants de rendre cette tâche tou- jours aussi passionnante. J’ai eu la chance de me rendre régulièrement à des conférences, workshops ou autres Écoles de Recherche, et d’y rencontrer de nombreux chercheurs venant de diffé- rents horizons. Je remercie tout ceux que j’ai croisé, pour les discussions scientifiques, pour les discussions non-scientifiques, et pour cet incroyable sentiment d’apparte- nance à une communauté de recherche créative, stimulante et humaine. Je remercie en particulier les membres de STINT, pour les séminaires de travail réguliers et pour les moments de détente.Merci à Fred d’avoir relu une bonne moitié de mon manuscrit de son plein gré (est-ce pour me faire oublier ta tromperie sur le tour de VTT?). Merci à Nicolas, mon grand frère dans l’arbre généalogique des thèses, et merci à Marthe pour la complicité qui s’est installée au fil des ans. Je remercie, outre Stéphan qui a déjà eu son lot de louanges, Nicolas, Sébastien, Théophile, Aline, Zhentao, Petru et Julien avec qui j’ai eu la chance de collaborer pendant ma thèse (oui, certaines personnes apparaissent plusieurs fois dans ces Re- merciements). Je remercie également ceux avec qui j’ai partagé une excellente expé- rience de recherche pendant mes stages, bien avant de commencer ma thèse : merci à Andreas, Daniel et Fabienne, de l’Institut du Traitement des Langues Naturelles à Stuttgart; et bien sûr, merci à Mathilde et Éric, qui m’ont véritablement fait découvrir ce qu’était la Recherche en Informatique lors de mon tout premier stage en L3. Éric, je ne te remercierai jamais assez d’avoir été le premier à me convaincre de faire une thèse, parce que "finalement, c’est un peu comme le stage". Puisque je remonte le temps jusqu’à la L3, j’en profite pour remercier Paul GASTIN qui, à mon entrée à Cachan sur le concours info, ne m’as pas-vraiment-forcé-mais- quand-même-très-fortement-conseillé de ne pas bifurquer en maths, et de prendre le temps de découvrir ce qu’était véritablement l’Informatique Fondamentale. Je remer- cie les professeurs d’Informatique et de Mathématiques qui ont su me transmettre REMERCIEMENTS | ix leur passion pour la matière en elle-même et pour l’enseignement : en particulier, merci à Hubert COMON pour les « interrogations de questions », merci à Stéphane GONNORD pour avoir transformé chaque cours en véritable pièce de théâtre, et merci à M.
Recommended publications
  • Combinatorics: a First Encounter
    Combinatorics: a first encounter Darij Grinberg Thursday 10th January, 2019at 1:17am (unfinished draft!) Contents 1. Preface1 1.1. Acknowledgments . .4 2. What is combinatorics?4 2.1. Notations and conventions . .4 1. Preface These notes (which are work in progress and will remain so for the foreseeable fu- ture) are meant as an introduction to combinatorics – the mathematical discipline that studies finite sets (roughly speaking). When finished, they will cover topics such as binomial coefficients, the principles of enumeration, permutations, parti- tions and graphs. The emphasis falls on enumerative combinatorics, meaning the art of computing sizes of finite sets (“counting”), and graph theory. I have tried to keep the presentation as self-contained and elementary as possible. The reader is assumed to be familiar with some basics such as induction proofs, equivalence relations and summation signs, as well as have some experience with mathematical proofs. One of the best places to catch up on these basics and to gain said experience is the MIT lecture notes [LeLeMe16] (particularly their first five chapters). Two other resources to familiarize oneself with proofs are [Hammac15] and [Day16]. Generally, most good books about “reading and writing mathemat- ics” or “introductions to abstract mathematics” should convey these skills, although the extent to which they actually do so may differ. These notes are accompanying two classes on combinatorics (Math 4707 and 4990) I am giving at the University of Minneapolis in Fall 2017. Here is a (subjective and somewhat random) list of recommended texts on the kinds of combinatorics that will be considered in these notes: • Enumerative combinatorics (aka counting): 1 Notes on graph theory (Thursday 10th January, 2019, 1:17am) page 2 – The very basics of the subject can be found in [LeLeMe16, Chapters 14– 15].
