Active Module Discovery: Integrated Approaches of Gene Co-Expression and PPI Networks and Microrna Data

Total Page:16

File Type:pdf, Size:1020Kb

Active Module Discovery: Integrated Approaches of Gene Co-Expression and PPI Networks and Microrna Data Active Module Discovery: Integrated Approaches of Gene Co-Expression and PPI Networks and MicroRNA Data Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ayat Hatem, M.Sc. Graduate Program in Electrical and Computer Engineering The Ohio State University 2014 Dissertation Committee: Umit¨ V. C¸ataly¨urek,Advisor Yuejie Chi Kun Huang F¨usun Ozg¨uner¨ c Copyright by Ayat Hatem 2014 Abstract Integrating protein-protein interaction (PPI) networks with gene expression data to extract active modules is shown to be promising in detecting meaningful biomark- ers for cancer and other diseases. However, current algorithms suffer from many drawbacks such as focusing only on the highly differentially expressed genes, ana- lyzing dependencies between genes in the PPI network only; totally neglecting the genes whose interactions are not known yet, and finally using mRNA gene expression data; ignoring other types of data such as gene mutation information and microRNAs expressions. In addition, lately, using the next generation sequencing technology to sequence the mRNA (RNA-Seq) has become the new standard for gene expression. However, existing algorithms either cannot handle the RNA-Seq data, or they return large modules which are hard to analyze. Therefore, we need new approaches to ad- dress the current drawbacks while utilizing and integrating the RNA-Seq data to the module discovery process. This work explores some of the drawbacks of current active module discovery algorithms. We first discuss the differences between RNA-Seq data and microarray data. With experimental evidence, we show that RNA-Seq is more powerful than microarray in providing better active modules at the expense of generating larger ones. Therefore, new approaches are needed to handle RNA-Seq data. ii Afterwards, we present a new workflow, PRASE, that is specifically designed to handle and obtain better active modules while using RNA-Seq data. PRASE employs a variation of the famous PageRank algorithm to preprocess the gene expression p- values. Then, it applies a scaling function to construct new p-values for the genes. Such new p-values redefine the importance of the genes: a gene is important not only based on its own value but also based on the values of the surrounding genes, thus, boosting the importance of genes that might not be differentially expressed from the p-value perspective. Finally, PRASE uses the new p-values with the existing active module discovery algorithms to extract the final modules. We applied our workflow on colorectal cancer, oligodendroglioma tumor, and breast cancer datasets. Using PRASE, we obtain more specialized modules which contain information that is overlooked by existing algorithms. Finally, we present our novel microRNA-mRNA integration technique, Mica, that efficiently integrates microRNA and mRNA expressions with the PPI network to discover more disease-specific active modules. The novelty of Mica lies in the early integration of microRNA expression with mRNA expression to better highlight the indirect dependencies between genes. We applied Mica on microRNA-Seq and mRNA-Seq data sets of 699 invasive ductal carcinoma samples and 150 invasive lob- ular carcinoma samples from the Cancer Genome Atlas Project (TCGA). The Mica modules unravel new and interesting dependencies between the genes and miRNAs. Additionally, the modules accurately differentiate between case and control samples while being highly enriched with disease-specific pathways and genes. iii To my parents, Karim, Omar, and Maleeka. iv Acknowledgments I would like to thank and express gratitude to my advisor Prof. Umit¨ V. C¸ataly¨urek, for his continuous and generous support and guidance throughout my study at OSU. Prof. C¸ataly¨urekshowed great faith in my abilities and allowed me to work quite independently, but at the same time provided invaluable guidance at the necessary times. I would also like to thank the dissertation examination committee members, in- cluding, Prof. F¨usun Ozg¨uner,Prof.