Comesperma Ericinum

Total Page:16

File Type:pdf, Size:1020Kb

Comesperma Ericinum Comesperma ericinum Family: Polygalaceae Distribution: South-east Queensland, eastern New South Wales, Victoria, Tasmania and South Australia, usually in open forest or heath. Common Heath milkwort; match heads Name: Derivation of Comesperma... From Greek come, a hair and sperma, a Name: seed (ie. hair-seed), referring to tufts of hair on the seed. ericinum... similar to the genus Erica. Conservation Not considered to be at risk in the wild. Status: General Description: Comesperma is a genus of about 25 species all of which occur only in Australia. The genus is well developed in Western Australia where most species occur. Comesperma ericinum Photo: Brian Walters Comesperma ericinum is a small, erect shrub to about 1 - 1.5 metres high. The leaves are narrowly oblong or linear, about 6 to 20 mm long by 1 to 4 mm wide with margins that may be curved under (recurved). The flowers occur in clusters towards the ends of the branches. Individually the flowers are small (5 to 10 mm long) and are usually mauve or purple although white forms are known. Flowering occurs mainly in spring but spasmodic flowering can occur at other times. Although the best known member of the genus and an attractive plant when in flower, C.ericinum is not seen often in cultivation and it has proven to be difficult to maintain for long periods. The best chance of success appears to be in semi shaded, well drained conditions in sandy soils. Propagation is reported to be successful from seed, without pre-treatment, although seed is rarely available. Cuttings from hardened, current season's will strike but the success rate is usually well below 100%..
Recommended publications
  • Flora and Fauna
    ENVIRONMENTAL ASSESSMENT Volume 2 Technical Papers MUNMORAH GAS TURBINE FACILITY MUNMORAH POWER STATION.indd 3 21/12/05 2:27:29 PM Contents Technical Papers (Volume 2) Technical Paper No.1 Flora and Fauna Assessment Technical Paper No.2 Heritage Assessment Technical Paper No.3 Noise Assessment Technical Paper No.4 Air Quality Impact Assessment Technical Paper No 5 Photochemical Pollution Assessment Technical Paper No 6 Preliminary Hazard Analysis FLORA AND FAUNA ASSESSMENT TECHNICAL PAPER DIVIDERS.indd 30 121/12/05 3:44:33 PM Technical Paper 1 Flora and Fauna Assessment of Munmorah Gas Turbine Facility December 2005 Delta Electricity Parsons Brinckerhoff Australia Pty Limited ACN 078 004 798 and Parsons Brinckerhoff International (Australia) Pty Limited ACN 006 475 056 trading as Parsons Brinckerhoff ABN 84 797 323 433 Level 27 Ernst & Young Centre 680 George Street Sydney NSW 2000 GPO Box 5394 Australia Telephone +61 2 9272 5100 Facsimile +61 2 9272 5101 Email [email protected] ABN 84 797 323 433 NCSI Certified Quality System ISO 9001 2116541A Parsons Brinckerhoff supports the Environment by PR_2467.doc printing on 100per cent A4 recycled paper ©Parsons Brinckerhoff Australia Pty Limited and Parsons Brinckerhoff International (Australia) Pty Limited trading as Parsons Brinckerhoff (“PB”). [2005] Copyright in the drawings, information and data recorded in this document (“the information”) is the property of PB. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by PB.
    [Show full text]
  • Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
    Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al.
    [Show full text]
  • Combined Phylogenetic Analyses Reveal Interfamilial Relationships and Patterns of floral Evolution in the Eudicot Order Fabales
    Cladistics Cladistics 1 (2012) 1–29 10.1111/j.1096-0031.2012.00392.x Combined phylogenetic analyses reveal interfamilial relationships and patterns of floral evolution in the eudicot order Fabales M. Ange´ lica Belloa,b,c,*, Paula J. Rudallb and Julie A. Hawkinsa aSchool of Biological Sciences, Lyle Tower, the University of Reading, Reading, Berkshire RG6 6BX, UK; bJodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; cReal Jardı´n Bota´nico-CSIC, Plaza de Murillo 2, CP 28014 Madrid, Spain Accepted 5 January 2012 Abstract Relationships between the four families placed in the angiosperm order Fabales (Leguminosae, Polygalaceae, Quillajaceae, Surianaceae) were hitherto poorly resolved. We combine published molecular data for the chloroplast regions matK and rbcL with 66 morphological characters surveyed for 73 ingroup and two outgroup species, and use Parsimony and Bayesian approaches to explore matrices with different missing data. All combined analyses using Parsimony recovered the topology Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). Bayesian analyses with matched morphological and molecular sampling recover the same topology, but analyses based on other data recover a different Bayesian topology: ((Polygalaceae + Leguminosae) (Quillajaceae + Surianaceae)). We explore the evolution of floral characters in the context of the more consistent topology: Polygalaceae (Leguminosae (Quillajaceae + Surianaceae)). This reveals synapomorphies for (Leguminosae (Quillajaceae + Suri- anaceae)) as the presence of free filaments and marginal ⁄ ventral placentation, for (Quillajaceae + Surianaceae) as pentamery and apocarpy, and for Leguminosae the presence of an abaxial median sepal and unicarpellate gynoecium. An octamerous androecium is synapomorphic for Polygalaceae. The development of papilionate flowers, and the evolutionary context in which these phenotypes appeared in Leguminosae and Polygalaceae, shows that the morphologies are convergent rather than synapomorphic within Fabales.
