Dynamics of Genomic, Epigenomic, and Transcriptomic Aberrations During Stepwise Hepatocarcinogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Author Manuscript Published OnlineFirst on September 10, 2019; DOI: 10.1158/0008-5472.CAN-19-0991 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Dynamics of genomic, epigenomic, and transcriptomic aberrations during stepwise hepatocarcinogenesis Byul A Jee1,2,*, Ji-Hye Choi1,2,*, Hyungjin Rhee3,*, Sarah Yoon1,2, So Mee Kwon4, Ji Hae Nahm5, Jeong Eun Yoo5, Youngsic Jeon5,6, Gi Hong Choi7, Hyun Goo Woo1,2,†, Young Nyun Park5,6† 1Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea; 2Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea; 3Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea; 4Department of Biochemistry, Ajou University School of Medicine, Suwon, Republic of Korea; 5Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea; 6BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea; 7Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea *BAJ, JHC, and HR contributed equally to this work. Running Title Multi-layered genomic profiles during stepwise HCC Keywords Multi-omics; stepwise HCC; hepatocarcinogenesis; early HCC Financial Support This research was supported by grants from the National Research Foundation of Korea (NRF) funded by the Korea government (MSIP) (NRF-2017R1E1A1A01074733, NRF-2017M3A9B6061509, NRF-2017M3C9A6047620, NRF-2019R1A5A2026045, NRF-2017R1A2B4005871, and NRF- 2017M3A9B6061512). †Co-corresponding authors: Hyun Goo Woo, M.D., Ph.D., Department of Physiology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Korea; Tel: 82-31-219-5045, Fax number: 82-31-219-5049, E-mail address: [email protected]. Young Nyun Park, M.D., Ph.D., Department of Pathology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul, 120-752, Korea; Tel: 82-2-2228-1768, Fax number: 82-2-362- 0860, E-mail address: [email protected]. 1 Downloaded from cancerres.aacrjournals.org on October 3, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 10, 2019; DOI: 10.1158/0008-5472.CAN-19-0991 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Conflict of interest statement Nothing to disclose Data availability: Data from genomic profiles are available in the GEO database (http://www.ncbi.nlm.nih.gov/projects/geo) under accession number GSE99036. 2 Downloaded from cancerres.aacrjournals.org on October 3, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 10, 2019; DOI: 10.1158/0008-5472.CAN-19-0991 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ABSTRACT Hepatocellular carcinoma (HCC) undergoes a stepwise progression from liver cirrhosis (LC) to low- grade dysplastic nodule (LGDN), high-grade dysplastic nodule (HGDN), early HCC (eHCC), and progressed HCC (pHCC). Here, we profiled multi-layered genomic, epigenomic, and transcriptomic aberrations in the stepwise hepatocarcinogenesis. Initial DNA methylation was observed in eHCC (e.g., DKK3, SALL3, and SOX1) while more extensive methylation was observed in pHCC. In addition, eHCCs showed an initial loss of DNA copy numbers of tumor suppressor genes in the 4q and 13q regions, thereby conferring survival benefits to cancer cells. Transcriptome analysis revealed that HGDNs expressed endoplasmic reticulum (ER) stress-related genes, while eHCC started to express oncogenes. Furthermore, integrative analysis indicated that expression of the serine peptidase inhibitor, Kazal type 1 (SPINK1), played a pivotal role in eHCC development. Significant demethylation of SPINK1 was observed in eHCC compared to HGDN. The study also demonstrated that ER stress may induce SPINK1 demethylation and expression in liver cancer cells. In conclusion, these results reveal the dynamics of multiomic aberrations during malignant conversion of liver cancer, thus providing novel pathobiological insights into hepatocarcinogenesis. Significance: Multiomics profiling and integrative analyses of stepwise hepatocarcinogenesis reveal novel mechanistic and clinical insights into hepatocarcinogenesis. INTRODUCTION Hepatocellular carcinoma (HCC) classically develops through a multistep process involving a series of pathologic states: liver cirrhotic lesion (LC), dysplastic nodule (DN), early HCC (eHCC), and progressed HCC (pHCC). Liver injury induced by viral hepatitis or other etiologic factors produces a chronic inflammatory milieu leading to the development of LCs. LCs subsequently develop into DNs, which are further classified as low-grade or high-grade DNs (LGDNs or HGDNs, respectively) based on the presence