¨ Kun Huang, Prof. Yuejie Chi, and Prof. Dawn Chandler. The discussion and comments I received during my defense were invaluable; opening my mind to new ideas and research directions. I would also like to thank Prof. Kamer Kaya for his support and the various discussions we had; some of which already generated ideas used in my work. I want to thank all of my colleagues and friends at the HPC lab including Erdem Sariyuce, Mehmet Deveci, Anas AbuDolah, ad Izzet Senturk. Also, I would like to thank the former members of the HPC lab, including, Erik Saule, Onur Kucuktunc, and Doruk Bozda˘g. It has been a privilege to know such a great group of people. Particularly I would like to mention Doruk Bozda˘gand Erik Saule for the numerous fruitful and interesting discussions. I would like to extend my deepest gratitude and love to my mother and my late father, who supported me during my research career and always encouraged me to v follow my dreams. I also would like to thank my children, Omar and Maleeka, for their sense of humor and their wonderful characters, they totally changed my life. I can't describe how grateful I am towards my husband, Karim, whose sweet presence has brought happiness into my life. He was always there for me in my tough times and always encouraging me to go forward with my PhD and never to give up. Finally, I acknowledge the support of the Graduate School of The Ohio State University, for the University Fellowship Award and the support from the National Science Foundation. vi Vita September 15th, 1985 . .Born - Giza, Egypt July 2007 . .B.S., Computer Engineering, Cairo University, Cairo, Egypt August 2009 . .M.S., Software Engineering, Nile University, Cairo, Egypt September 2009{August 2010 . University Fellow, The Ohio State University, Columbus, OH, USA September 2010{Spring 2013 . .Grad. Research Assoc., The Ohio State University, Columbus, OH, USA Spring 2013{Present . Grad. Teaching Assoc., The Ohio State University, Columbus, OH, USA Publications Research Publications A. Hatem, K. Kaya, J. Parvin, K. Huang, U.¨ V. C¸ataly¨urek, "MICA: MicroRNA Integration for Active Module Discovery," In the 13th European Conference on Computational Biology (ECCB), Submitted K. Kaya, A. Hatem, H. G. Ozer,¨ K. Huang, U.¨ V. C¸ataly¨urek, "High-Performance Computing in High-Throughput Sequencing," In Biological Knowledge Discovery Handbook, John Wiley & Sons, Editors M. Elloumi, A. Y. Zomaya, 2014 vii L. Wang, A. Hatem, U.¨ V. C¸ataly¨urek,M. Morrison, Z. Yu, "Metagenomic Insights into the Carbohydrate-Active Enzymes Carried by the Microorganisms Adhering to Solid Digesta in the Rumen of Cows," In PLoS One, vol. 8, no. 11, pg. e78507, Nov 2013 A. Hatem, D. Bozda˘g, A. E. Toland, U.¨ V. C¸ataly¨urek, "Benchmarking Short Se- quence Mapping Tools," In BMC Bioinformatics, vol. 14, no. 1, pg. 184, 2013 A. Hatem, K. Kaya, U.¨ V. C¸ataly¨urek,"PRASE: PageRank-based Active Subnetwork Extraction," In Proc. of ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics (BCB), Sep 2013 A. Hatem, K. Kaya, U,¨ V.C¸ataly¨urek, "Microarray vs. RNA-Seq: A comparison for active subnetwork discovery," In Proc. of ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics (BCB), Oct 2012 A. Hatem,D. Bozda˘g, U.¨ V. C¸ataly¨urek, "Benchmarking Short Sequence Mapping Tools," In Proc. of IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Dec 2011 D. Bozda˘g,A. Hatem, U.¨ V. C¸ataly¨urek,"Exploring Parallelism in Short Sequence Mapping Using Burrows-Wheeler Transform," In Proc. of 9th IEEE International Workshop on High Performance Computational Biology (in conjunction with IPDPS), 2010 A. Hatem, D. Bozda˘g, U.¨ V. C¸ataly¨urek,"Benchmarking Short Sequence Alignment Tools," In Abstract, Bioinformatics, 2010 Ohio Collaborative Conference, 2010 Fields of Study Major Field: Electrical & Computer Engineering viii Table of Contents Page Abstract . ii Dedication . iv Acknowledgments . .v Vita......................................... vii List of Tables . xii List of Figures . xiv 1. Introduction . .1 1.1 Dissertation Outline and Summary of Contributions . .4 2. Background and Related Work . .8 2.1 DNA and the central dogma . .8 2.1.1 Measuring gene expression levels . 10 2.1.2 Other elements in the central dogma . 11 2.2 Active module discovery problem . 12 2.3 microRNA and mRNA integration . 18 3. An Evaluation of RNA-Seq Mapping Tools . 20 3.1 Background . 26 3.1.1 Features . 26 3.1.2 Tools' description . 28 3.1.3 Default options of the tested tools . 31 3.1.4 Evaluation criteria . 34 ix 3.2 Methods . 38 3.2.1 Benchmark design . 38 3.2.2 Usecase: SNP Calling . 41 3.3 Results and discussion . 42 3.3.1 Mapping options . 48 3.3.2 Input properties . 54 3.3.3 Algorithmic features . 63 3.3.4 Scalability . 65 3.3.5 Accuracy evaluation . 67 3.3.6 Rabema evaluation . 