    [Show full text]
  • Induced Minors and Well-Quasi-Ordering Jaroslaw Blasiok, Marcin Kamiński, Jean-Florent Raymond, Théophile Trunck
    Induced minors and well-quasi-ordering Jaroslaw Blasiok, Marcin Kamiński, Jean-Florent Raymond, Théophile Trunck To cite this version: Jaroslaw Blasiok, Marcin Kamiński, Jean-Florent Raymond, Théophile Trunck. Induced minors and well-quasi-ordering. EuroComb: European Conference on Combinatorics, Graph Theory and Appli- cations, Aug 2015, Bergen, Norway. pp.197-201, 10.1016/j.endm.2015.06.029. lirmm-01349277 HAL Id: lirmm-01349277 https://hal-lirmm.ccsd.cnrs.fr/lirmm-01349277 Submitted on 27 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Available online at www.sciencedirect.com www.elsevier.com/locate/endm Induced minors and well-quasi-ordering Jaroslaw Blasiok 1,2 School of Engineering and Applied Sciences, Harvard University, United States Marcin Kami´nski 2 Institute of Computer Science, University of Warsaw, Poland Jean-Florent Raymond 2 Institute of Computer Science, University of Warsaw, Poland, and LIRMM, University of Montpellier, France Th´eophile Trunck 2 LIP, ENS´ de Lyon, France Abstract AgraphH is an induced minor of a graph G if it can be obtained from an induced subgraph of G by contracting edges. Otherwise, G is said to be H-induced minor- free.
    [Show full text]
  • Arxiv:1907.08517V3 [Math.CO] 12 Mar 2021
    RANDOM COGRAPHS: BROWNIAN GRAPHON LIMIT AND ASYMPTOTIC DEGREE DISTRIBUTION FRÉDÉRIQUE BASSINO, MATHILDE BOUVEL, VALENTIN FÉRAY, LUCAS GERIN, MICKAËL MAAZOUN, AND ADELINE PIERROT ABSTRACT. We consider uniform random cographs (either labeled or unlabeled) of large size. Our first main result is the convergence towards a Brownian limiting object in the space of graphons. We then show that the degree of a uniform random vertex in a uniform cograph is of order n, and converges after normalization to the Lebesgue measure on [0; 1]. We finally an- alyze the vertex connectivity (i.e. the minimal number of vertices whose removal disconnects the graph) of random connected cographs, and show that this statistics converges in distribution without renormalization. Unlike for the graphon limit and for the degree of a random vertex, the limiting distribution of the vertex connectivity is different in the labeled and unlabeled settings. Our proofs rely on the classical encoding of cographs via cotrees. We then use mainly combi- natorial arguments, including the symbolic method and singularity analysis. 1. INTRODUCTION 1.1. Motivation. Random graphs are arguably the most studied objects at the interface of com- binatorics and probability theory. One aspect of their study consists in analyzing a uniform random graph of large size n in a prescribed family, e.g. perfect graphs [MY19], planar graphs [Noy14], graphs embeddable in a surface of given genus [DKS17], graphs in subcritical classes [PSW16], hereditary classes [HJS18] or addable classes [MSW06, CP19]. The present paper focuses on uniform random cographs (both in the labeled and unlabeled settings). Cographs were introduced in the seventies by several authors independently, see e.g.