    [Show full text]
  • Flora and Vegetation Of
    __________________________________________________________________________________________ FLORA AND VEGETATION OF AVIVA LEASE AREA Prepared for: URS Australia Pty Ltd on behalf of Aviva Corporation Ltd Prepared by: Mattiske Consulting Pty Ltd February 2009 MATTISKE CONSULTING PTY LTD URS0808/195/08 MATTISKE CONSULTING PTY LTD __________________________________________________________________________________________ TABLE OF CONTENTS Page 1. SUMMARY ................................................................................................................................................ 1 2. INTRODUCTION ...................................................................................................................................... 3 2.1 Location .............................................................................................................................................. 3 2.2 Climate ................................................................................................................................................ 3 2.3 Landforms and Soils ........................................................................................................................... 4 2.4 Vegetation ........................................................................................................................................... 4 2.5 Declared Rare, Priority and Threatened Species ................................................................................. 4 2.6 Threatened Ecological Communities (TEC’s) ...................................................................................
    [Show full text]
  • The 1770 Landscape of Botany Bay, the Plants Collected by Banks and Solander and Rehabilitation of Natural Vegetation at Kurnell
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hochschulschriftenserver - Universität Frankfurt am Main Backdrop to encounter: the 1770 landscape of Botany Bay, the plants collected by Banks and Solander and rehabilitation of natural vegetation at Kurnell Doug Benson1 and Georgina Eldershaw2 1Botanic Gardens Trust, Mrs Macquaries Rd Sydney 2000 AUSTRALIA email [email protected] 2Parks & Wildlife Division, Dept of Environment and Conservation (NSW), PO Box 375 Kurnell NSW 2231 AUSTRALIA email [email protected] Abstract: The first scientific observations on the flora of eastern Australia were made at Botany Bay in April–May 1770. We discuss the landscapes of Botany Bay and particularly of the historic landing place at Kurnell (lat 34˚ 00’ S, long 151˚ 13’ E) (about 16 km south of central Sydney), as described in the journals of Lieutenant James Cook and Joseph Banks on the Endeavour voyage in 1770. We list 132 plant species that were collected at Botany Bay by Banks and Daniel Solander, the first scientific collections of Australian flora. The list is based on a critical assessment of unpublished lists compiled by authors who had access to the collection of the British Museum (now Natural History Museum), together with species from material at National Herbarium of New South Wales that has not been previously available. The list includes Bidens pilosa which has been previously regarded as an introduced species. In 1770 the Europeans set foot on Aboriginal land of the Dharawal people. Since that time the landscape has been altered in response to a succession of different land-uses; farming and grazing, commemorative tree planting, parkland planting, and pleasure ground and tourist visitation.
    [Show full text]
  • Ecology of Pyrmont Peninsula 1788 - 2008
    Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Transformations: Ecology of Pyrmont peninsula 1788 - 2008 John Broadbent Sydney, 2010. Ecology of Pyrmont peninsula iii Executive summary City Council’s ‘Sustainable Sydney 2030’ initiative ‘is a vision for the sustainable development of the City for the next 20 years and beyond’. It has a largely anthropocentric basis, that is ‘viewing and interpreting everything in terms of human experience and values’(Macquarie Dictionary, 2005). The perspective taken here is that Council’s initiative, vital though it is, should be underpinned by an ecocentric ethic to succeed. This latter was defined by Aldo Leopold in 1949, 60 years ago, as ‘a philosophy that recognizes[sic] that the ecosphere, rather than any individual organism[notably humans] is the source and support of all life and as such advises a holistic and eco-centric approach to government, industry, and individual’(http://dictionary.babylon.com). Some relevant considerations are set out in Part 1: General Introduction. In this report, Pyrmont peninsula - that is the communities of Pyrmont and Ultimo – is considered as a microcosm of the City of Sydney, indeed of urban areas globally. An extensive series of early views of the peninsula are presented to help the reader better visualise this place as it was early in European settlement (Part 2: Early views of Pyrmont peninsula). The physical geography of Pyrmont peninsula has been transformed since European settlement, and Part 3: Physical geography of Pyrmont peninsula describes the geology, soils, topography, shoreline and drainage as they would most likely have appeared to the first Europeans to set foot there.