70 3.3.7 Use case: SNP calling . 71 3.4 Conclusion . 72 4. Efficiency of RNA-Seq Data for Active Module Discovery in Comparison to MicroArrays . 77 4.1 Background . 79 4.1.1 Tools for Active Module Discovery . 79 4.1.2 Microarray vs. RNA-Seq: History . 81 4.2 Experimental Evaluation . 82 4.2.1 Colorectal cancer cell lines . 84 4.2.2 Oligodendroglioma tumors . 92 4.3 Conclusion and Future Work . 94 5. PRASE: PageRank-based Active Module Extraction . 97 5.1 Background . 102 5.1.1 Active module extraction tools . 102 5.1.2 PageRank for gene ranking . 103 5.2 PRASE . 104 5.2.1 Input network and matrix construction . 105 5.2.2 Re-ranking . 107 5.2.3 Scaling and combining . 107 5.3 Experimental Results . 109 5.3.1 Breast invasive carcinoma . 111 5.3.2 Colorectal cancer cell line (CRC) .
Recommended publications
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Overexpression of RPN2 Suppresses Radiosensitivity of Glioma Cells By
    Li et al. Molecular Medicine (2020) 26:43 Molecular Medicine https://doi.org/10.1186/s10020-020-00171-5 RESEARCH ARTICLE Open Access Overexpression of RPN2 suppresses radiosensitivity of glioma cells by activating STAT3 signal transduction Changyu Li1†, Haonan Ran2†, Shaojun Song1, Weisong Liu3, Wenhui Zou1, Bei Jiang4, Hongmei Zhao5 and Bin Shao6* Abstract Background: Radiation therapy is the primary method of treatment for glioblastoma (GBM). Therefore, the suppression of radioresistance in GBM cells is of enormous significance. Ribophorin II (RPN2), a protein component of an N-oligosaccharyl transferase complex, has been associated with chemotherapy drug resistance in multiple cancers, including GBM. However, it remains unclear whether this also plays a role in radiation therapy resistance in GBM. Methods: We conducted a bioinformatic analysis of RPN2 expression using the UCSC Cancer Genomics Browser and GEPIA database and performed an immunohistochemical assessment of RPN2 expression in biopsy specimens from 34 GBM patients who had received radiation-based therapy. We also studied the expression and function of RPN2 in radiation-resistant GBM cells. Results: We found that RPN2 expression was upregulated in GBM tumors and correlated with poor survival. The expression of RPN2 was also higher in GBM patients with tumor recurrence, who were classified to be resistant to radiation therapy. In the radiation-resistant GBM cells, the expression of RPN2 was also higher than in the parental cells. Depletion of RPN2 in resistant cells can sensitize these cells to radiation-induced apoptosis, and overexpression of RPN2 had the reverse effect. Myeloid cell leukemia 1 (MCL1) was found to be the downstream target of RPN2, and contributed to radiation resistance in GBM cells.
    [Show full text]
  • ACE2 Interaction Networks in COVID-19: a Physiological Framework for Prediction of Outcome in Patients with Cardiovascular Risk Factors
    Journal of Clinical Medicine Article ACE2 Interaction Networks in COVID-19: A Physiological Framework for Prediction of Outcome in Patients with Cardiovascular Risk Factors Zofia Wicik 1,2 , Ceren Eyileten 2, Daniel Jakubik 2,Sérgio N. Simões 3, David C. Martins Jr. 1, Rodrigo Pavão 1, Jolanta M. Siller-Matula 2,4,* and Marek Postula 2 1 Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo Andre 09606-045, Brazil; zofi[email protected] (Z.W.); [email protected] (D.C.M.J.); [email protected] (R.P.) 2 Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, 02-091 Warsaw, Poland; [email protected] (C.E.); [email protected] (D.J.); [email protected] (M.P.) 3 Federal Institute of Education, Science and Technology of Espírito Santo, Serra, Espírito Santo 29056-264, Brazil; [email protected] 4 Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, 1090 Vienna, Austria * Correspondence: [email protected]; Tel.: +43-1-40400-46140; Fax: +43-1-40400-42160 Received: 9 October 2020; Accepted: 17 November 2020; Published: 21 November 2020 Abstract: Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (coronavirus disease 2019; COVID-19) is associated with adverse outcomes in patients with cardiovascular disease (CVD). The aim of the study was to characterize the interaction between SARS-CoV-2 and Angiotensin-Converting Enzyme 2 (ACE2) functional networks with a focus on CVD. Methods: Using the network medicine approach and publicly available datasets, we investigated ACE2 tissue expression and described ACE2 interaction networks that could be affected by SARS-CoV-2 infection in the heart, lungs and nervous system.
