Ntsb/Aar-85/05

Total Page:16

File Type:pdf, Size:1020Kb

Ntsb/Aar-85/05 PB85-910405 NATIQNAL . - L. WASHINGTON, D.C. 20594 AIRCRAFT ACCIDENT REPORi UNITED AIRLINES FLIGHT 663 BOEING 727-222; N7647U DENVER, COLORADO MAY 31, 1984 NTSBIAAR-85/05 UNITED STATES GOVERNMENT CONTENTS - SYNOPSIS . ..*......................... 1 1. -- FACTUAL INFORMATION ........................................... 1 ‘b’ 1. History of the Flight ................................................ 1 P.2 Injuries to Persons .................................................. 9 C’ j. 1.3 *Damage to Aircraft ................................................. 9 1.4 Other Damage ...................................................... 9 1.5 Personnel In for ma tion ............................................... 9 1.6 Aircraft Information ................................................ 9 1.7 Meteorological Information ........................................... 10 1.7.1 Doppler Radar In for mat ion ........................................... 11 1.7.2 Program for Regional Observing and Forecasting Services (PROFS) Data .. .12 1.7.3 .-Weather Analysis ................................................... 14 . 1.8 Aids to Navigation .................................................. 16 1.9 Communications .................................................... 16 1.10 -Aerodrome Information ........................... ..c .................16 - 1.10.1 ,Low Level Wind Shear Alert System ................................... 17 1.11 Flight Recorders .................................................... 17 1.12 Wreckage and Impact Information ..................................... 20 1.13. Medical and Pathological Information .................................. 22 1.14 Fire ............................................................... 22 1.15 Survival Aspects .................................................... 22 .J 1.16 Tests and Research .................................................. 22 1.16.1-Aircraft Takeoff Performance Analysis ................................ 22 1.17 Additional Information ............................................... 25 ’ 1.17.1 Air Traffic Control Procedures ....................................... 25 ‘.-I’ 1.17.2 ATC Handling of Aircraft ............................................ 29 ._ 1.17.3 Pilot Reports ....................................................... 32 _‘1.17.4 -,Company Wind Shear Training Program ................................ 34 li17.5 --’ Government and Industry Wind Shear Hazard Abatement Activities ....... .35 --A 1.17.6 -. Wind Shear Accident History ......................................... 36 1.18 New Investigative Techniques ......................................... 38 2. ANALYSIS ......................................................... 38 ‘.J 2.1 General ............................................................ 38 -L0 2.2 ............................................... 39 Environmental Factors -12.3 Airplane Takeoff Performance ........................................ 41 . -.J 2.4 Operational Fat tors ................................................. 42 ......................................... 45 .-: -2.5 Human Performance Factors 3. CONCLUSIONS ..................................................... 52 3.1 Findings ........................................................... 52 . Probable Cause ..................................................... 54 . RECOMMENDATIONS ............................................... 54 8 ii L P.Government Accession No. 3.Recipient’s Catalog No. * ElwigA~i-a5/05 PB85-910405 1. Title and Subtitle Amraft Accident Report - S.Report Date United Airlines Flight 663, Boeing 727-222, N7647U, March 21, 1985 Denver, Colorado, May 31, 1984 6.Performing Organization Code 1. Author(s) 8.Performing Organization Report No. 3. Performing Organization Name and Address 10.W~l~yni t No. National Transportation Safety Board ll.Contract or Grant No. Bureau of Accident Investigation Washington, D.C. 20594 13.Type of Report and Period Covered 12.Sponsoring Agency Name and Address Aircraft Accident Report May 31, 1984 NATIONAL TRANSPORTATION SAFETY BOARD Washington, D. C. 20594 14.Sponsoring Agency Code 15.Supplementary Notes 16.Abstract On May 31, 1984, at 1334 m.d.t., United Airlines Flight 663, a Boeing 727, struck the localizer antenna 1,074 feet beyond the departure end of runway 35L during takeoff at Stapleton International Airport, Denver, Colorado. The flight was en route to Las Vegas, Nevada, with 98 passengers and 7 crewmembers aboard. The flightcrew said they were not aware that the airplane had struck the antenna. When they were not able to pressurize the airplane after takeoff, the captain decided to return and land at Stapleton. The approach and landing on runway 26L was uneventful. There were no injuries, but the airplane sustained