Final Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contingency Shuttle Crew Support (Cscs)/Rescue Flight Resource Book
CSCS/Rescue Flight Resource Book JSC-62900 CONTINGENCY SHUTTLE CREW SUPPORT (CSCS)/RESCUE FLIGHT RESOURCE BOOK OVERVIEW 1 Mission Operations CSCS 2 Directorate RESCUE 3 FLIGHT DA8/Flight Director Office Final July 12, 2005 National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas FINAL 07/12/05 2-i Verify this is the correct version before using. CSCS/Rescue Flight Resource Book JSC-62900 CONTINGENCY SHUTTLE CREW SUPPORT (CSCS)/RESCUE FLIGHT RESOURCE BOOK FINAL JULY 12, 2005 PREFACE This document, dated May 24, 2005, is the Basic version of the Contingency Shuttle Crew Support (CSCS)/Rescue Flight Resource Book. It is requested that any organization having comments, questions, or suggestions concerning this document should contact DA8/Book Manager, Flight Director Office, Building 4 North, Room 3039. This is a limited distribution and controlled document and is not to be reproduced without the written approval of the Chief, Flight Director Office, mail code DA8, Lyndon B. Johnson Space Center, Houston, TX 77058. FINAL 07/12/05 2-ii Verify this is the correct version before using. CSCS/Rescue Flight Resource Book JSC-62900 1.0 - OVERVIEW Section 1.0 is the overview of the entire Contingency Shuttle Crew Support (CSCS)/Rescue Flight Resource Book. FINAL 07/12/05 2-iii Verify this is the correct version before using. CSCS/Rescue Flight Resource Book JSC-62900 This page intentionally blank. FINAL 07/12/05 2-iv Verify this is the correct version before using. CSCS/Rescue Flight Resource Book JSC-62900 2.0 - CONTINGENCY SHUTTLE CREW SUPPORT (CSCS) 2.1 Procedures Overview.......................................................................................................2-1 2.1.1 ................................................................................ -
Constellation Space Suit System Acquisition Schedule Plan
National Aeronautics and Space Administration ConstellationConstellation SpaceSpace Suit Suit SystemSystem ContractContract AwardAward AnnouncementAnnouncement DougDoug CookeCooke DeputyDeputy AssociateAssociate AdministratorAdministrator NASANASA ExplorationExploration SystemsSystems MissionMission DirectorateDirectorate JuneJune 12,12, 20082008 www.nasa.gov ConstellationConstellation SystemsSystems Division Extravehicular Activity – “EVA” • The space-suited astronaut is the ultimate symbol of human exploration • The spacesuit is essentially a self- contained, one-person spacecraft • It protects the crew from and enables them to work in the hostile environments of deep space and the lunar surface • It is the “last line of defense” for astronauts when they leave the relative safety of the crew exploration vehicle, lunar lander, or habitat 2 2 The Challenge for Exploration • Current spacesuits are not suitable for Exploration – Apollo Extravehicular Mobility Unit – Advanced Crew Escape Suit – Space Shuttle/International Space Station Extravehicular Mobility Unit • A new pressurized suit system will be required to support long-term Exploration requirements – Meets all capability requirements – Improves reliability – Improves logistics and maintenance – Reduces life cycle costs 3 3 The EVA System Design Approach Launch and Entry • A single spacesuit system with two configurations which share many components In-space Contingency • Common, evolvable infrastructure • Minimum set of hardware to meet all mission phase requirements • Modular, -
Testing of the Z-2 Space Suit at the Neutral Buoyancy Laboratory
47th International Conference on Environmental Systems ICES-2017-250 16-20 July 2017, Charleston, South Carolina Testing of the Z-2 Space Suit at the Neutral Buoyancy Laboratory Ian M. Meginnis,1 Richard A. Rhodes,2 Kristine N. Larson,3 and Amy J. Ross4 NASA Johnson Space Center, Houston, TX, 77058 The Z-2 space suit is the product of the last fifty years of NASA’s space suit research and testing experience. The Z-2 suit was originally developed as an exploration space suit for use on a planetary surface, such as the moon or Mars. However, Z-2 could also be used in microgravity at the International Space Station (ISS) to supplement or replace the existing extravehicular mobility unit (EMU). To evaluate the microgravity performance of Z-2 for compatibility at the ISS, the suit was tested in NASA’s Neutral Buoyancy Laboratory (NBL), which is the primary simulated microgravity testing environment for space suits. Seven test subjects, including five astronauts, performed various tasks that are representative of the tasks performed at the ISS. Test subjects performed tasks in the Z-2 suit and the EMU so that relative comparisons could be drawn between the two suits. Two configurations of the Z-2 space suit were evaluated during this test series: the EMU lower torso assembly (ELTA) configuration and the Z-2 lower torso assembly (ZLTA) configuration. The ELTA configuration, which was the primary test configuration, is comprised of the Z-2 upper torso and the EMU lower torso. The ZLTA configuration is comprised of the Z-2 upper torso and the Z-2 lower torso, which contains additional mobility elements. -