of cytological and architectural atypia. Dysplastic lesions eventually progress to eHCC and pHCC. Molecular alterations accompanying this stepwise pathological sequence have been elucidated to determine definitive markers for eHCC. At present, key cancer-associated pathways, such as Notch, Toll-like receptor, MYC, TGF-β, WNT, and epithelial–mesenchymal-transition (EMT)- related signaling, have been demonstrated as active during hepatocarcinogenesis (1-4). Additionally, high-throughput genome-wide studies have revealed genomic aberrations that occur during stepwise HCC development, including DNA methylation (5,6), DNA copy number changes, mutations [e.g., TP53, CTNNB1, or TERT promoter] (7-9), and transcriptional deregulation (10). Recently, 3 Downloaded from cancerres.aacrjournals.org on October 3, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 10, 2019; DOI: 10.1158/0008-5472.CAN-19-0991 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. multiomic studies, such as those involving The Cancer Genome Atlas (TCGA), showed have enabled an integrated and systematic view of the genomic aberrations associated with liver cancer, revealing novel biomarkers, as well as therapeutic targets (11-13). Recently, multiomic studies shifted their focus towards precancerous lesions, resulting in the creation of the Pre-Cancer Atlas (PCA), an integrated collection of molecular, structural, and functional maps that provide information regarding tumor initiation and progression (14). The PCA is expected to delineate mechanisms underlying tumor development or progression in order to enhance early detection, risk prediction, and the development of new therapeutic strategies. In this study, we generated multiomic profiling data that demonstrated a molecular landscape of the multi-layered aberrations that occur during stepwise hepatocarcinogenesis from precancerous lesions to malignant development of eHCC and pHCC. By performing integrative analyses, we identified early events that may possibly promote malignant conversion of precancerous lesions, thereby providing novel mechanistic insights into HCC development. These data may facilitate upcoming studies focused on discovering novel biomarkers or therapeutic targets for HCC. MATERIALS AND METHODS Patients and tissue specimens A total of 131 tissue specimens, including those of liver cirrhosis (LC, n = 30), high-grade dysplastic nodule (HGDN, n = 28), early HCC (eHCC, n = 30), and progressed HCC (pHCC, n = 43), resected from 76 patients was obtained (YSHCC, HCC cohorts from Yonsei University). All lesions were classified according to the criteria stipulated by the ‘‘International Consensus Group for Hepatocellular Neoplasia’’ (15). Freshly frozen specimens were obtained from the Liver Cancer Specimen Bank (part of the National Research Bank Program, Korea Science and Engineering Foundation, Ministry of Science and Technology), and subjected to RNA-seq profiling. Tissues of low- grade dysplastic nodule (LGDN) were not included in this study due to limited availability of frozen tissues. Clinico-pathological features of the 76 patients are summarized (Supplementary Table S1). This study was approved by the Institutional Review Board of Severance Hospital, Yonsei University College of Medicine (4-2014-0423), and the requirement for informed consent was waived. For validation via immunohistochemical staining, a total of 171 liver specimens from 90 patients was examined, which included LC (n = 30), LGDN (n = 30), HGDN (n = 40), eHCC (n = 40), and pHCC (n = 41) specimens. Patients were 34-76 years in age (57.7 ± 8.19, mean ± SD) and consisted of 75 males and 15 females. Most etiologies were HBV (n = 74), and the remainder included HCV (n = 5), 4 Downloaded from cancerres.aacrjournals.org on October 3, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 10, 2019; DOI: 10.1158/0008-5472.CAN-19-0991 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. alcohol (n = 7), Nonalcoholic steatohepatitis (NASH, n = 1), occult HBV potential (n = 1), or of unknown etiology (n = 2). Clinico-pathological features of the 90 patients subjected to immunostaining are summarized in Supplementary Table S2. RNA-seq profiling and variant profiling RNA-seq profiling was performed in the YSHCC specimens (n = 131), including LC (n = 30), HGDN (n = 28), eHCC (n = 30), and pHCC (n = 43). Sequencing data were obtained using an Illumina HiSeq2000 for 100 bp paired end reads with a
Recommended publications
  • The Function and Evolution of C2H2 Zinc Finger Proteins and Transposons