substantial airframe damage when it struck the antenna. The National Transportation Safety Board determines that the probable cause of the accident was an encounter with severe wind shear from microburst activity following the captain’s decision to take off under meteorological conditions conducive to severe wind shear. Factors which influenced his decisionmaking include: (1) the limitations of the low level wind shear alert system to provide readily usable shear information, and the incorrect terminology used by the controller in reporting this information; (2) the captain’s erroneous assessment of a wind shear report from a turboprop airplane and the fact that he did not receive a wind shear report from a departing airplane similar to his airplane because of congestion on the air traffic control radio frequency; (3) successful takeoffs made by several other air carrier airplanes in sequence; and (4) the captain’s previous experience operating successfully at Denver under wind shear conditions. 1. JCL1 atiw 18.Distribution Statement 17.Key Words takeoff%nlrlar climb; in-flight collision with object; wind shear; pilot iudpmt; flying This document is available technique; flight@rew coordination) cockpit resource through the National Technical training; flightcrew and cabin crew coordinatidn; Information Service, wind_sb_ear alert svstem (I&WAS); air trRf& Springfield, Virginia 22161 control procews; weathe rj q&j-l -‘, lg.Security Classification 20 Security Classification 21.No. of Pages 22.Price ’ (of this page) , (of this report) UNCLASSIFIED UNCLASSIFIED 76 NTSB Form 1765.2 (Rev. g/74) CONTENTS - SYNOPSIS ......................................................... 1 1. A FACTUAL INFORMATION ..........................................I. 1 ‘Lf 1. History of the Flight ................................................ 1 (7.2 Injuries to Persons .................................................. 9 ’ 1.3 -Damage to Aircraft ................................................. 9 1.4 Other Damage ...................................................... 9 1.5 Personnel Information ............................................... 9 1.6 Aircraft Information ................................................ 9 1.7 Meteorological Information ........................................... 10 1.7.1 Doppler Radar Information ........................................... 11 1.7.2 Program for Regional Observing and Forecasting Services (PROFS) Data .. .12 1.7.3 .-Weather Analysis ................................................... 14 1.8 Aids to Navigation .................................................. 16 1.9 Communications .................................................... 16 1,lO %erodrome Information .............................................. 16 - 1.10.1 . Low Level Wind Shear Alert System ................................... 17 1.11 Flight Recorders .................................................... 17 1.12 Wreckage and Impact Information ..................................... 20 1.13. Medical and Pathological Information .................................. 22 1.14 Fire ............................................................... 22 1.15 Survival Aspects .................................................... 22 u’ 1.16 Tests and Research .................................................. 22 1.16.1 --Aircraft Takeoff Performance Analysis ................................ 22 1.17 Additional Information ............................................... 25 ’ 1.17.1 Air Traffic Control Procedures ....................................... 25 ‘-,’ 1.17.2 ATC Handling of Aircraft ............................................ 29 - 1.17.3 Pilot Reports ....................................................... 32 “: 1.17.4 -Company Wind Shear Training Program ................................ 34 li17.5 -I Government and Industry Wind Shear Hazard Abatement Activities ....... .35 -~1.17.6 -- Wind Shear Accident History ......................................... 36 1.18 New Investigative Techniques ......................................... 38 2. ANALYSIS ......................................................... 38 ‘4 2.1 General ............................................................ 38 -.i0 2.2 ............................................... 39 Environ mental Fat tors -.:2.3 Airplane Takeoff Performance ........................................ 41 _ -J 2.4 Operational Factors ................................................. 42 .-.: 2.5 Human Performance Factors ......................................... 45 3. CONCLUSIONS ..................................................... 52 3.1 Findings ........................................................... 52 . Probable Cause ..................................................... 54 67. RECOMMENDATIONS ..............................................
