Invasive Potential of Tamarix Ramosissima (Saltcedar) in Continental Climates of North America

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Potential of Tamarix Ramosissima (Saltcedar) in Continental Climates of North America University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2000 Invasive potential of Tamarix ramosissima (Saltcedar) in continental climates of North America Jason Patrick Sexton The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Sexton, Jason Patrick, "Invasive potential of Tamarix ramosissima (Saltcedar) in continental climates of North America" (2000). Graduate Student Theses, Dissertations, & Professional Papers. 5808. https://scholarworks.umt.edu/etd/5808 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. ♦♦Please check "Yes" or "No" and provide signature** Yes, 1 grant permission No, I do not grant permission Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. INVASIVE POTENTIAL OF TAMARIX RAMOSISSIMA (SALTCEDAR) IN CONTINENTAL CLIMATES OF NORTH AMERICA by Jason Patrick Sexton B.S. Humboldt State University presented in partial fulfillment of the requirements for the degree of Masters of Science The University of Montana 2000 Approved by Chairperson Dean, Graduate School 3-5U7-SIOOO Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP36609 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted, Also, If material had to be removed, a note will Indicate the deletion. UMT OwMrtation (HiUMitng UMI EP36609 Published by ProQuest LLC (2013). Copyright In the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest* ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Sexton, Jason P., M.S., February 2000 Division of Biological Sciences Invasive potential of Tamarix ramosissima in dry, cold climates of North America Director: Anna Sala AS Tamarix ramosissima (saltcedar), a shrub or tree native to Eurasia, has heavily invaded many wetland and riparian systems of the southwestern United States. Since its first reports in the 1960’s, saltcedar has spread throughout dry areas of most of the northern, colder states of the U.S. where its invasive potential is thought to be low. This study examines the invasive potential and spread of saltcedar in eastern Montana. T. ramosissima seeds from Arizona and eastern Montana, the extremes of its latitudinal range within the U.S., were grown together under high and low temperatures (representing Arizona and Montana climates respectively) to investigate growth, phenotypic plasticity, and genetic differentiation in response to temperature (Chapter 1). Low temperature significantly decreased gas exchange and biomass, and increased relative biomass allocation to roots in all populations. Montana seedlings had significantly shorter shoots than Arizona seedlings under high and low temperatures and invested more biomass into roots but only under cold temperatures. Shorter stature and increased plasticity in biomass allocation to roots for T. ramosissima ecotypes of eastern Montana may help overcome winter mortality and is possibly an adaptive response to climate variability. Phenotypic plasticity, ecotypic differentiation and high generic variability for all traits measured, indicate that Tamarix ramosissima has the potential to spread and to evolve in response to climate. Saltcedar’s dispersion patterns and dynamics over time were investigated in the field in eastern Montana (Chapter 2). Riparian communities where saltcedar was present were aged according to the oldest saltcedar individual and were sampled for plant community and abiotic changes over time. Data showed multiple infection origins along the Greater Yellowstone and Missouri River drainages. Saltcedar patches (or stands) increased in area and cover with time, and showed high proportions of young stems, indicating substantial vegetative recruitment. Further, native tree and shrub cover declined over time in communities where saltcedar was present. Soil pH decreased with saltcedar age and cover, and was the only abiotic factor that changed over time. Disturbances such as grazing and vegetation clearing in eastern Montana appear to greatly enhance saltcedar. 11 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS Deep thanks go out to my advisor, Anna Sala, for her patience, guidance, trust and enthusiasm that made this thesis possible. I’d like to thank committee members, Ray Callaway and Tom DeLuca, for their advice and generous use of their lab resources; John McKay for friendship and his soon-to-be expert contributions on experimental and statistical design; Kevin Murray for assistance with field design and for keeping the skeeters away with those cigars; Roger Sheley for the use of maps and equipment; Vince Thomas for generosity, logistical help and funding my airplane ride in eastern Montana; Traycee Bowerman and Lauren Quinn for your hard work and friendship in the field; Zack and Shawn Cleveland, Jeremy Moran and Laurie Ashley for enduring the monotony and tedium that comes with saltcedar seeds; Nic Kostecki, Andrew Neushwander, Morgan Valliant, Deb Stout, Cynthia Buckalew, Glenda Hammond, Ellen Kuhling and Christian Richey and others for your generous gift of time during the experiment harvest; Bill Gannon, Stan Smith, Wes Niles and John Hubburd for inspiring me in the natural sciences; The Kolsters, Chris, Ethan and Dianne for support during the writing of this thesis and offering me wonderful living places; the Granite Brothers for everything you need to know for survive; Frank across the street for giving me the sunflower seeds; Giles, Hugh, Beth, October, Brad, Brett, K, Karen, Mike, Marion, Wendi and many other UM friends for being unique, wonderful people; my two dads for all of the valuable lessons; my mother for every and all things; and thank you my Monique, and for all of your love, inspiration and belief in me. Final thanks to saltcedar, Tamarix ramosissima. I’m sure you are a wonder in your native place. I ll Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS Abstract .................................................................... ü Acknowledgements ...............................................................................................................iü List of Tables .......................................................................................................................... v List of Figures ........................................................................................................................ vi C h a p t e r 1: Genetic and phenotypic responses to temperature in seedlings of Tamarix ramosissima Ledeb., an invasive, woody species ...................................................... 1 Introduction .................................................................................................................1 Materials and Methods ...............................................................................................4 Results ......................................................................................................................... 8 Discussion ...................................................................................................................9 Literature Cited .........................................................................................................14 C h a p t e r 2: Invasive potential of Tamarix ramosissima in northern climates: latitudinal growth responses and plant community changes in eastern Montana ................. 24 Introduction ................................................................................................. 24 Materials and Methods .............................................................................................27 Results .......................................................................................................................31 Discussion ................................................................................................................ 35 Literature Cited ........................................................................................................42 IV Reproduced with permission