    The Function and Evolution of C2H2 Zinc Finger Proteins and Transposons

    The function and evolution of C2H2 zinc finger proteins and transposons by Laura Francesca Campitelli A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Laura Francesca Campitelli 2020 The function and evolution of C2H2 zinc finger proteins and transposons Laura Francesca Campitelli Doctor of Philosophy Department of Molecular Genetics University of Toronto 2020 Abstract Transcription factors (TFs) confer specificity to transcriptional regulation by binding specific DNA sequences and ultimately affecting the ability of RNA polymerase to transcribe a locus. The C2H2 zinc finger proteins (C2H2 ZFPs) are a TF class with the unique ability to diversify their DNA-binding specificities in a short evolutionary time. C2H2 ZFPs comprise the largest class of TFs in Mammalian genomes, including nearly half of all Human TFs (747/1,639). Positive selection on the DNA-binding specificities of C2H2 ZFPs is explained by an evolutionary arms race with endogenous retroelements (EREs; copy-and-paste transposable elements), where the C2H2 ZFPs containing a KRAB repressor domain (KZFPs; 344/747 Human C2H2 ZFPs) are thought to diversify to bind new EREs and repress deleterious transposition events. However, evidence of the gain and loss of KZFP binding sites on the ERE sequence is sparse due to poor resolution of ERE sequence evolution, despite the recent publication of binding preferences for 242/344 Human KZFPs. The goal of my doctoral work has been to characterize the Human C2H2 ZFPs, with specific interest in their evolutionary history, functional diversity, and coevolution with LINE EREs.
  • Investigation of Differentially Expressed Genes in Nasopharyngeal Carcinoma by Integrated Bioinformatics Analysis

    Investigation of Differentially Expressed Genes in Nasopharyngeal Carcinoma by Integrated Bioinformatics Analysis

    916 ONCOLOGY LETTERS 18: 916-926, 2019 Investigation of differentially expressed genes in nasopharyngeal carcinoma by integrated bioinformatics analysis ZhENNING ZOU1*, SIYUAN GAN1*, ShUGUANG LIU2, RUjIA LI1 and jIAN hUANG1 1Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023; 2Department of Pathology, The Eighth Affiliated hospital of Sun Yat‑sen University, Shenzhen, Guangdong 518033, P.R. China Received October 9, 2018; Accepted April 10, 2019 DOI: 10.3892/ol.2019.10382 Abstract. Nasopharyngeal carcinoma (NPC) is a common topoisomerase 2α and TPX2 microtubule nucleation factor), malignancy of the head and neck. The aim of the present study 8 modules, and 14 TFs were identified. Modules analysis was to conduct an integrated bioinformatics analysis of differ- revealed that cyclin-dependent kinase 1 and exportin 1 were entially expressed genes (DEGs) and to explore the molecular involved in the pathway of Epstein‑Barr virus infection. In mechanisms of NPC. Two profiling datasets, GSE12452 and summary, the hub genes, key modules and TFs identified in GSE34573, were downloaded from the Gene Expression this study may promote our understanding of the pathogenesis Omnibus database and included 44 NPC specimens and of NPC and require further in-depth investigation. 13 normal nasopharyngeal tissues. R software was used to identify the DEGs between NPC and normal nasopharyngeal Introduction tissues. Distributions of DEGs in chromosomes were explored based on the annotation file and the CYTOBAND database Nasopharyngeal carcinoma (NPC) is a common malignancy of DAVID. Gene ontology (GO) and Kyoto Encyclopedia of occurring in the head and neck. It is prevalent in the eastern Genes and Genomes (KEGG) pathway enrichment analysis and southeastern parts of Asia, especially in southern China, were applied.
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024

    Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024

    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
  • Based on Network Pharmacology and RNA Sequencing Techniques to Explore the Molecular Mechanism of Huatan Jiangzhuo Decoction for Treating Hyperlipidemia

