Color Management Basics 35 Color Management 02Basics

Total Page:16

File Type:pdf, Size:1020Kb

Color Management Basics 35 Color Management 02Basics 34 Color Management in Practice Setting up the equipment and environment needed for color management has never been easier. Most promising is the release of the EIZO ColorEdge series of Adobe RGB-compatible LCD monitors, designed for superb color management. Ideally, monitors offering high-precision color reproduction allow users to match the colors displayed and printed. In fact, the creation of color reproduction standards, a major development in recent years, has benefited both the printing and advertising industries. Print workflows rely on color proofing; now, Japan Color, JMPA colors, and other standards can serve as guidelines in establishing workflows. JMPA colors in particular make it possible to replace conventional proofing with DDCP or to use inkjet printers instead of presses for proofing. No extra work; simply specify JMPA profiles before output. Those involved know what to expect right from the start, when the original ad has been completed on-screen. Comparing images on ColorEdge monitors to documents printed with JMPA profiles brings you closer to a perfect match between monitor and proof colors. This requires expert knowledge of software and hardware, and this book can shed some light on the subject. The first step is to try it and see. W.W. Abney. A TREATISE ON PHOTOGRAPHY, 1918 ©iStockphoto.com/wsfurlan © DWH Co., LTD. Color Management Basics 35 Color Management Color 02Basics ©iStockphoto.com/Hello Vector! ©iStockphoto.com/wsfurlan 36 Maxwell also established the visible to us. Newton’s original Light radiation, Wavelengths fundamental principle that light classifications of red, orange, yellow, reflection, absorption, travels in waves, and his research green, blue, indigo, and violet are too and color in light on electricity and magnetism led general for work in this context. and transmission to the development of the unified As for wavelengths we cannot Light can be described by its Combining red, green, and blue light to model of electromagnetism. Today, see (shorter than 380 nm or longer than 780 wavelength, which determines its produce white was a famous feat by James both phenomena are identified as nm), scientists knew that these waves color in the spectrum. Two factors Clerk Maxwell (1831–1879) in lectures at manifestations of electromagnetic existed even before Maxwell's time. affect the wavelength of light: King's College in London in 1861, where he force. Maxwell showed that light is Sir Frederick William Herschel radiation and absorption. demonstrated the world's first color photo. a form of energy we can describe as discovered infrared radiation, with Maxwell also explored how we perceive visible an electromagnetic wave and that wavelengths longer than 780 nm, in Radiation of light: light in the electromagnetic spectrum. wavelengths of visible light lie in the 1800. This was followed in 1801 by When another form of energy In the 20th century, as we began to range of 380–780 nm (with one million a discovery at the opposite end of the is converted to light energy, light understand how insects and many other nanometers in a millimeter). spectrum by Johann Wilhelm Ritter, radiates from the energy source. This creatures are physically equipped to perceive One consequence is that shorter who identified ultraviolet radiation radiation is generated by chemical phenomena, researchers in animal behavior wavelengths of light are refracted with wavelengths shorter than 380 nm. or physical processes, such as the found that various creatures perceive various more sharply. Research on the Maxwell correctly concluded that burning or heating or cooling of wavelengths of light. What we perceive as spectrum since Newton has made the electromagnetic waves exist at atoms or molecules. It is worth color, for example, is the specific range of it possible to assign values to these wavelengths, but that our eyes noting here that the definition of the spectrum that the particular RGB-sensing the spectral wavelengths that are simply cannot perceive them. “white” light varies. system of our eyes reveals to us. icEne edicin ision adar dcast ic Gene m rg M e V R oa in tr ra to y r g c t le o A r B E wavelength(1nm=10-4m) ultraviolet rays infrared rays human being butterfly deep-sea fish Each animal species perceives color differently. monkey Animals are equipped with what we may regard birds / fowl as unique optical instruments. The particular biological hardware of one species lets it perceive fish different wavelengths of light than another snake species. In each case, perception results from long-term evolutionary changes to promote 300 340 survival in various environments. ultraviolet rays infrared rays Color Management Basics 37 Light absorption and reflection: Spectral data and For objects that radiate light, For transmissive objects as well, Absorption is the opposite of spectral curves radiance can be measured and transmissivity can be measured and radiation, occurring when light charted. Radiance is the relative charted. Transmissivity