The EVA Spacesuit
POLITECNICO DI TORINO Repository ISTITUZIONALE Glove Exoskeleton for Extra-Vehicular Activities: Analysis of Requirements and Prototype Design Original Glove Exoskeleton for Extra-Vehicular Activities: Analysis of Requirements and Prototype Design / Favetto, Alain. - (2014). Availability: This version is available at: 11583/2546950 since: Publisher: Politecnico di Torino Published DOI:10.6092/polito/porto/2546950 Terms of use: openAccess This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository Publisher copyright (Article begins on next page) 04 August 2020 POLITECNICO DI TORINO DOCTORATE SCHOOL Ph. D. In Informatics and Systems – XXV cycle Doctor of Philosophy Thesis Glove Exoskeleton for Extra-Vehicular Activities Analysis of Requirements and Prototype Design (Part One) Favetto Alain Advisor: Coordinator: Prof. Giuseppe Carlo Calafiore Prof. Pietro Laface kp This page is intentionally left blank Dedicato a mio Padre... Al tuo modo ruvido di trasmettere le emozioni. Al tuo senso del dovere ed al tuo altruismo. Ai tuoi modi di fare che da piccolo non capivo e oggi sono parte del mio essere. A tutti i pensieri e le parole che vorrei averti detto e che sono rimasti solo nella mia testa. A te che mi hai sempre trattato come un adulto. A te che te ne sei andato prima che adulto lo potessi diventare davvero. opokp This page is intentionally left blank Index INDEX Index .................................................................................................................................................5 -
Balloon Astronaut San Jose, CA 95113 1-408-294-8324 Design Challenge Learning Thetech.Org
201 S. Market St. Balloon Astronaut San Jose, CA 95113 1-408-294-8324 Design Challenge Learning thetech.org Students investigate properties of materials and colliding objects by designing spacesuits for balloon astronauts. The objective is to design spacesuits that can withstand the hazards of high velocity impacts from space debris and meteoroids. As students iterate through this design challenge, they gain firsthand experience in the design process. Balloon Astronaut1 Grades 2-8 Estimated time: 45 minutes Student Outcomes: 1. Students will be able to design and build a protective device to keep their balloon astronaut from popping when impaled by a falling nail. 2. Students will be able to explain design considerations based on material characteristics, and concepts of energy, velocity, and the physics of colliding objects. 3. Students will be able to utilize the three step design process to meet an engineering challenge. Next Generation Science Standards Grade 2-5: Engineering Design K-2-ETS1-1, K-2-ETS1-2, K-2-ETS1-3, 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3 Grade 2: Physical Science 2-PS1-1, 2-PS1-2 Grade 3: Physical Science 3-PS2-1 Grade 4: Physical Science 4-PS3-1, 4-PS3-3, 4-PS3-4 Grade 5: Physical Science 5-PS2-1 Grade 6-8: Engineering Design MS-ETS1-1, MS-ETS1-2, MS-ETS1-3, MS-ETS1-4; Physical Science MS-PS2-1, MS-PS2-2, MS-PS3-2, MS-PS3-5 Common Core Language Arts-Speaking and Listening Grade 2: SL.2.1a-c, SL.2.3, SL.2.4a Grade 3: SL.3.1b-d, SL.3.3, SL.3.4a Grade 4: SL.4.1b-d, SL.4.4a Grade 5: SL.5.1b-d, SL.5.4 Grade 6: SL.6.1b-d Grade 7: SL.7.1b-d Grade 8: SL.8.1b-d California Science Content Grade 2: Physical Science 1.a-c; Investigation and Experimentation 4.a, 4.c-d Grade 3: Investigation and Experimentation 5.a-b, d Grade 4: Investigation and Experimentation 6.a, 6.c-d Grade 5: Investigation and Experimentation 6.a-c, 6.h Grade 6: Investigation and Experimentation 7.a-b, 7.d-e Grade 7: Investigation and Experimentation 7.a, 7.c-e Grade 8: Physical Science 1.a-e, 2.a-g; Investigation and Experimentation 9.b-c 1 Developed from a program designed by NASA. -
Space Sector Brochure
SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners. -
Life Support Baseline Values and Assumptions Document