    Based on Network Pharmacology and RNA Sequencing Techniques to Explore the Molecular Mechanism of Huatan Jiangzhuo Decoction for Treating Hyperlipidemia

    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 9863714, 16 pages https://doi.org/10.1155/2021/9863714 Research Article Based on Network Pharmacology and RNA Sequencing Techniques to Explore the Molecular Mechanism of Huatan Jiangzhuo Decoction for Treating Hyperlipidemia XiaowenZhou ,1 ZhenqianYan ,1 YaxinWang ,1 QiRen ,1 XiaoqiLiu ,2 GeFang ,3 Bin Wang ,4 and Xiantao Li 1 1Laboratory of TCM Syndrome Essence and Objectification, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China 2Guangzhou Sagene Tech Co., Ltd., Guangzhou 510006, China 3College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China 4Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518000, China Correspondence should be addressed to Xiantao Li; [email protected] Received 22 May 2020; Revised 12 March 2021; Accepted 18 March 2021; Published 12 April 2021 Academic Editor: Jianbo Wan Copyright © 2021 Xiaowen Zhou et al. +is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Hyperlipidemia, due to the practice of unhealthy lifestyles of modern people, has been a disturbance to a large portion of population worldwide. Recently, several scholars have turned their attention to Chinese medicine (CM) to seek out a lipid-lowering approach with high efficiency and low toxicity. +is study aimed to explore the mechanism of Huatan Jiangzhuo decoction (HTJZD, a prescription of CM) in the treatment of hyperlipidemia and to determine the major regulation pathways and potential key targets involved in the treatment process.
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family

    A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family

    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
  • Identification of Proteins Involved in the Maintenance of Genome Stability

    Identification of Proteins Involved in the Maintenance of Genome Stability

    Identification of Proteins Involved in the Maintenance of Genome Stability by Edith Hang Yu Cheng A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Biochemistry University of Toronto ©Copyright by Edith Cheng2015 Identification of Proteins Involved in the Maintenance of Genome Stability Edith Cheng Doctor of Philosophy Department of Biochemistry University of Toronto 2015 Abstract Aberrant changes to the genome structure underlie numerous human diseases such as cancers. The functional characterization ofgenesand proteins that maintain chromosome stability will be important in understanding disease etiology and developing therapeutics. I took a multi-faceted approach to identify and characterize genes involved in the maintenance of genome stability. As biological pathways involved in genome maintenance are highly conserved in evolution, results from model organisms can greatly facilitate functional discovery in humans. In S. cerevisiae, I identified 47 essential gene depletions with elevated levels of spontaneous DNA damage foci and 92 depletions that caused elevated levels of chromosome rearrangements. Of these, a core subset of 15 DNA replication genes demonstrated both phenotypes when depleted. Analysis of rearrangement breakpoints revealed enrichment at yeast fragile sites, Ty retrotransposons, early origins of replication and replication termination sites. Together, thishighlighted the integral role of DNA replicationin genome maintenance. In light of my findings in S. cerevisiae, I identified a list of 153 human proteins that interact with the nascentDNA at replication forks, using a DNA pull down strategy (iPOND) in human cell lines. As a complementary approach for identifying human proteins involved in genome ii maintenance, I usedthe BioID techniqueto discernin vivo proteins proximal to the human BLM- TOP3A-RMI1-RMI2 genome stability complex, which has an emerging role in DNA replication progression.
  • Human Transcription Factors Responsive to Initial Reprogramming Predominantly Undergo Legitimate Reprogramming During Fbroblast Conversion to Ipscs Ricardo R