is the ratio energy is converted into another Objects can be broadly classified intensity of light energy radiated at of incident light to transmitted light form of energy, when the atoms or into three categories based on how various wavelengths, based on the at each wavelength. In the chart, green molecules of an object or medium they interact with light. In each case, total amount of light energy. In the indicates the transmissivity of cyan ink. struck by light absorb the light. spectral curves show how objects chart, yellow indicates the spectral A colorimeter can be used to How much light of the various affect light of various wavelengths. curve for daylight, with the diagonal measure the spectral data of any wavelengths is absorbed depends on The following chart shows examples line indicating values for an ordinary object and derive spectral curves. the chemical structure of the object of several spectral curves. incandescent (tungsten) bulb. Thus, spectral data provides a or medium. Interactions between Similarly, reflectivity can be detailed record of the amount of wavelengths and the structure of ① Radiant objects (such as daylight measured and charted for objects light reflected at each wavelength, the object cause light to be reflected or monitors) that reflect light. Reflectivity is the something that cannot be confirmed from or absorbed into the surface. ② Reflective objects or objects that ratio of incident light to reflected by sight alone. Measurements of this Thus, reflections can also be viewed absorb light light at each wavelength. In the chart, kind require an instrument called a as radiation occurring after light is ③ Transmissive objects magenta indicates the reflectivity of spectrophotometer. partly absorbed. red objects. Transmission of light: 100 Ancient scholars puzzled over Daylight spectra the nature of clear materials and the (%) light passing through such materials. Reflectivity of a red object Their confusion arose from a 80 misunderstanding—that color was Transmissivity of cyan ink inherent in the surface of things. ower ① Radiant objects Light passing through clear or al P Incandescent (tungsten) bulb semitransparent substances such as 60 water, air, film, or ink is transmitted through the substance. This occurs ② Reflective objects/ light-absorbing objects when more of some wavelengths Relative Spectr 40 of light are absorbed than others as they strike molecules and particles in a substance. The thickness of a particular object determines the 20 Monitor (red phosphor) extent to which various wavelengths are absorbed or passed. Only a vacuum fully transmits light of all ③ Transmissive objects 0 wavelengths. 400 500 600 700 wavelengths(nm) 38 Color rendering defined The suitcoat and pants that appeared The following figure shows Metamerism to match at the store somehow clash colors affected by metamerism and Publications that discuss at a party. Or the bouquet of flowers colors that maintain a consistent and color rendering color often address favorable that looked beautiful at the florist appearance. These three products or unfavorable color rendering looks dull and lifeless under your appear identical under natural properties, but the underlying lighting at home. There are countless sunlight, but incandescent lighting concept of color rendering is rarely examples. brings out a reddish tinge in two defined. It is worthy of initial We can reverse the underlying of them. Of course, we can also consideration, since this is a key issue principle applying in all these cases imagine the opposite effect. in the context of metamerism. to create color with a consistent As for ensuring consistent Color rendering is the effect of appearance by combining multiple colors through the data used in the color of the light source on the color components. For example, photographic prints or printing, appearance of color in objects. This instead of creating gray from newer inkjet printers can reduce the characteristic is known as the light black and white as usual, we can effects of metamerism, but a D50 or source’s color rendering property. create the same color by mixing D65 light source is recommended The color rendering index is one way complementary hues such as red and for post-printing proofing. Use the to compare relative performance in blue-green, yellow and bluish purple, isochromatic samples at the end of this regard. or blue and orange. this book. Metamerism Three requirements are essential in perceiving color: light, objects, and our eyes. Metamerism occurs when these elements are out of sync from their normal relationship. The phenomenon can make two colors that appeared identical under one With metamerism light source look different under another. Our eyes are susceptible to metamerism, but in fact, the phenomenon also affects other instruments that operate on principles of RGB light mixing, such as scanners and digital cameras. Realistic examples are often cited in explanations of metamerism. Buy fresh fish that looks delicious at the deli, and you may lose your appetite when you see the colors With metamerism Without metamerism under fluorescent lighting at home.