Recommended publications
  • Pitot-Static System Blockage Effects on Airspeed Indicator
    The Dramatic Effects of Pitot-Static System Blockages and Failures by Luiz Roberto Monteiro de Oliveira . Table of Contents I ‐ Introduction…………………………………………………………………………………………………………….1 II ‐ Pitot‐Static Instruments…………………………………………………………………………………………..3 III ‐ Blockage Scenarios – Description……………………………..…………………………………….…..…11 IV ‐ Examples of the Blockage Scenarios…………………..……………………………………………….…15 V ‐ Disclaimer………………………………………………………………………………………………………………50 VI ‐ References…………………………………………………………………………………………….…..……..……51 Please also review and understand the disclaimer found at the end of the article before applying the information contained herein. I - Introduction This article takes a comprehensive look into Pitot-static system blockages and failures. These typically affect the airspeed indicator (ASI), vertical speed indicator (VSI) and altimeter. They can also affect the autopilot auto-throttle and other equipment that relies on airspeed and altitude information. There have been several commercial flights, more recently Air France's flight 447, whose crash could have been due, in part, to Pitot-static system issues and pilot reaction. It is plausible that the pilot at the controls could have become confused with the erroneous instrument readings of the airspeed and have unknowingly flown the aircraft out of control resulting in the crash. The goal of this article is to help remove or reduce, through knowledge, the likelihood of at least this one link in the chain of problems that can lead to accidents. Table 1 below is provided to summarize
    [Show full text]
  • Airspeed Indicator Calibration
    TECHNICAL GUIDANCE MATERIAL AIRSPEED INDICATOR CALIBRATION This document explains the process of calibration of the airspeed indicator to generate curves to convert indicated airspeed (IAS) to calibrated airspeed (CAS) and has been compiled as reference material only. i Technical Guidance Material BushCat NOSE-WHEEL AND TAIL-DRAGGER FITTED WITH ROTAX 912UL/ULS ENGINE APPROVED QRH PART NUMBER: BCTG-NT-001-000 AIRCRAFT TYPE: CHEETAH – BUSHCAT* DATE OF ISSUE: 18th JUNE 2018 *Refer to the POH for more information on aircraft type. ii For BushCat Nose Wheel and Tail Dragger LSA Issue Number: Date Published: Notable Changes: -001 18/09/2018 Original Section intentionally left blank. iii Table of Contents 1. BACKGROUND ..................................................................................................................... 1 2. DETERMINATION OF INSTRUMENT ERROR FOR YOUR ASI ................................................ 2 3. GENERATING THE IAS-CAS RELATIONSHIP FOR YOUR AIRCRAFT....................................... 5 4. CORRECT ALIGNMENT OF THE PITOT TUBE ....................................................................... 9 APPENDIX A – ASI INSTRUMENT ERROR SHEET ....................................................................... 11 Table of Figures Figure 1 Arrangement of instrument calibration system .......................................................... 3 Figure 2 IAS instrument error sample ........................................................................................ 7 Figure 3 Sample relationship between
    [Show full text]
  • Sept. 12, 1950 W
    Sept. 12, 1950 W. ANGST 2,522,337 MACH METER Filed Dec. 9, 1944 2 Sheets-Sheet. INVENTOR. M/2 2.7aar alwg,57. A77OAMA). Sept. 12, 1950 W. ANGST 2,522,337 MACH METER Filed Dec. 9, 1944 2. Sheets-Sheet 2 N 2 2 %/ NYSASSESSN S2,222,W N N22N \ As I, mtRumaIII-m- III It's EARAs i RNSITIE, 2 72/ INVENTOR, M247 aeawosz. "/m2.ATTORNEY. Patented Sept. 12, 1950 2,522,337 UNITED STATES ; :PATENT OFFICE 2,522,337 MACH METER Walter Angst, Manhasset, N. Y., assignor to Square D Company, Detroit, Mich., a corpora tion of Michigan Application December 9, 1944, Serial No. 567,431 3 Claims. (Cl. 73-182). is 2 This invention relates to a Mach meter for air plurality of posts 8. Upon one of the posts 8 are craft for indicating the ratio of the true airspeed mounted a pair of serially connected aneroid cap of the craft to the speed of sound in the medium sules 9 and upon another of the posts 8 is in which the aircraft is traveling and the object mounted a diaphragm capsuler it. The aneroid of the invention is the provision of an instrument s: capsules 9 are sealed and the interior of the cas-l of this type for indicating the Mach number of an . ing is placed in communication with the static aircraft in fight. opening of a Pitot static tube through an opening The maximum safe Mach number of any air in the casing, not shown. The interior of the dia craft is the value of the ratio of true airspeed to phragm capsule is connected through the tub the speed of sound at which the laminar flow of ing 2 to the Pitot or pressure opening of the Pitot air over the wings fails and shock Waves are en static tube through the opening 3 in the back countered.