    [Show full text]
  • (Dominance) Effects of Genetic Variants Associated with Refractive Error And
    Molecular Genetics and Genomics https://doi.org/10.1007/s00438-020-01666-w ORIGINAL ARTICLE Non‑additive (dominance) efects of genetic variants associated with refractive error and myopia Alfred Pozarickij1 · Cathy Williams2 · Jeremy A. Guggenheim1 · and the UK Biobank Eye and Vision Consortium Received: 26 November 2019 / Accepted: 16 March 2020 © The Author(s) 2020 Abstract Genome-wide association studies (GWAS) have revealed that the genetic contribution to certain complex diseases is well- described by Fisher’s infnitesimal model in which a vast number of polymorphisms each confer a small efect. Under Fisher’s model, variants have additive efects both across loci and within loci. However, the latter assumption is at odds with the com- mon observation of dominant or recessive rare alleles responsible for monogenic disorders. Here, we searched for evidence of non-additive (dominant or recessive) efects for GWAS variants known to confer susceptibility to the highly heritable quantitative trait, refractive error. Of 146 GWAS variants examined in a discovery sample of 228,423 individuals whose refractive error phenotype was inferred from their age-of-onset of spectacle wear, only 8 had even nominal evidence (p < 0.05) of non-additive efects. In a replication sample of 73,577 individuals who underwent direct assessment of refractive error, 1 of these 8 variants had robust independent evidence of non-additive efects (rs7829127 within ZMAT4, p = 4.76E−05) while a further 2 had suggestive evidence (rs35337422 in RD3L, p = 7.21E−03 and rs12193446 in LAMA2, p = 2.57E−02). Account- ing for non-additive efects had minimal impact on the accuracy of a polygenic risk score for refractive error (R2 = 6.04% vs.
    [Show full text]
  • Genomic Selection Signatures in Sheep from the Western Pyrenees Otsanda Ruiz-Larrañaga, Jorge Langa, Fernando Rendo, Carmen Manzano, Mikel Iriondo, Andone Estonba
    Genomic selection signatures in sheep from the Western Pyrenees Otsanda Ruiz-Larrañaga, Jorge Langa, Fernando Rendo, Carmen Manzano, Mikel Iriondo, Andone Estonba To cite this version: Otsanda Ruiz-Larrañaga, Jorge Langa, Fernando Rendo, Carmen Manzano, Mikel Iriondo, et al.. Genomic selection signatures in sheep from the Western Pyrenees. Genetics Selection Evolution, BioMed Central, 2018, 50 (1), pp.9. 10.1186/s12711-018-0378-x. hal-02405217 HAL Id: hal-02405217 https://hal.archives-ouvertes.fr/hal-02405217 Submitted on 11 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Ruiz-Larrañaga et al. Genet Sel Evol (2018) 50:9 https://doi.org/10.1186/s12711-018-0378-x Genetics Selection Evolution RESEARCH ARTICLE Open Access Genomic selection signatures in sheep from the Western Pyrenees Otsanda Ruiz‑Larrañaga1* , Jorge Langa1, Fernando Rendo2, Carmen Manzano1, Mikel Iriondo1 and Andone Estonba1 Abstract Background: The current large spectrum of sheep phenotypic diversity
    [Show full text]
  • Ingenuity Pathway Analysis of Differentially Expressed Genes Involved in Signaling Pathways and Molecular Networks in Rhoe Gene‑Edited Cardiomyocytes
    INTERNATIONAL JOURNAL OF MOleCular meDICine 46: 1225-1238, 2020 Ingenuity pathway analysis of differentially expressed genes involved in signaling pathways and molecular networks in RhoE gene‑edited cardiomyocytes ZHONGMING SHAO1*, KEKE WANG1*, SHUYA ZHANG2, JIANLING YUAN1, XIAOMING LIAO1, CAIXIA WU1, YUAN ZOU1, YANPING HA1, ZHIHUA SHEN1, JUNLI GUO2 and WEI JIE1,2 1Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang, Guangdong 524023; 2Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of The First Affiliated Hospital, Hainan Medical University, Haikou, Hainan 571199, P.R. China Received January 7, 2020; Accepted May 20, 2020 DOI: 10.3892/ijmm.2020.4661 Abstract. RhoE/Rnd3 is an atypical member of the Rho super- injury and abnormalities, cell‑to‑cell signaling and interaction, family of proteins, However, the global biological function and molecular transport. In addition, 885 upstream regulators profile of