Recommended publications
  • Color Theory for Painting Video: Color Perception
    Color Theory For Painting Video: Color Perception • http://www.ted.com/talks/lang/eng/beau_lotto_optical_illusions_show_how_we_see.html • Experiment • http://www.youtube.com/watch?v=y8U0YPHxiFQ Intro to color theory • http://www.youtube.com/watch?v=059-0wrJpAU&feature=relmfu Color Theory Principles • The Color Wheel • Color context • Color Schemes • Color Applications and Effects The Color Wheel The Color Wheel • A circular diagram displaying the spectrum of visible colors. The Color Wheel: Primary Colors • Primary Colors: Red, yellow and blue • In traditional color theory, primary colors can not be mixed or formed by any combination of other colors. • All other colors are derived from these 3 hues. The Color Wheel: Secondary Colors • Secondary Colors: Green, orange and purple • These are the colors formed by mixing the primary colors. The Color Wheel: Tertiary Colors • Tertiary Colors: Yellow- orange, red-orange, red-purple, blue-purple, blue-green & yellow-green • • These are the colors formed by mixing a primary and a secondary color. • Often have a two-word name, such as blue-green, red-violet, and yellow-orange. Color Context • How color behaves in relation to other colors and shapes is a complex area of color theory. Compare the contrast effects of different color backgrounds for the same red square. Color Context • Does your impression od the center square change based on the surround? Color Context Additive colors • Additive: Mixing colored Light Subtractive Colors • Subtractive Colors: Mixing colored pigments Color Schemes Color Schemes • Formulas for creating visual unity [often called color harmony] using colors on the color wheel Basic Schemes • Analogous • Complementary • Triadic • Split complement Analogous Color formula used to create color harmony through the selection of three related colors which are next to one another on the color wheel.
    [Show full text]
  • Cielab Color Space
    Gernot Hoffmann CIELab Color Space Contents . Introduction 2 2. Formulas 4 3. Primaries and Matrices 0 4. Gamut Restrictions and Tests 5. Inverse Gamma Correction 2 6. CIE L*=50 3 7. NTSC L*=50 4 8. sRGB L*=/0/.../90/99 5 9. AdobeRGB L*=0/.../90 26 0. ProPhotoRGB L*=0/.../90 35 . 3D Views 44 2. Linear and Standard Nonlinear CIELab 47 3. Human Gamut in CIELab 48 4. Low Chromaticity 49 5. sRGB L*=50 with RGB Numbers 50 6. PostScript Kernels 5 7. Mapping CIELab to xyY 56 8. Number of Different Colors 59 9. HLS-Hue for sRGB in CIELab 60 20. References 62 1.1 Introduction CIE XYZ is an absolute color space (not device dependent). Each visible color has non-negative coordinates X,Y,Z. CIE xyY, the horseshoe diagram as shown below, is a perspective projection of XYZ coordinates onto a plane xy. The luminance is missing. CIELab is a nonlinear transformation of XYZ into coordinates L*,a*,b*. The gamut for any RGB color system is a triangle in the CIE xyY chromaticity diagram, here shown for the CIE primaries, the NTSC primaries, the Rec.709 primaries (which are also valid for sRGB and therefore for many PC monitors) and the non-physical working space ProPhotoRGB. The white points are individually defined for the color spaces. The CIELab color space was intended for equal perceptual differences for equal chan- ges in the coordinates L*,a* and b*. Color differences deltaE are defined as Euclidian distances in CIELab. This document shows color charts in CIELab for several RGB color spaces.