    [Show full text]
  • 16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT
    16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT PERFORMANCE FLIGHT SIMULATION LAB Note: You may work with one partner while actually flying the flight simulator and collecting data. Your write-up must be done individually. You can do this problem set at home or using one of the simulator computers. There are only a few simulator computers in the lab area, so not leave this problem to the last minute. To save time, please read through this handout completely before coming to the lab to fly the simulator. Objectives At the end of this problem set, you should be able to: • Take off and fly basic maneuvers using the flight simulator, and describe the relationships between the control yoke and the control surface movements on the aircraft. • Describe pitch - airspeed - vertical speed relationships in gliding performance. • Explain the difference between indicated and true airspeed. • Record and plot airspeed and vertical speed data from steady-state flight conditions. • Derive lift and drag coefficients based on empirical aircraft performance data. Discussion In this lab exercise, you will use Microsoft Flight Simulator 2000/2002 to become more familiar with aircraft control and performance. Also, you will use the flight simulator to collect aircraft performance data just as it is done for a real aircraft. From your data you will be able to deduce performance parameters such as the parasite drag coefficient and L/D ratio. Aircraft performance depends on the interplay of several variables: airspeed, power setting from the engine, pitch angle, vertical speed, angle of attack, and flight path angle.
    [Show full text]
  • Aviation Investigation Report A14q0155
    AVIATION INVESTIGATION REPORT A14Q0155 Runway excursion Air Canada Airbus A330-343, C-GFAF Montréal/Pierre Elliott Trudeau International Airport Montréal, Quebec 07 October 2014 Transportation Safety Board of Canada Place du Centre 200 Promenade du Portage, 4th floor Gatineau QC K1A 1K8 819-994-3741 1-800-387-3557 www.tsb.gc.ca [email protected] © Her Majesty the Queen in Right of Canada, as represented by the Transportation Safety Board of Canada, 2017 Aviation Investigation Report A14Q0155 Cat. No. TU3-5/14-0155E-PDF ISBN 978-0-660-07821-2 This report is available on the website of the Transportation Safety Board of Canada at www.tsb.gc.ca Le présent rapport est également disponible en français. The Transportation Safety Board of Canada (TSB) investigated this occurrence for the purpose of advancing transportation safety. It is not the function of the Board to assign fault or determine civil or criminal liability. Aviation Investigation Report A14Q0155 Runway excursion Air Canada Airbus A330-343, C-GFAF Montréal/Pierre Elliott Trudeau International Airport Montréal, Quebec 07 October 2014 Summary On 07 October 2014, the Air Canada Airbus 330-343 (registration C-GFAF, serial number 0277), operating as flight number ACA875, left the Frankfurt-Rhein/Main International Airport in Germany, bound for Montréal/Pierre Elliott Trudeau International Airport (CYUL), Quebec. During the daylight approach to Runway 24R at CYUL, with a thunderstorm just north of the airport, the crew was advised that the lighting on Runway 24R was out of service. This was the only runway in operation. During final approach, meteorological conditions changed from visual meteorological conditions to instrument meteorological conditions.