this protein remains unsolved. In the present study, a were enriched, including 59 molecules that were predicated RhoE‑knockout H9C2 cardiomyocyte cell line was established to be strongly activated (Z‑score >2) and 60 molecules that using CRISPR/Cas9 technology, following which differentially were predicated to be significantly inhibited (Z‑scores <‑2). In expressed genes (DEGs) between the knockout and wild‑type particular, 33 regulatory effects and 25 networks were revealed cell lines were screened using whole genome expression gene to be associated with the DEGs. Among them, the most signifi- chips. A total of 829 DEGs, including 417 upregulated and cant regulatory effects were ‘adhesion of endothelial cells’ and 412 downregulated, were identified using the threshold of ‘recruitment of myeloid cells’ and the top network was ‘neuro- fold changes ≥1.2 and P<0.05.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • The Association of Single Nucleotide Polymorphisms in Intronic Regions of Islet Cell Autoantigen 1 and Type 1 Diabetes Mellitus
    THE ASSOCIATION OF SINGLE NUCLEOTIDE POLYMORPHISMS IN INTRONIC REGIONS OF ISLET CELL AUTOANTIGEN 1 AND TYPE 1 DIABETES MELLITUS by Carrie Lynn Blout B.S., Dickinson College, 2004 Submitted to the Graduate Faculty of Department of Human Genetics – Genetic Counseling the University of Pittsburgh in partial fulfillment of the requirements for the degree of Masters of Science University of Pittsburgh 2006 UNIVERSITY OF PITTSBURGH THE GRADUATE SCHOOL OF PUBLIC HEALTH This thesis was presented by Carrie Lynn Blout It was defended on March 30, 2006 and approved by Committee Member: Elizabeth Gettig, MS, CGC Associate Professor of Human Genetics Director, Genetic Counseling Program Graduate School of Public Health University of Pittsburgh Committee Member: John W. Wilson, PhD Assistant Professor Department of Biostatistics Graduate School of Public Health University of Pittsburgh Committee Member: Michael M. Barmada, Ph.D. Associate Professor of Human Genetics Director, Human Genetics Department Computational Resources Division Graduate School of Public Health University of Pittsburgh Thesis Advisor: Massimo Pietropaolo, M.D. University of Pittsburgh Physicians Faculty UPMC Department of Pediatrics Rangos Research Center Genetic Immunology University of Pittsburgh ii THE ASSOCIATION OF SINGLE NUCLEOTIDE POLYMORPHISMS, LOCATED WITHIN INTRONIC REGIONS OF ISLET CELL AUTOANTIGEN 1 AND TYPE 1 DIABETES MELLITUS Carrie L. Blout, M.S. University of Pittsburgh, 2006 Type 1 diabetes mellitus is a multifactorial autoimmune disease caused by a combination of genetic and environmental factors. Further knowledge and understanding about the genes which play a role in type 1 diabetes has a clear public health significance in that it will aid in the prediction, treatment and a possible cure.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Structural Insights Into Ubiquitin Recognition and Ufd1 Interaction of Npl4
    ARTICLE https://doi.org/10.1038/s41467-019-13697-y OPEN Structural insights into ubiquitin recognition and Ufd1 interaction of Npl4 Yusuke Sato1,2,3,5,7, Hikaru Tsuchiya4,7, Atsushi Yamagata1,2,3,6, Kei Okatsu1,2, Keiji Tanaka4, Yasushi Saeki 4* & Shuya Fukai 1,2,3* Npl4 is likely to be the most upstream factor recognizing Lys48-linked polyubiquitylated substrates in the proteasomal degradation pathway in yeast. Along with Ufd1, Npl4 forms a 1234567890():,; heterodimer (UN), and functions as a cofactor for the Cdc48 ATPase. Here, we report the crystal structures of yeast Npl4 in complex with Lys48-linked diubiquitin and with the Npl4- binding motif of Ufd1. The distal and proximal ubiquitin moieties of Lys48-linked diubiquitin primarily interact with the C-terminal helix and N-terminal loop of the Npl4 C-terminal domain (CTD), respectively. Mutational analysis suggests that the CTD contributes to linkage selectivity and initial binding of ubiquitin chains. Ufd1 occupies a hydrophobic groove of the Mpr1/Pad1 N-terminal (MPN) domain of Npl4, which corresponds to the catalytic groove of the MPN domain of JAB1/MPN/Mov34 metalloenzyme (JAMM)-family deubiquitylating enzyme. This study provides important structural insights into the polyubiquitin chain recognition by the Cdc48–UN complex and its assembly. 1 Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan. 2 Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo 113-0032, Japan. 3 Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan. 4 Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