    [Show full text]
  • A New Spectral Bound on the Clique Number of Graphs
    A New Spectral Bound on the Clique Number of Graphs Samuel Rota Bul`o and Marcello Pelillo Dipartimento di Informatica - University of Venice - Italy {srotabul,pelillo}@dsi.unive.it Abstract. Many computer vision and patter recognition problems are intimately related to the maximum clique problem. Due to the intractabil- ity of this problem, besides the development of heuristics, a research di- rection consists in trying to find good bounds on the clique number of graphs. This paper introduces a new spectral upper bound on the clique number of graphs, which is obtained by exploiting an invariance of a continuous characterization of the clique number of graphs introduced by Motzkin and Straus. Experimental results on random graphs show the superiority of our bounds over the standard literature. 1 Introduction Many problems in computer vision and pattern recognition can be formulated in terms of finding a completely connected subgraph (i.e. a clique) of a given graph, having largest cardinality. This is called the maximum clique problem (MCP). One popular approach to object recognition, for example, involves matching an input scene against a stored model, each being abstracted in terms of a relational structure [1,2,3,4], and this problem, in turn, can be conveniently transformed into the equivalent problem of finding a maximum clique of the corresponding association graph. This idea was pioneered by Ambler et. al. [5] and was later developed by Bolles and Cain [6] as part of their local-feature-focus method. Now, it has become a standard technique in computer vision, and has been employing in such diverse applications as stereo correspondence [7], point pattern matching [8], image sequence analysis [9].
    [Show full text]
  • Vertex Deletion Problems on Chordal Graphs∗†
    Vertex Deletion Problems on Chordal Graphs∗† Yixin Cao1, Yuping Ke2, Yota Otachi3, and Jie You4 1 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 2 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] 3 Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan [email protected] 4 School of Information Science and Engineering, Central South University and Department of Computing, Hong Kong Polytechnic University, Hong Kong, China [email protected] Abstract Containing many classic optimization problems, the family of vertex deletion problems has an important position in algorithm and complexity study. The celebrated result of Lewis and Yan- nakakis gives a complete dichotomy of their complexity. It however has nothing to say about the case when the input graph is also special. This paper initiates a systematic study of vertex deletion problems from one subclass of chordal graphs to another. We give polynomial-time algorithms or proofs of NP-completeness for most of the problems. In particular, we show that the vertex deletion problem from chordal graphs to interval graphs is NP-complete. 1998 ACM Subject Classification F.2.2 Analysis of Algorithms and Problem Complexity, G.2.2 Graph Theory Keywords and phrases vertex deletion problem, maximum subgraph, chordal graph, (unit) in- terval graph, split graph, hereditary property, NP-complete, polynomial-time algorithm Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2017.22 1 Introduction Generally speaking, a vertex deletion problem asks to transform an input graph to a graph in a certain class by deleting a minimum number of vertices.
    [Show full text]
  • The Strong Perfect Graph Theorem
    Annals of Mathematics, 164 (2006), 51–229 The strong perfect graph theorem ∗ ∗ By Maria Chudnovsky, Neil Robertson, Paul Seymour, * ∗∗∗ and Robin Thomas Abstract A graph G is perfect if for every induced subgraph H, the chromatic number of H equals the size of the largest complete subgraph of H, and G is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one. The “strong perfect graph conjecture” (Berge, 1961) asserts that a graph is perfect if and only if it is Berge. A stronger conjecture was made recently by Conforti, Cornu´ejols and Vuˇskovi´c — that every Berge graph either falls into one of a few basic classes, or admits one of a few kinds of separation (designed so that a minimum counterexample to Berge’s conjecture cannot have either of these properties). In this paper we prove both of these conjectures. 1. Introduction We begin with definitions of some of our terms which may be nonstandard. All graphs in this paper are finite and simple. The complement G of a graph G has the same vertex set as G, and distinct vertices u, v are adjacent in G just when they are not adjacent in G.Ahole of G is an induced subgraph of G which is a cycle of length at least 4. An antihole of G is an induced subgraph of G whose complement is a hole in G. A graph G is Berge if every hole and antihole of G has even length. A clique in G is a subset X of V (G) such that every two members of X are adjacent.