    [Show full text]
  • Introduction
    CHAPTER 1 Introduction "For some years I have been afflicted with the belief that flight is possible to man." Wilbur Wright, May 13, 1900 1.1 ATMOSPHERIC FLIGHT MECHANICS Atmospheric flight mechanics is a broad heading that encompasses three major disciplines; namely, performance, flight dynamics, and aeroelasticity. In the past each of these subjects was treated independently of the others. However, because of the structural flexibility of modern airplanes, the interplay among the disciplines no longer can be ignored. For example, if the flight loads cause significant structural deformation of the aircraft, one can expect changes in the airplane's aerodynamic and stability characteristics that will influence its performance and dynamic behavior. Airplane performance deals with the determination of performance character- istics such as range, endurance, rate of climb, and takeoff and landing distance as well as flight path optimization. To evaluate these performance characteristics, one normally treats the airplane as a point mass acted on by gravity, lift, drag, and thrust. The accuracy of the performance calculations depends on how accurately the lift, drag, and thrust can be determined. Flight dynamics is concerned with the motion of an airplane due to internally or externally generated disturbances. We particularly are interested in the vehicle's stability and control capabilities. To describe adequately the rigid-body motion of an airplane one needs to consider the complete equations of motion with six degrees of freedom. Again, this will require accurate estimates of the aerodynamic forces and moments acting on the airplane. The final subject included under the heading of atmospheric flight mechanics is aeroelasticity.
    [Show full text]
  • National Transportation Safety Board Aviation Accident Final Report
    National Transportation Safety Board Aviation Accident Final Report Location: Kwigillingok, AK Accident Number: ANC12LA002 Date & Time: 11/07/2011, 1830 AST Registration: N6314H Aircraft: CESSNA 207A Aircraft Damage: Substantial Defining Event: Loss of control in flight Injuries: 3 Minor, 3 None Flight Conducted Under: Part 135: Air Taxi & Commuter - Scheduled Analysis The pilot departed on a scheduled commuter flight at night from an unlit, rough and uneven snow-covered runway with five passengers and baggage. During the takeoff roll, the airplane bounced twice and became airborne, but it failed to climb. As the airplane neared the departure end of the runway, it began to veer to the left, and the pilot applied full right aileron, but the airplane continued to the left as it passed over the runway threshold. The airplane subsequently settled into an area of snow and tundra-covered terrain about 100 yards south of the runway threshold and nosed over. Official sunset on the day of the accident was 48 minutes before the accident, and the end of civil twilight was one minute before the accident. The Federal Aviation Administration's (FAA) Airport/Facility Directory, Alaska Supplement listing for the airport, includes the following notation: "Airport Remarks - Unattended. Night operations prohibited, except rotary wing aircraft. Runway condition not monitored, recommend visual inspection prior to using. Safety areas eroded and soft. Windsock unreliable." A postaccident examination of the airplane and engine revealed no mechanical anomalies that would have precluded normal operation. Given the lack of mechanical deficiencies with the airplane's engine or flight controls, it is likely the pilot failed to maintain control during the takeoff roll and initial climb after takeoff.
    [Show full text]
  • Unusual Attitudes and the Aerodynamics of Maneuvering Flight Author’S Note to Flightlab Students
    Unusual Attitudes and the Aerodynamics of Maneuvering Flight Author’s Note to Flightlab Students The collection of documents assembled here, under the general title “Unusual Attitudes and the Aerodynamics of Maneuvering Flight,” covers a lot of ground. That’s because unusual-attitude training is the perfect occasion for aerodynamics training, and in turn depends on aerodynamics training for success. I don’t expect a pilot new to the subject to absorb everything here in one gulp. That’s not necessary; in fact, it would be beyond the call of duty for most—aspiring test pilots aside. But do give the contents a quick initial pass, if only to get the measure of what’s available and how it’s organized. Your flights will be more productive if you know where to go in the texts for additional background. Before we fly together, I suggest that you read the section called “Axes and Derivatives.” This will introduce you to the concept of the velocity vector and to the basic aircraft response modes. If you pick up a head of steam, go on to read “Two-Dimensional Aerodynamics.” This is mostly about how pressure patterns form over the surface of a wing during the generation of lift, and begins to suggest how changes in those patterns, visible to us through our wing tufts, affect control. If you catch any typos, or statements that you think are either unclear or simply preposterous, please let me know. Thanks. Bill Crawford ii Bill Crawford: WWW.FLIGHTLAB.NET Unusual Attitudes and the Aerodynamics of Maneuvering Flight © Flight Emergency & Advanced Maneuvers Training, Inc.