    [Show full text]
  • Comparative Genome Mapping in the Sequence-Based Era: Early Experience with Human Chromosome 7
    Downloaded from genome.cshlp.org on May 28, 2019 - Published by Cold Spring Harbor Laboratory Press First Glimpses/Report Comparative Genome Mapping in the Sequence-based Era: Early Experience with Human Chromosome 7 James W. Thomas,1 Tyrone J. Summers,1 Shih-Queen Lee-Lin,1 Valerie V. Braden Maduro,1 Jacquelyn R. Idol,1 Stephen D. Mastrian,1 Joseph F. Ryan,1 D. Curtis Jamison,1 and Eric D. Green1,2 1Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892 USA The success of the ongoing Human Genome Project has resulted in accelerated plans for completing the human genome sequence and the earlier-than-anticipated initiation of efforts to sequence the mouse genome. As a complement to these efforts, we are utilizing the available human sequence to refine human-mouse comparative maps and to assemble sequence-ready mouse physical maps. Here we describe how the first glimpses of genomic sequence from human chromosome 7 are directly facilitating these activities. Specifically, we are actively enhancing the available human-mouse comparative map by analyzing human chromosome 7 sequence for the presence of orthologs of mapped mouse genes. Such orthologs can then be precisely positioned relative to mapped human STSs and other genes. The chromosome 7 sequence generated to date has allowed us to more than double the number of genes that can be placed on the comparative map. The latter effort reveals that human chromosome 7 is represented by at least 20 orthologous segments of DNA in the mouse genome. A second component of our program involves systematically analyzing the evolving human chromosome 7 sequence for the presence of matching mouse genes and expressed-sequence tags (ESTs).
    [Show full text]
  • 2010 Physical Biosciences Research Meeting
    2010 Physical Biosciences Research Meeting Sheraton Inner Harbor Hotel Baltimore, MD October 17-20, 2010 Office of Basic Energy Sciences Chemical Sciences, Geosciences & Biosciences Division 2010 Physical Biosciences Research Meeting Program and Abstracts Sheraton Inner Harbor Hotel Baltimore, MD October 17-20, 2010 Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Science U.S. Department of Energy i Cover art is taken from the public domain and can be found at: http://commons.wikimedia.org/wiki/File:Blue_crab_on_market_in_Piraeus_-_Callinectes_sapidus_Rathbun_20020819- 317.jpg This document was produced under contract number DE-AC05-060R23100 between the U.S. Department of Energy and Oak Ridge Associated Universities. The research grants and contracts described in this document are, unless specifically labeled otherwise, supported by the U.S. DOE Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division. ii Foreword This volume provides a record of the 2nd biennial meeting of the Principal Investigators (PIs) funded by the Physical Biosciences program, and is sponsored by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences (BES) in the U.S. Department of Energy (DOE). Within DOE-BES there are two programs that fund basic research in energy-relevant biological sciences, Physical Biosciences and Photosynthetic Systems. These two Biosciences programs, along with a strong program in Solar Photochemistry, comprise the current Photo- and Bio- Chemistry Team. This meeting specifically brings together under one roof all of the PIs funded by the Physical Biosciences program, along with Program Managers and staff not only from DOE-BES, but also other offices within DOE, the national labs, and even other federal funding agencies.
    [Show full text]