NASA/TP-2015–218570 Life Support Baseline Values and Assumptions Document Editors: Molly S. Anderson Michael K. Ewert John F. Keener Sandra A. Wagner Responsible National Aeronautics and Space Administration Official: Molly S. Anderson CTSD, Lyndon B. Johnson Space Center National Aeronautics and Space Administration Mail Code EC2 2101 NASA Road One Houston, Texas 77058 March 2015 THE NASA STI PROGRAM OFFICE . IN PROFILE Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical conferences, NASA Scientific and Technical Information (STI) symposia, seminars, or other meetings sponsored Program Office plays a key part in helping NASA or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the lead center for NASA’s projects, and mission, often concerned with scientific and technical information. The NASA STI subjects having substantial public interest. Program Office provides access to the NASA STI Database, the largest collection of aeronautical and • TECHNICAL TRANSLATION. English- space science STI in the world. The Program Office language translations of foreign scientific and is also NASA’s institutional mechanism for technical material pertinent to NASA’s mission. disseminating the results of its research and development activities. These results are published Specialized services that complement the STI by NASA in the NASA STI Report Series, which Program Office’s diverse offerings include creating includes the following report types: custom thesauri, building customized databases, organizing and publishing research results . -
Preparation of Papers for AIAA Technical Conferences
Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study 1 2 3 4 5 6 Jonathan T. Bowie , Raul A. Blanco , Richard D. Watson , Cody Kelly , Jesse Buffington , Stephanie A. Sipila NASA Johnson Space Center, Houston, TX 77058 This paper discusses the Asteroid Redirect Crewed Mission (ARCM) space suit and Extravehicular Activity (EVA) architecture trade study and the current state of the work to mature the requirements and products to the mission concept review level. The mission requirements and the resulting concept of operations will be discussed. A historical context will be presented as to present the similarities and differences from previous NASA missions. That will set the stage for the trade study where all options for both pressure garment and life support were considered. The rationale for the architecture decisions will then be presented. Since the trade study did identity risks, the subsequent tests and analyses that mitigated the risks will be discussed. Lastly, the current state of the effort will be provided. Nomenclature ACES = Advanced Crew Escape Suit ACFM = Actual cubic feet per minute AEMU = Advanced Extravehicular Mobility Unit AES = Advanced Exploration Systems ARCM = Asteroid Redirect Crewed Mission ARGOS = Active Response Gravity Offload System BRT = Body Restraint Tether DCCI = David Clark Company Inc. DRM = Design Reference Mission EMU = Extravehicular Mobility Unit EOS = Emergency Oxygen System EVA = Extravehicular Activity FSA = Feedwater Supply Assembly ISS = International Space Station -
Constellation Space Suit System (CSSS) Title
The Future of U.S. Space Suits Presented by Carl Walz 9-22-2015 1 U.S. Space Suits – The Past 2 U.S. Space Suits – The Present 3 Future Human Exploration 4 New Space Suit Development Defining Questions • What Is The Destination And The Destination Environment • What Will Be The Host Spacecraft – What Is The Life Support Interface – What Is The Mechanical Interface • What Are The Mobility Requirements – Walking, Riding, or Both • What Size Suits Are Required – Suit Should Support A Larger Anthropometric Range • What Is The Logistical Plan – Suit Must Be Logistically Supportable For Long Periods of Time • What Is The Maintenance Plan – Suit Must Be Field Maintainable 5 NASA EVA Technology Development NASA Performed Yearly Test Campaigns In The Western U.S. To Develop Requirements For Planetary Surface EVAs EVA Pressure Garments At Field Testing, Flagstaff AZ 2006 6 NASA EVA Technology Development • Mark 3 Planetary Garment Designed For Surface EVAs – Hard Upper Torso And Hard Brief – Rear Entry – Walking Boots – Tested During Desert Rats Planetary Exploration Activities 7 NASA EVA Technology Development . ILC Dover I-Suit Pressure Garment – Soft Upper Torso And Soft Brief – Waist Or Rear Entry – Soft Lower Torso And Walking Boots – Tested At ILC And During Desert Rats Planetary Exploration Activities – Excellent Surface Mobility 8 NASA EVA Technology Development • The Z-1Pressure Garment Was Developed By NASA Under The Advanced Exploration Systems Program • Z-1 Suit Represents A Follow-On To The Mark 3 – Rear Entry – Hard Upper Torso And -
Complex Garment Systems to Survive in Outer Space