    [Show full text]
  • Comesperma Sp
    Number 8 September 2019 DO YOU KNOW THESE SPECIES? Photography & text by Margaret MacDonald Comesperma sp. (come = hair of the head, sperma = seed referring to the tuft of hairs on the seeds of most species). Family: POLYGALACEAE Four species of Comesperma grow in the Anglesea district, an endemic Australian genus of approximately 30 species. They are small perennial shrubs, subshrubs or twiners. Flowers of the Comesperma family look superficially like those of the pea family but there are some significant differences. Leaves are alternate and simple, and the inflorescence is held in a raceme at the end of the flowering stem. There are five unequal sepals with one pair enlarged and often petal-like, and 3 smaller sepals. There are 3 or 5 petals with the lower petal lobed or pouched. Love Creeper, Comesperma volubile (volubilis = twining) The most widespread of the four species, this attractive twiner can be found in woodland and heathland areas. Not apparent for most of the year, racemes of tiny blue flowers appear on slender stems in early spring and can often be seen extensively draped overhead. Love Creeper is almost leafless. Blue-spike Milkwort, Comesperma calygema (calygema = with a large cover) This is a stiff, erect small subshrub that grows in heathland and arises annually from a rhizome. It bears a raceme of deep blue flowers on the top of the flower stems that grow to about 30 cm tall. The leaves are usually found in the lower section of the flowering stem. It is widespread and quite common. Small Milkwort, Comesperma polygaloides (polygaloides = resembling Polygala) A small colony of this subshrub that grows to about 30 cm high was found in summer 2017 at Pt Addis after having been missing from the area for a long period of time.
    [Show full text]
  • 3. POLYGALA Linnaeus, Sp. Pl. 2: 701. 1753. 远志属 Yuan Zhi Shu Annual Or Perennial Herbs, Or Shrubs Or Small Trees, Rarely Small, Woody Climbers
    Fl. China 11: 141–158. 2008. 3. POLYGALA Linnaeus, Sp. Pl. 2: 701. 1753. 远志属 yuan zhi shu Annual or perennial herbs, or shrubs or small trees, rarely small, woody climbers. Leaves simple, alternate, rarely opposite or whorled, petiolate; leaf blade papery or subleathery, margin entire, glabrous or pilose. Racemes terminal, axillary, or extra-axillary. Flowers bisexual, zygomorphic; bracts 1–3, persistent or caducous; bracteoles present. Sepals 5, unequal, persistent or caducous, in 2 ranks; outer 3 small; inner 2 petaloid, large. Petals 3, connate in lower 1/2, white, yellow, or purple-red, keel boat-shaped, cucullate, or helmet-shaped enclosing stamens and style, apex with often highly divided appendage. Stamens 8; filaments united at least at base, forming trough-shaped sheath (“staminal sheath”), open on upper side, adnate with petals, variously united or free above; anthers basifixed, with or without stalk, 1- or 2-celled, dehiscent from terminal pore or slit. Disk present or absent. Ovary 2-loculed, compressed; ovule 1 per locule, anatropous, pendulous; style 1, erect or curved; stigmas 1 or 2. Fruit capsular, compressed, often winged. Seeds 2, usually black, ovoid, rounded or shortly cuneate, pubescent or glabrous, strophiolate at hiliferous end, strophiole cap-shaped, cucullate, margin entire or variously lobed, other end sometimes with appendage. About 500 species: widespread worldwide; 44 species (21 endemic) in China. 1a. Sepals persistent after flowering; keel with apical appendage highly filiform-fimbriate. 2a. Filaments united, forming an open staminal sheath split in upper 1/2–2/3, with 2 separate single filaments in middle, and on either side of these, a united group of 3 filaments each carrying 3 sessile anthers at tip.