    [Show full text]
  • Pale Intrusions Into Blue: the Development of a Color Hannah Rose Mendoza
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2004 Pale Intrusions into Blue: The Development of a Color Hannah Rose Mendoza Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY SCHOOL OF VISUAL ARTS AND DANCE PALE INTRUSIONS INTO BLUE: THE DEVELOPMENT OF A COLOR By HANNAH ROSE MENDOZA A Thesis submitted to the Department of Interior Design in partial fulfillment of the requirements for the degree of Master of Fine Arts Degree Awarded: Fall Semester, 2004 The members of the Committee approve the thesis of Hannah Rose Mendoza defended on October 21, 2004. _________________________ Lisa Waxman Professor Directing Thesis _________________________ Peter Munton Committee Member _________________________ Ricardo Navarro Committee Member Approved: ______________________________________ Eric Wiedegreen, Chair, Department of Interior Design ______________________________________ Sally Mcrorie, Dean, School of Visual Arts & Dance The Office of Graduate Studies has verified and approved the above named committee members. ii To Pepe, te amo y gracias. iii ACKNOWLEDGMENTS I want to express my gratitude to Lisa Waxman for her unflagging enthusiasm and sharp attention to detail. I also wish to thank the other members of my committee, Peter Munton and Rick Navarro for taking the time to read my thesis and offer a very helpful critique. I want to acknowledge the support received from my Mom and Dad, whose faith in me helped me get through this. Finally, I want to thank my son Jack, who despite being born as my thesis was nearing completion, saw fit to spit up on the manuscript only once.
    [Show full text]
  • Harlequin RIP OEM Manual
    0RIPMate for Windows operating systems Harlequin PLUS Server RIP v9.0 June 2011 AG12325 Rev. 13 Copyright and Trademarks Harlequin PLUS Server RIP June 2011 Part number: HK‚9.0‚ÄìOEM‚ÄìWIN Document issue: 106 Copyright ¬© 2011 Global Graphics Software Ltd. All rights reserved. Certificate of Computer Registration of Computer Software. Registration No. 2006SR05517 No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec- tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Global Graphics Software Ltd. The information in this publication is provided for information only and is subject to change without notice. Global Graphics Software Ltd and its affiliates assume no responsibility or liability for any loss or damage that may arise from the use of any information in this publication. The software described in this book is furnished under license and may only be used or cop- ied in accordance with the terms of that license. Harlequin is a registered trademark of Global Graphics Software Ltd. The Global Graphics Software logo, the Harlequin at Heart Logo, Cortex, Harlequin RIP, Harlequin ColorPro, EasyTrap, FireWorks, FlatOut, Harlequin Color Management System (HCMS), Harlequin Color Production Solutions (HCPS), Harlequin Color Proofing (HCP), Harlequin Error Diffusion Screening Plugin 1-bit (HEDS1), Harlequin Error Diffusion Screening Plugin 2-bit (HEDS2), Harlequin Full Color System (HFCS), Harlequin ICC Profile Processor (HIPP), Harlequin Standard Color System (HSCS), Harlequin Chain Screening (HCS), Harlequin Display List Technology (HDLT), Harlequin Dispersed Screening (HDS), Harlequin Micro Screening (HMS), Harlequin Precision Screening (HPS), HQcrypt, Harlequin Screening Library (HSL), ProofReady, Scalable Open Architecture (SOAR), SetGold, SetGoldPro, TrapMaster, TrapWorks, TrapPro, TrapProLite, Harlequin RIP Eclipse Release and Harlequin RIP Genesis Release are all trademarks of Global Graphics Software Ltd.