    [Show full text]
  • E230 Aircraft Systems
    E230 Aircraft Systems Fly fast Fly slow School Of 6th Presentation Engineering Air Speed Indicator • Airspeed indicator (ASI) is an instrument that measures speed relative to surrounding air. • The faster the aircraft the greater the dynamic air pressure. • ASI uses the difference in pitot and static pressure for measurement. • Compensation for variation in position, compression, density is necessary for true airspeed. • Shows indicated airspeed if uncorrected. School of Engineering Operation of ASI • Dy = Dynamic Pressure • S = Static Pressure • When aircraft is stationary, Dy = 0 • As pitot pressure increase, capsule expands to increase reading School of Engineering Markings on a ASI • White range: operating speed VS0 with flaps V S1 extended VNE • Green range: operating speed with flaps VFE retracted • Yellow range: May be operated in smooth air VN0 condition School of Engineering Markings on a ASI • VS0 – Stall speed with flaps/landing gear fully extended • VS1 – Stall speed with flaps/landing gear retracted • VFE – Maximum speed with flaps/landing gear fully extended • VN0 – Maximum speed with flaps/landing gear retracted • VNE – “Never Exceed” speed, beyond which structural damage may occur School of Engineering Airspeed conversion Corrected for Corrected for IAS position & CAS compressibility EAS instrument error effects Corrected for density Corrected for differences GS head/tail wind TAS • Memory aid: ICE-TG T G I C E School of Engineering Mach Number • Mach number = True Airspeed/Speed of sound • Speed of sound varies with temperature • Temperature varies with altitude • Thus Mach number varies with altitude • The same airspeed can have different Mach numbers depending on the flight altitude School of Engineering Machmeter • Knowing the airspeed alone is not enough to avoid shock waves forming at the critical Mach number • Pilot needs to know the Mach number and not the airspeed to avoid shock waves • That is why machmeter is needed.
    [Show full text]
  • Module 10: Weather Monitoring for Spraying Operations
    SPRAY APPLICATION MANUAL FOR GRAIN GROWERS Module 10 Weather monitoring for spraying How to assess if conditions operations are suitable for spraying Bill Gordon MODULE 10 Weather monitoring for spraying operations PAGE 2 Key points • Use accurate forecast information to help plan spraying activities • Always measure and record weather parameters at the site of the application before, during and on completion of spraying operations • Wind direction and wind speed are critical for assessing suitable conditions and potential risks • Temperature and humidity (or Delta T value) can indicate evaporation and spray-drift risk, but can also identify potential effects on efficacy • Always follow the label directions for appropriate conditions for spraying, including downwind buffers or no-spray zones that are related to wind speed • Consider what weather monitoring equipment will best suit your enterprise MODULE 10 Weather monitoring for spraying operations MODULE 10 Weather monitoring for spraying operations PAGE 3 1. Introduction All applicators need access to accurate weather forecast information to plan where and when to spray. Apart from being able to anticipate when changes are likely to occur, good weather forecast information allows the operator to consider which paddocks to spray, and when, along with the logistics of keeping operations running smoothly if you need to move to different parts of the farm to continue spraying if a change in wind direction occurs. The purpose of taking measurements of weather parameters and keeping records during spraying activities is to demonstrate what you did. The more accurate your records are, the more likely they are to be useful for management decisions, to show you complied with label requirements and demonstrate your duty of care.