    Human Transcription Factors Responsive to Initial Reprogramming Predominantly Undergo Legitimate Reprogramming During Fbroblast Conversion to Ipscs Ricardo R

    www.nature.com/scientificreports OPEN Human transcription factors responsive to initial reprogramming predominantly undergo legitimate reprogramming during fbroblast conversion to iPSCs Ricardo R. Cevallos1, Yvonne J. K. Edwards1,2, John M. Parant3, Bradley K. Yoder2 & Kejin Hu1* The four transcription factors OCT4, SOX2, KLF4, and MYC (OSKM) together can convert human fbroblasts to induced pluripotent stem cells (iPSCs). It is, however, perplexing that they can do so only for a rare population of the starting cells with a long latency. Transcription factors (TFs) defne identities of both the starting fbroblasts and the end product, iPSCs, and are also of paramount importance for the reprogramming process. It is critical to upregulate or activate the iPSC-enriched TFs while downregulate or silence the fbroblast-enriched TFs. This report explores the initial TF responses to OSKM as the molecular underpinnings for both the potency aspects and the limitation sides of the OSKM reprogramming. The authors frst defned the TF reprogramome, i.e., the full complement of TFs to be reprogrammed. Most TFs were resistant to OSKM reprogramming at the initial stages, an observation consistent with the inefciency and long latency of iPSC reprogramming. Surprisingly, the current analyses also revealed that most of the TFs (at least 83 genes) that did respond to OSKM induction underwent legitimate reprogramming. The initial legitimate transcriptional responses of TFs to OSKM reprogramming were also observed in the reprogramming fbroblasts from a diferent individual. Such early biased legitimate reprogramming of the responsive TFs aligns well with the robustness aspect of the otherwise inefcient and stochastic OSKM reprogramming. OCT4, SOX2, KLF4, and MYC (collectively OSKM) can convert human fbroblasts into induced pluripotent stem cells (iPSCs), which are the man-made version of embryonic stem cells (ESCs)1–3.
  • Seh1 Targets GATOR2 and Nup153 to Mitotic Chromosomes Melpomeni Platani1,*, Itaru Samejima1, Kumiko Samejima1, Masato T

    Seh1 Targets GATOR2 and Nup153 to Mitotic Chromosomes Melpomeni Platani1,*, Itaru Samejima1, Kumiko Samejima1, Masato T

    © 2018. Published by The Company of Biologists Ltd | Journal of Cell Science (2018) 131, jcs213140. doi:10.1242/jcs.213140 RESEARCH ARTICLE Seh1 targets GATOR2 and Nup153 to mitotic chromosomes Melpomeni Platani1,*, Itaru Samejima1, Kumiko Samejima1, Masato T. Kanemaki2 and William C. Earnshaw1,* ABSTRACT Nup107 complex (also known as the Y complex), a core structural In metazoa, the Nup107 complex (also known as the nucleoporin scaffold of nuclear pores in interphase located on both faces of the Y-complex) plays a major role in formation of the nuclear pore NPC. In vertebrates, the Nup107 complex is composed of ten complex in interphase and is localised to kinetochores in mitosis. The different nucleoporins: Nup160, Nup133, Nup107, Nup96, Nup85, Nup107 complex shares a single highly conserved subunit, Seh1 Nup43, Nup37, Sec13, Seh1 (also known as SEH1L) and Elys (also (also known as SEH1L in mammals) with the GATOR2 complex, an known as AHCTF1) (Knockenhauer and Schwartz, 2016). The essential activator of mTORC1 kinase. mTORC1/GATOR2 has a Nup107 complex plays a crucial role in NPC assembly, mRNA central role in the coordination of cell growth and proliferation. Here, export and cell differentiation (González-Aguilera and Askjaer, 2012; we use chemical genetics and quantitative chromosome proteomics Harel et al., 2003; Vasu et al., 2001; Walther et al., 2003). Nup107 to study the role of the Seh1 protein in mitosis. Surprisingly, Seh1 is complex components remain associated together throughout mitosis not required for the association of the Nup107 complex with mitotic and are among the earliest nucleoporins recruited onto chromatin chromosomes, but it is essential for the association of both during nuclear envelope reformation at the end of cell division the GATOR2 complex and nucleoporin Nup153 with mitotic (Belgareh et al., 2001).
  • Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors

    Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors

    University of Cincinnati Date: 12/20/2010 I, Arturo R Maldonado , hereby submit this original work as part of the requirements for the degree of Doctor of Philosophy in Developmental Biology. It is entitled: Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors Student's name: Arturo R Maldonado This work and its defense approved by: Committee chair: Jeffrey Whitsett Committee member: Timothy Crombleholme, MD Committee member: Dan Wiginton, PhD Committee member: Rhonda Cardin, PhD Committee member: Tim Cripe 1297 Last Printed:1/11/2011 Document Of Defense Form Molecular Targeting and Enhancing Anticancer Efficacy of Oncolytic HSV-1 to Midkine Expressing Tumors A dissertation submitted to the Graduate School of the University of Cincinnati College of Medicine in partial fulfillment of the requirements for the degree of DOCTORATE OF PHILOSOPHY (PH.D.) in the Division of Molecular & Developmental Biology 2010 By Arturo Rafael Maldonado B.A., University of Miami, Coral Gables, Florida June 1993 M.D., New Jersey Medical School, Newark, New Jersey June 1999 Committee Chair: Jeffrey A. Whitsett, M.D. Advisor: Timothy M. Crombleholme, M.D. Timothy P. Cripe, M.D. Ph.D. Dan Wiginton, Ph.D. Rhonda D. Cardin, Ph.D. ABSTRACT Since 1999, cancer has surpassed heart disease as the number one cause of death in the US for people under the age of 85. Malignant Peripheral Nerve Sheath Tumor (MPNST), a common malignancy in patients with Neurofibromatosis, and colorectal cancer are midkine- producing tumors with high mortality rates. In vitro and preclinical xenograft models of MPNST were utilized in this dissertation to study the role of midkine (MDK), a tumor-specific gene over- expressed in these tumors and to test the efficacy of a MDK-transcriptionally targeted oncolytic HSV-1 (oHSV).
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene

    393LN V 393P 344SQ V 393P Probe Set Entrez Gene

    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
  • Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress

    Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress

    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Renuka Nayak University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Computational Biology Commons, and the Genomics Commons Recommended Citation Nayak, Renuka, "Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress" (2010). Publicly Accessible Penn Dissertations. 1559. https://repository.upenn.edu/edissertations/1559 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1559 For more information, please contact [email protected]. Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Abstract Genes interact in networks to orchestrate cellular processes. Here, we used coexpression networks based on natural variation in gene expression to study the functions and interactions of human genes. We asked how these networks change in response to stress. First, we studied human coexpression networks at baseline. We constructed networks by identifying correlations in expression levels of 8.9 million gene pairs in immortalized B cells from 295 individuals comprising three independent samples. The resulting networks allowed us to infer interactions between biological processes. We used the network to predict the functions of poorly-characterized human genes, and provided some experimental support. Examining genes implicated in disease, we found that IFIH1, a diabetes susceptibility gene, interacts with YES1, which affects glucose transport. Genes predisposing to the same diseases are clustered non-randomly in the network, suggesting that the network may be used to identify candidate genes that influence disease susceptibility.
  • Identification and Characterization Of

    Identification and Characterization Of

    IDENTIFICATION AND CHARACTERIZATION OF DEAFNESS GENES IN DROSOPHILA MELANOGASTER Dissertation for the award of the degree “Doctor rerum naturalium” Division of Mathematics and Natural Sciences of the Georg-August-Universität Göttingen submitted by Pingkalai Senthilan from Inuvil, Sri Lanka Göttingen 2010 Page 1 Members of the Thesis Committee Prof. Dr. Martin Göpfert (Supervisor) Georg-August-University Göttingen, Cellular Neurobiology Prof. Dr. André Fiala (Reviewer) Georg-August-University Göttingen, Molecular Neurobiology of Behavior Prof. Dr. Ralf Heinrich (Reviewer) Georg-August-University, Neurobiology Oral examination: 24.01.2011 Page 2 I herewith declare that the Ph.D. thesis entitled “Identification and Characterization of Deafness Genes in Drosophila melanogaster” has been written independently and with no other sources and aids than quoted. Pingkalai Senthilan Göttingen, December 2010 Page 3 Page 4 Table of Contents 1 Summary ......................................................................................................................................... 9 2 Introduction ................................................................................................................................... 11 2.1 Hearing impairment .............................................................................................................. 11 2.2 Genes involved in human hearing impairment ..................................................................... 12 2.3 Drosophila as a model organism for the study of hearing ...................................................