    [Show full text]
  • NEC Multisync® PA311D Wide Gamut Color Critical Display Designed for Photography and Video Production
    NEC MultiSync® PA311D Wide gamut color critical display designed for photography and video production 1419058943 High resolution and incredible, predictable color accuracy. The 31” MultiSync PA311D is the ultimate desktop display for applications where precise color is essential. The innovative wide-gamut LED backlight provides 100% coverage of Adobe RGB color space and 98% coverage of DCI-P3, enabling more accurate colors to be displayed on screen. Utilizing a high performance IPS LCD panel and backed by a 4 year warranty with Advanced Exchange, the MultiSync PA311D delivers high quality, accurate images simply and beautifully. Impeccable Image Performance The wide-gamut LED LCD backlight combined with NEC’s exclusive SpectraView Engine deliver precise color in every environment. • True 4K resolution (4096 x 2160) offers a high pixel density • Up to 100% coverage of Adobe RGB color space and 98% coverage of DCI-P3 • 10-bit HDMI and DisplayPort inputs display up to 1.07 billion colors out of a palette of 4.3 trillion colors Ultimate Color Management The sophisticated SpectraView Engine provides extensive, intuitive control over color settings. • MultiProfiler software and on-screen controls provide access to thousands of color gamut, gamma, white point, brightness and contrast combinations • Internal 14-bit 3D lookup tables (LUTs) work with optional SpectraViewII color calibration solution for unparalleled color accuracy A Perfect Fit for Your Workspace A Better Workflow Future-proof connectivity, great ergonomics, and VESA mount Exclusive,
    [Show full text]
  • Digital Refocusing with Incoherent Holography
    Digital Refocusing with Incoherent Holography Oliver Cossairt Nathan Matsuda Northwestern University Northwestern University Evanston, IL Evanston, IL [email protected] [email protected] Mohit Gupta Columbia University New York, NY [email protected] Abstract ‘adding’ and ‘subtracting’ blur to the point spread functions (PSF) of different scene points, depending on their depth. In Light field cameras allow us to digitally refocus a pho- a conventional 2D image, while it is possible to add blur to tograph after the time of capture. However, recording a a scene point’s PSF, it is not possible to subtract or remove light field requires either a significant loss in spatial res- blur without introducing artifacts in the image. This is be- olution [10, 20, 9] or a large number of images to be cap- cause 2D imaging is an inherently lossy process; the angular tured [11]. In this paper, we propose incoherent hologra- information in the 4D light field is lost in a 2D image. Thus, phy for digital refocusing without loss of spatial resolution typically, if digital refocusing is desired, 4D light fields are from only 3 captured images. The main idea is to cap- captured. Unfortunately, light field cameras sacrifice spa- ture 2D coherent holograms of the scene instead of the 4D tial resolution in order to capture the angular information. light fields. The key properties of coherent light propagation The loss in resolution can be significant, up to 1-2 orders are that the coherent spread function (hologram of a single of magnitude. While there have been attempts to improve point source) encodes scene depths and has a broadband resolution by using compressive sensing techniques [14], spatial frequency response.
    [Show full text]
  • Unbounded Color Engines
    Unbounded Color Engines Marti Maria; Little CMS; Palamós; Catalonia, Spain Abstract the spec, ICC profiles are no longer limited to 8 or 16 bit, but to A Color Matching Method (CMM), also called a Color the broad range of 32-bit IEEE 754 floating point. That was a huge Engine, is a software component that does the color conversion improvement when regarding precision and dynamic range, which calculations from one device's color space to another. This paper is now only limited by floating point representation and can take as 39 discuses a new working mode for CMMs that allows such software much as 10 components to operate in a way that is not restricted by the gamut of the device encoding, the gamut of the profile connection space or any intermediate step. This allows ICC profiles to be used in new ways for a variety of applications. An open source CMM implementing this mode is also introduced. Background One of the main components of a color management system is the Color Matching Method, (CMM), which is the software engine in charge of controlling the color transformations that take place inside the system. By today, the vast majority of color management Figure 2. KODAK VISION2 500T Color Negative Film 5218 / 7218 systems do use International Color Consortium (ICC) profiles. This addendum, however, introduced another improvement ICC color management is based on device characterization perhaps not so evident but equally important. Floating point profiles. Color transformations can be obtained by linking those encoding has a huge domain, which is nearly infinite, much larger profiles.