Volume 7, Issue 2, Fall 2011 Complex Garment Systems to Survive in Outer Space Debi Prasad Gon, Assistant Professor, Textile Technology, Panipat Institute of Engineering & Technology, Pattikalyana, Samalkha, Panipat, Haryana, INDIA [email protected] Palash Paul, Assistant Professor, Textile Technology, Panipat Institute of Engineering & Technology, Pattikalyana, Samalkha, Panipat, Haryana, INDIA ABSTRACT The success of astronauts in performing Extra-Vehicular Activity (EVA) is highly dependent on the performance of the spacesuit they are wearing. Since the beginning of the Space Shuttle Program, one basic suit design has been evolving. The Space Shuttle Extravehicular Mobility Unit (EMU) is a waist entry suit consisting of a hard upper torso (HUT) and soft fabric mobility joints. The EMU was designed specifically for zero gravity operations. With a new emphasis on planetary exploration, a new EVA spacesuit design is required. Now the research scientists are working hard and striving for the new, lightweight and modular designs. Thus they have reached to the Red surface of Mars. And sooner or later the astronauts will reach the other planets too. This paper is a review of various types of spacesuits and the different fabrics required for the manufacturing of the same. The detailed construction of EMU and space suit for Mars is discussed here, along with certain concepts of Biosuit- Mechanical Counter pressure Suit. Keywords: Extra-Vehicular Activity (EVA), spacesuits, Biosuit-Mechanical Counter pressure Suit Tissues (skin, heart, -
2018 Annual Report San Diego Air & Space Museum Connections Mission Statement
2018 ANNUAL REPORT SAN DIEGO AIR & SPACE MUSEUM CONNECTIONS MISSION STATEMENT VISION VALUES The San Diego Air & Space Museum, one of the world’s The San Diego Air & Space Museum adheres to impeccable premier air and space-themed science center and professional standards as it preserves, interprets, educates museum, inspires our next greatest generations to achieve and shares its rich aviation and space resources: excellence in their lives by challenging their innate human • To act as exceptional stewards on behalf of the general pioneering spirit and encouraging the necessary risk- public and earn the trust of our donors and members taking required to achieve global innovation success. by caring for our collections. Interpret our collections MISSION accurately and use society’s generosity in a beneficial PRESERVE…INSPIRE…EDUCATION…CELEBRATE! manner conducive to the spirit of excellence on behalf of the common good for all. PRESERVE significant artifacts of air and space history and technology. • To inspire an interest in science, technology, engineering, mathematics (STEM) and innovation, as well as history. INSPIRE excellence in science, technology, engineering and mathematics. Inspire the necessary risk-taking in future generations to ensure continued exploration of the outer bounds of EDUCATE the public about the historical and social what can be. significance of air and space technology and its future promise as a pathway to advanced innovations. • To educate through public outreach and engagement. CELEBRATE aviation and space flight history and • To honor the legacy of aviation and space flight technology. technology and the men and women who forged the path for others to emulate. -
U.S. Spacesuit Knowledge Capture Accomplishments in Fiscal Year 2016
47th International Conference on Environmental Systems ICES-2017-47 16-20 July 2017, Charleston, SC U.S. Spacesuit Knowledge Capture Accomplishments in Fiscal Year 2016 Cinda Chullen 1 NASA Johnson Space Center, Houston, Texas, 77058 and Vladenka R. Oliva2 Jacobs Engineering Technology, Houston, Texas, 77058 As our nation focuses on its goal to visit Mars by the 2030s, the NASA U.S. Spacesuit Knowledge Capture (SKC) Program continues to serve the spacesuit community with a collection of spacesuit-related knowledge. Since its 2007 inception, the SKC Program has been collecting and archiving significant spacesuit-related knowledge and sharing it with various technical staff, along with invested and interested entities. The program has sponsored and recorded more than 80 events, and continues to build an electronic library of spacesuit knowledge. By the end of Fiscal Year (FY) 2016, 60 of these events were processed and uploaded to a publically accessible NASA Web site where viewers can broaden their knowledge about the spacesuit’s evolution, known capabilities, and lessons learned. Sharing this knowledge with entities beyond NASA, such as space partners and academia, provides a tremendous opportunity to expand and retain the knowledge of space. This valuable SKC Program now serves as an optimum means of archiving NASA’s spacesuit legacy from the Apollo era to the pursuit of Mars. This paper focuses on the FY 2016 SKC events, the release and accessibility of the approved events, and the program’s future plans. Nomenclature ARM = Asteroid