    [Show full text]
  • Runway Safety Checklist
    Runway Safety Checklist For: • Air Traffic Controllers (or Air Navigation Service Provider) • Airport Operations Staff (or Airport) • Pilots (or Airline/Flying Organisation) Aim Runway Safety considers three main areas: • Runway incursions • Runway excursions • Runway confusion There are many organisations who are directly and indirectly involved in the maintenance of runway safety across the globe. In addition to specific actions on individuals and organisations, runway safety relies on all parties to work together: • at specific geographical locations (eg. airports); and • within/across organisations o at the tactical level (eg. Pilot, Air Traffic Controller, Airport Operations); and o at the strategic level (eg. Airlines, ANSP, Airport). The aim of the Runway Safety Checklist is to ask the user a range of questions which will: • Allow them to assess their level of runway safety, • Ask how they can improve runway safety, and • Increase their knowledge on factors which are important to runway safety. The checklist is written for consideration at the tactical level, but can be interpreted to allow runway safety to be considered from a strategic or organisational perspective. The checklist is divided into sections for Air Traffic Control, Airport and Aircraft Operator, to enable the user to answer specific questions relating to how their particular functions contribute to runway safety. However, users can also review the other sections to gain a better understanding of other functions and/or to informally consider whether any opportunities for improvement exist for the other areas. The checklist was intentionally designed to cover a range of aviation operations (eg. International airline operations at major airports, through to General Aviation operations at non-towered airports).
    [Show full text]
  • Cessna 172SP
    CESSNA INTRODUCTION MODEL 172S NOTICE AT THE TIME OF ISSUANCE, THIS INFORMATION MANUAL WAS AN EXACT DUPLICATE OF THE OFFICIAL PILOT'S OPERATING HANDBOOK AND FAA APPROVED AIRPLANE FLIGHT MANUAL AND IS TO BE USED FOR GENERAL PURPOSES ONLY. IT WILL NOT BE KEPT CURRENT AND, THEREFORE, CANNOT BE USED AS A SUBSTITUTE FOR THE OFFICIAL PILOT'S OPERATING HANDBOOK AND FAA APPROVED AIRPLANE FLIGHT MANUAL INTENDED FOR OPERATION OF THE AIRPLANE. THE PILOT'S OPERATING HANDBOOK MUST BE CARRIED IN THE AIRPLANE AND AVAILABLE TO THE PILOT AT ALL TIMES. Cessna Aircraft Company Original Issue - 8 July 1998 Revision 5 - 19 July 2004 I Revision 5 U.S. INTRODUCTION CESSNA MODEL 172S PERFORMANCE - SPECIFICATIONS *SPEED: Maximum at Sea Level ......................... 126 KNOTS Cruise, 75% Power at 8500 Feet. ................. 124 KNOTS CRUISE: Recommended lean mixture with fuel allowance for engine start, taxi, takeoff, climb and 45 minutes reserve. 75% Power at 8500 Feet ..................... Range - 518 NM 53 Gallons Usable Fuel. .................... Time - 4.26 HRS Range at 10,000 Feet, 45% Power ............. Range - 638 NM 53 Gallons Usable Fuel. .................... Time - 6.72 HRS RATE-OF-CLIMB AT SEA LEVEL ...................... 730 FPM SERVICE CEILING ............................. 14,000 FEET TAKEOFF PERFORMANCE: Ground Roll .................................... 960 FEET Total Distance Over 50 Foot Obstacle ............... 1630 FEET LANDING PERFORMANCE: Ground Roll .................................... 575 FEET Total Distance Over 50 Foot Obstacle ............... 1335 FEET STALL SPEED: Flaps Up, Power Off ..............................53 KCAS Flaps Down, Power Off ........................... .48 KCAS MAXIMUM WEIGHT: Ramp ..................................... 2558 POUNDS Takeoff .................................... 2550 POUNDS Landing ................................... 2550 POUNDS STANDARD EMPTY WEIGHT .................... 1663 POUNDS MAXIMUM USEFUL LOAD ....................... 895 POUNDS BAGGAGE ALLOWANCE ........................ 120 POUNDS (Continued Next Page) I ii U.S.
    [Show full text]