    [Show full text]
  • Rbcl and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies Tadashi Kajita; Hiroyoshi Ohashi; Yoichi Tateishi; C
    rbcL and Legume Phylogeny, with Particular Reference to Phaseoleae, Millettieae, and Allies Tadashi Kajita; Hiroyoshi Ohashi; Yoichi Tateishi; C. Donovan Bailey; Jeff J. Doyle Systematic Botany, Vol. 26, No. 3. (Jul. - Sep., 2001), pp. 515-536. Stable URL: http://links.jstor.org/sici?sici=0363-6445%28200107%2F09%2926%3A3%3C515%3ARALPWP%3E2.0.CO%3B2-C Systematic Botany is currently published by American Society of Plant Taxonomists. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/aspt.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected].
    [Show full text]
  • Native Species
    Birdlife Australia Gluepot Reserve PLANT SPECIES LIST These are species recorded by various observers. Species in bold have been vouchered. The list is being continually updated NATIVE SPECIES Species name Common name Acacia acanthoclada Harrow Wattle Acacia aneura Mulga Acacia brachybotrya Grey Mulga Acacia colletioides Wait a While Acacia hakeoides Hakea leaved Wattle Acacia halliana Hall’s Wattle Acacia ligulata Sandhill Wattle Acacia nyssophylla Prickly Wattle Acacia oswaldii Boomerang Bush Acacia rigens Needle Wattle Acacia sclerophylla var. sclerophylla Hard Leaved Wattle Acacia wilhelmiana Wilhelm’s Wattle Actinobole uliginosum Flannel Cudweed Alectryon oleifolius ssp. canescens Bullock Bush Amphipogon caricinus Long Grey Beard Grass Amyema miquelii Box Mistletoe Amyema miraculosa ssp. boormanii Fleshy Mistletoe Amyema preissii Wire Leaved Acacia Mistletoe Angianthus tomentosus Hairy Cup Flower Atriplex acutibractea Pointed Salt Bush Atriplex rhagodioides Spade Leaved Salt Bush Atriplex stipitata Bitter Salt Bush Atriplex vesicaria Bladder Salt Bush Austrodanthonia caespitosa Wallaby Grass Austrodanthonia pilosa Wallaby Grass Austrostipa elegantissima Elegant Spear Grass Austrostipa hemipogon Half Beard Spear grass Austrostipa nitida Balcarra Spear grass Austrostipa scabra ssp. falcata Rough Spear Grass Austrostipa scabra ssp. scabra Rough Spear Grass Austrostipa tuckeri Tucker’s Spear grass Baeckea crassifolia Desert Baeckea Baeckea ericaea Mat baeckea Bertya tasmanica ssp vestita Mitchell’s Bertya Beyeria lechenaultii Mallefowl
    [Show full text]
  • Report on the Grimwade Plant Collection of Percival St John and Botanical Exploration of Mt Buffalo National Park (Victoria, Australia)
    Report on the Grimwade Plant Collection of Percival St John and Botanical Exploration of Mt Buffalo National Park (Victoria, Australia) Alison Kellow Michael Bayly Pauline Ladiges School of Botany, The University of Melbourne July, 2007 THE GRIMWADE PLANT COLLECTION, MT BUFFALO Contents Summary ...........................................................................................................................3 Mt Buffalo and its flora.....................................................................................................4 History of botanical exploration........................................................................................5 The Grimwade plant collection of Percival St John..........................................................8 A new collection of plants from Mt Buffalo - The Miegunyah Plant Collection (2006/2007) ....................................................................................................................................13 Plant species list for Mt Buffalo National Park...............................................................18 Conclusion.......................................................................................................................19 Acknowledgments...........................................................................................................19 References .......................................................................................................................20 Appendix 1 Details of specimens in the Grimwade Plant Collection.............................22
    [Show full text]
  • C5 Mattiske Consulting- Flora and Vegetation Survey
    FLORA AND VEGETATION SURVEY PINJIN INFRASTRUCTURE CORRIDOR L31/56, L31/57, L39/185 TROPICANA GOLD PROJECT OPERATIONAL AREA – PINJIN STATION Prepared for: Tropicana Joint Venture Prepared by: Mattiske Consulting Pty Ltd July 2009 MATTISKE CONSULTING PTY LTD AGA0703/061/08 MATTISKE CONSULTING PTY LTD TABLE OF CONTENTS Page 1. SUMMARY .................................................................................................................................................... 1 2. INTRODUCTION .......................................................................................................................................... 3 2.1 PROJECT DESCRIPTION ............................................................................................................................. 3 2.2 LANDFORMS AND SOILS ........................................................................................................................... 4 2.3 VEGETATION ............................................................................................................................................ 4 2.4 CLIMATE .................................................................................................................................................. 5 2.5 CLEARING OF NATIVE VEGETATION ........................................................................................................ 5 2.6 RARE AND PRIORITY FLORA .................................................................................................................... 6 2.7 THREATENED
    [Show full text]