    [Show full text]
  • Partitioning a Graph Into Disjoint Cliques and a Triangle-Free Graph
    This is a repository copy of Partitioning a graph into disjoint cliques and a triangle-free graph. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/85292/ Version: Accepted Version Article: Abu-Khzam, FN, Feghali, C and Muller, H (2015) Partitioning a graph into disjoint cliques and a triangle-free graph. Discrete Applied Mathematics, 190-19. 1 - 12. ISSN 0166-218X https://doi.org/10.1016/j.dam.2015.03.015 © 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Partitioning a Graph into Disjoint Cliques and a Triangle-free Graph Faisal N. Abu-Khzam, Carl Feghali, Haiko M¨uller Abstract A graph G =(V, E) is partitionable if there exists a partition {A,B} of V such that A induces a disjoint union of cliques and B induces a triangle- free graph.
    [Show full text]
  • Arxiv:1906.05510V2 [Math.AC]
    BINOMIAL EDGE IDEALS OF COGRAPHS THOMAS KAHLE AND JONAS KRUSEMANN¨ Abstract. We determine the Castelnuovo–Mumford regularity of binomial edge ideals of complement reducible graphs (cographs). For cographs with n vertices the maximum regularity grows as 2n/3. We also bound the regularity by graph theoretic invariants and construct a family of counterexamples to a conjecture of Hibi and Matsuda. 1. Introduction Let G = ([n], E) be a simple undirected graph on the vertex set [n]= {1,...,n}. x1 ··· xn x1 ··· xn Let X = ( y1 ··· yn ) be a generic 2 × n matrix and S = k[ y1 ··· yn ] the polynomial ring whose indeterminates are the entries of X and with coefficients in a field k. The binomial edge ideal of G is JG = hxiyj −yixj : {i, j} ∈ Ei⊆ S, the ideal of 2×2 mi- nors indexed by the edges of the graph. Since their inception in [5, 15], connecting combinatorial properties of G with algebraic properties of JG or S/ JG has been a popular activity. Particular attention has been paid to the minimal free resolution of S/ JG as a standard N-graded S-module [3, 11]. The data of a minimal free res- olution is encoded in its graded Betti numbers βi,j (S/ JG) = dimk Tori(S/ JG, k)j . An interesting invariant is the highest degree appearing in the resolution, the Castelnuovo–Mumford regularity reg(S/ JG) = max{j − i : βij (S/ JG) 6= 0}. It is a complexity measure as low regularity implies favorable properties like vanish- ing of local cohomology. Binomial edge ideals have square-free initial ideals by arXiv:1906.05510v2 [math.AC] 10 Mar 2021 [5, Theorem 2.1] and, using [1], this implies that the extremal Betti numbers and regularity can also be derived from those initial ideals.
    [Show full text]
  • Decomposing Berge Graphs and Detecting Balanced Skew Partitions Nicolas Trotignon
    Decomposing Berge graphs and detecting balanced skew partitions Nicolas Trotignon To cite this version: Nicolas Trotignon. Decomposing Berge graphs and detecting balanced skew partitions. 2006. halshs- 00115625 HAL Id: halshs-00115625 https://halshs.archives-ouvertes.fr/halshs-00115625 Submitted on 22 Nov 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Centre d’Economie de la Sorbonne UMR 8174 Decomposing Berge graphs and detecting balanced skew partitions Nicolas TROTIGNON 2006.36 Maison des Sciences Économiques, 106-112 boulevard de L'Hôpital, 75647 Paris Cedex 13 http://mse.univ-paris1.fr/Publicat.htm ISSN : 1624-0340 Decomposing Berge graphs and detecting balanced skew partitions Nicolas Trotignon∗ April 26, 2006 Abstract A hole in a graph is an induced cycle on at least four vertices. A graph is Berge if it has no odd hole and if its complement has no odd hole. In 2002, Chudnovsky, Robertson, Seymour and Thomas proved a decomposition theorem for Berge graphs saying that every Berge graph either is in a well understood basic class or has some kind of decomposition. Then, Chudnovsky proved stronger theorems. One of them restricts the allowed decompositions to 2-joins and balanced skew partitions.