    [Show full text]
  • Computational RYB Color Model and Its Applications
    IIEEJ Transactions on Image Electronics and Visual Computing Vol.5 No.2 (2017) -- Special Issue on Application-Based Image Processing Technologies -- Computational RYB Color Model and its Applications Junichi SUGITA† (Member), Tokiichiro TAKAHASHI†† (Member) †Tokyo Healthcare University, ††Tokyo Denki University/UEI Research <Summary> The red-yellow-blue (RYB) color model is a subtractive model based on pigment color mixing and is widely used in art education. In the RYB color model, red, yellow, and blue are defined as the primary colors. In this study, we apply this model to computers by formulating a conversion between the red-green-blue (RGB) and RYB color spaces. In addition, we present a class of compositing methods in the RYB color space. Moreover, we prescribe the appropriate uses of these compo- siting methods in different situations. By using RYB color compositing, paint-like compositing can be easily achieved. We also verified the effectiveness of our proposed method by using several experiments and demonstrated its application on the basis of RYB color compositing. Keywords: RYB, RGB, CMY(K), color model, color space, color compositing man perception system and computer displays, most com- 1. Introduction puter applications use the red-green-blue (RGB) color mod- Most people have had the experience of creating an arbi- el3); however, this model is not comprehensible for many trary color by mixing different color pigments on a palette or people who not trained in the RGB color model because of a canvas. The red-yellow-blue (RYB) color model proposed its use of additive color mixing. As shown in Fig.
    [Show full text]
  • Thanks for Downloading the Sample Chapters
    Thanks for Downloading the Sample Chapters Here are the chapters included. The Quick Start chapter, the first in the book, which identifies five quick ways to up the video and audio quality of your webinars and videoconferences. Chapter 5: Simple Lighting Techniques. The easiest way to significantly improve the quality of video produced by webcams and smartphones is to add lighting. You don’t have to spend a fortune; in fact, my go-to setup cost $30. You can read about this and more in this chapter. Chapter 9: Working With Audio on Android Devices. How to add and control a microphone on Android devices. Chapter 14: Working with Onstream Webinars. Audio and video adjustment controls available in Onstream Webinars. After the chapters, I’ve inserted the introduction to the book, and then the table of contents, so you can see what else is covered in the book. Thanks for having a look. Quick Start: Do This, Don’t Do That Figure a. Check your upload speed well in advance; don’t just pray for the best. This chapter contains highlights from various chapters in the book, both as a quick-start reference and as an introduction to the materials covered in the book. As you can see in Figure a, it’s better to check your outbound bandwidth with a tool called Speedtest than to simply pray that your bandwidth is sufficient. Chapter 1 has tables detailing the recommended bitrate for various conferencing and webinar applications, and other, related tips. Note that Speedtest is available as an app for both iOS and Android platforms, so you can check there as well.
    [Show full text]
  • Switchable Primaries Using Shiftable Layers of Color Filter Arrays
    Switchable Primaries Using Shiftable Layers of Color Filter Arrays Behzad Sajadi ∗ Kazuhiro Hiwadaz Atsuto Makix Ramesh Raskar{ Aditi Majumdery Toshiba Corporation Toshiba Research Europe Camera Culture Group University of California, Irvine Cambridge Laboratory MIT Media Lab RGB Camera Our Camera Ground Truth Our Camera CMY Camera RGB Camera 8.14 15.87 Dark Scene sRGB Image 17.57 21.49 ∆E Difference ∆E Bright Scene CMY Camera Our Camera (2.36, 9.26, 1.96) (8.12, 29.30, 4.93) (7.51, 22.78, 4.39) Figure 1: Left: The CMY mode of our camera provides a superior SNR over a RGB camera when capturing a dark scene (top) and the RGB mode provides superior SNR over CMY camera when capturing a lighted scene. To demonstrate this, each image is marked with its quantitative SNR on the top left. Right: The RGBCY mode of our camera provides better color fidelity than a RGB or CMY camera for colorful scene (top). The DE deviation in CIELAB space of each of these images from a ground truth (captured using SOC-730 hyperspectral camera) is encoded as grayscale images with error statistics (mean, maximum and standard deviation) provided at the bottom of each image. Note the close match between the image captured with our camera and the ground truth. Abstract ment of the primaries in the CFA) to provide an optimal solution. We present a camera with switchable primaries using shiftable lay- We investigate practical design options for shiftable layering of the ers of color filter arrays (CFAs). By layering a pair of CMY CFAs in CFAs.
    [Show full text]
  • Primary Color | 23
    BRAND Style GuiDe PriMary Color | 23 PRIMARY COLOR The primary color for Brandeis IBS is Brandeis IBS Blue, which is also the color of Brandeis University. Brandeis IBS Blue is BrandeiS iBS BLUE to be used as the prominent color in all communications. The PANTONE 294 C primary color is ideal for use in: CMYK 100 | 86 | 14 | 24 • Headlines • Large areas of text RGB 0 | 46 | 108 • Large background shapes HEX #002E6C Always use the designated color values for physical and digital Brandeis IBS communications. WEB HEX for use with white backgrounds #002E6C DO NOT use a tint of the primary color. Always use the primary color at 100% saturation. PANTONE color is used in physical applications whenever possible to reinforce the visual brand identity. CMYK designation is used for physical applications as an alternative to PANTONE (with the exception of any Microsoft Office documents, which use RGB). RGB values are used for any digital communications (excluding websites and e-communications), and all Microsoft Office documents (physical or digital). HEX values are used for any digital communications (excluding websites and e-communications). The value is an exact match to RGB. WEB HEX values are designated so websites and e-communica- tions can meet accessibility requirements. This compliance will ensure that people with disabilities can use Brandeis IBS online communications. For more about accessibility, visit http://www.brandeis.edu/acserv/disabilities/index.html. For examples of how the primary color should be applied across communications, please see pages 30-44. BRAND Style GuiDe SeCondary Color | 24 SeCondary Color The secondary color for Brandeis IBS is Brandeis IBS Teal, which is to be used strongly throughout Brandeis IBS com- BrandeiS iBS teal munications.
    [Show full text]
  • White Paper the Twilight Zone
    White paper The twilight zone …a journey through the magic realm of color spaces, gray shades, color temperatures, just noticeable differences and more Goran Stojmenovik Product Manager Barco Control Rooms division The whole story behind display specifications and human vision (2) Abstract Our world and the displays representing it are not black and white, as someone might think when seeing a display spec consisting only of luminance and contrast. There is much more, there is a whole world of gray shades, color spaces, color temperatures, contrast sensitivities, just noticeable differences. Knowing what “brightness” and “luminance” are and being able to distinguish them, knowing what influences on-screen contrast of a display, and knowing how the eye adapts to changes in luminance levels – these are factors you should have learned from the first part of this white paper. Here, we will go into deeper waters of human vision, to explain when we perceive a display as a good display, and what are the requirements posed by the human visual system to create a good display. Page 1 of 9 www.barco.com White paper The twilight zone Display requirements and human vision Gamma When we talk about brightness and contrast, we cannot THE GAMMA DETERMINES THE skip the famous “gamma.” For one specified contrast, BRIGHTNESS OF THE MID-GRAY we know it’s the brightest white and darkest black that SHADES matter. But, what about all the in-between? This is the region of the gray shades. They are produced by tilting the liquid crystal molecules with a voltage (in LCD displays), or by modulating the amount of time a certain DMD mirror is on during one frame (in DLP projection displays).
    [Show full text]