    [Show full text]
  • Some Properties of Minimal Imperfect Graphs L Chinh T
    DISCRETE MATHEMATICS ELSEVIER Discrete Mathematics 160 (1996) 165 175 Some properties of minimal imperfect graphs l Chinh T. Hofing Department of Mathematical Sciences, Lakehead ~)TiversiO,, Thunder Bay, Ontario, Cana~kl P7B-5E1 Received 30 November 1993; revised 29 November 1994 Abstract The Even Pair Lemma, proved by Meyniel, states that no minimal imperfect graph contains a pair of vertices such that all chordless paths joining them have even lengths. This Lemma has proved to be very useful in the theory of perfect graphs. The Odd Pair Conjecture, with 'even' replaced by 'odd', is the natural analogue of the Even Pair Lemma. We prove a partial result for this conjecture, namely: no minimal imperfect graph G contains a three-pair, i.e. two nonadjacent vertices Ul, u2 such that all chordless paths of G joining ul to u2 contain precisely three edges. As a by-product, we obtain short proofs of two previously known theorems: the first one is a well-known theorem of Meyniel (a graph is perfect if each of its odd cycles with at least five vertices contains at least two chords), the second one is a theorem of Olariu (a graph is perfect if it contains no odd antihole, no Ps and no extended claw as induced subgraphst. 1. Introduction A graph G is said to be perfect if for each induced subgraph H of G, the chromatic number z(H) of H equals the number co(H) of vertices in a largest clique of H. For background results on perfect graphs, see [2, 10]. A graph is minimal imperJect if it is not perfect but all of its proper induced subgraphs are perfect.
    [Show full text]
  • P 4-Colorings and P 4-Bipartite Graphs Chinh T
    P_4-Colorings and P_4-Bipartite Graphs Chinh T. Hoàng, van Bang Le To cite this version: Chinh T. Hoàng, van Bang Le. P_4-Colorings and P_4-Bipartite Graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2001, 4 (2), pp.109-122. hal-00958951 HAL Id: hal-00958951 https://hal.inria.fr/hal-00958951 Submitted on 13 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Discrete Mathematics and Theoretical Computer Science 4, 2001, 109–122 P4-Free Colorings and P4-Bipartite Graphs Ch´ınh T. Hoang` 1† and Van Bang Le2‡ 1Department of Physics and Computing, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario N2L 3C5, Canada 2Fachbereich Informatik, Universitat¨ Rostock, Albert-Einstein-Straße 21, D-18051 Rostock, Germany received May 19, 1999, revised November 25, 2000, accepted December 15, 2000. A vertex partition of a graph into disjoint subsets Vis is said to be a P4-free coloring if each color class Vi induces a subgraph without a chordless path on four vertices (denoted by P4). Examples of P4-free 2-colorable graphs (also called P4-bipartite graphs) include parity graphs and graphs with “few” P4s like P4-reducible and P4-sparse graphs.
    [Show full text]
  • A Fast Algorithm for the Maximum Clique Problem Patric R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Applied Mathematics 120 (2002) 197–207 A fast algorithm for the maximum clique problem Patric R. J. Osterg%# ard ∗ Department of Computer Science and Engineering, Helsinki University of Technology, P.O. Box 5400, 02015 HUT, Finland Received 12 October 1999; received in revised form 29 May 2000; accepted 19 June 2001 Abstract Given a graph, in the maximum clique problem, one desires to ÿnd the largest number of vertices, any two of which are adjacent. A branch-and-bound algorithm for the maximum clique problem—which is computationally equivalent to the maximum independent (stable) set problem—is presented with the vertex order taken from a coloring of the vertices and with a new pruning strategy. The algorithm performs successfully for many instances when applied to random graphs and DIMACS benchmark graphs. ? 2002 Elsevier Science B.V. All rights reserved. 1. Introduction We denote an undirected graph by G =(V; E), where V is the set of vertices and E is the set of edges. Two vertices are said to be adjacent if they are connected by an edge. A clique of a graph is a set of vertices, any two of which are adjacent. Cliques with the following two properties have been studied over the last three decades: maximal cliques, whose vertices are not a subset of the vertices of a larger clique, and maximum cliques, which are the largest among all cliques in a graph (maximum cliques are clearly maximal).
    [Show full text]