Recommended publications
  • Overcoming the Challenges of Tamarix Management with Diorhabda Carinulata Through the Identification and Application of Semioche
    OVERCOMING THE CHALLENGES OF TAMARIX MANAGEMENT WITH DIORHABDA CARINULATA THROUGH THE IDENTIFICATION AND APPLICATION OF SEMIOCHEMICALS by Alexander Michael Gaffke A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana May 2018 ©COPYRIGHT by Alexander Michael Gaffke 2018 All Rights Reserved ii ACKNOWLEDGEMENTS This project would not have been possible without the unconditional support of my family, Mike, Shelly, and Tony Gaffke. I must thank Dr. Roxie Sporleder for opening my world to the joy of reading. Thanks must also be shared with Dr. Allard Cossé, Dr. Robert Bartelt, Dr. Bruce Zilkowshi, Dr. Richard Petroski, Dr. C. Jack Deloach, Dr. Tom Dudley, and Dr. Dan Bean whose previous work with Tamarix and Diorhabda carinulata set the foundations for this research. I must express my sincerest gratitude to my Advisor Dr. David Weaver, and my committee: Dr. Sharlene Sing, Dr. Bob Peterson and Dr. Dan Bean for their guidance throughout this project. To Megan Hofland and Norma Irish, thanks for keeping me sane. iii TABLE OF CONTENTS 1. INTRODUCTION ...........................................................................................................1 Tamarix ............................................................................................................................1 Taxonomy ................................................................................................................1 Introduction
    [Show full text]
  • Appendix F3 Rare Plant Survey Report
    Appendix F3 Rare Plant Survey Report Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District Draft CADIZ VALLEY WATER CONSERVATION, RECOVERY, AND STORAGE PROJECT Rare Plant Survey Report Prepared for May 2011 Santa Margarita Water District 626 Wilshire Boulevard Suite 1100 Los Angeles, CA 90017 213.599.4300 www.esassoc.com Oakland Olympia Petaluma Portland Sacramento San Diego San Francisco Seattle Tampa Woodland Hills D210324 TABLE OF CONTENTS Cadiz Valley Water Conservation, Recovery, and Storage Project: Rare Plant Survey Report Page Summary ............................................................................................................................... 1 Introduction ..........................................................................................................................2 Objective .......................................................................................................................... 2 Project Location and Description .....................................................................................2 Setting ................................................................................................................................... 5 Climate ............................................................................................................................. 5 Topography and Soils ......................................................................................................5
    [Show full text]
  • Widespread Paleopolyploidy, Gene Tree Conflict, and Recalcitrant Relationships Among the 3 Carnivorous Caryophyllales1 4 5 Joseph F
    bioRxiv preprint doi: https://doi.org/10.1101/115741; this version posted March 10, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 2 Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the 3 carnivorous Caryophyllales1 4 5 Joseph F. Walker*,2, Ya Yang2,5, Michael J. Moore3, Jessica Mikenas3, Alfonso Timoneda4, Samuel F. 6 Brockington4 and Stephen A. Smith*,2 7 8 2Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, 9 Ann Arbor, MI 48109-1048, USA 10 3Department of Biology, Oberlin College, Science Center K111, 119 Woodland St., Oberlin, Ohio 44074- 11 1097 USA 12 4Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom 13 5 Department of Plant Biology, University of Minnesota-Twin Cities. 1445 Gortner Avenue, St. Paul, MN 14 55108 15 CORRESPONDING AUTHORS: Joseph F. Walker; [email protected] and Stephen A. Smith; 16 [email protected] 17 18 1Manuscript received ____; revision accepted ______. bioRxiv preprint doi: https://doi.org/10.1101/115741; this version posted March 10, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 19 ABSTRACT 20 • The carnivorous members of the large, hyperdiverse Caryophyllales (e.g.
    [Show full text]
  • National Wetlands Inventory Map Report for Quinault Indian Nation
    National Wetlands Inventory Map Report for Quinault Indian Nation Project ID(s): R01Y19P01: Quinault Indian Nation, fiscal year 2019 Project area The project area (Figure 1) is restricted to the Quinault Indian Nation, bounded by Grays Harbor Co. Jefferson Co. and the Olympic National Park. Appendix A: USGS 7.5-minute Quadrangles: Queets, Salmon River West, Salmon River East, Matheny Ridge, Tunnel Island, O’Took Prairie, Thimble Mountain, Lake Quinault West, Lake Quinault East, Taholah, Shale Slough, Macafee Hill, Stevens Creek, Moclips, Carlisle. • < 0. Figure 1. QIN NWI+ 2019 project area (red outline). Source Imagery: Citation: For all quads listed above: See Appendix A Citation Information: Originator: USDA-FSA-APFO Aerial Photography Field Office Publication Date: 2017 Publication place: Salt Lake City, Utah Title: Digital Orthoimagery Series of Washington Geospatial_Data_Presentation_Form: raster digital data Other_Citation_Details: 1-meter and 1-foot, Natural Color and NIR-False Color Collateral Data: . USGS 1:24,000 topographic quadrangles . USGS – NHD – National Hydrography Dataset . USGS Topographic maps, 2013 . QIN LiDAR DEM (3 meter) and synthetic stream layer, 2015 . Previous National Wetlands Inventories for the project area . Soil Surveys, All Hydric Soils: Weyerhaeuser soil survey 1976, NRCS soil survey 2013 . QIN WET tables, field photos, and site descriptions, 2016 to 2019, Janice Martin, and Greg Eide Inventory Method: Wetland identification and interpretation was done “heads-up” using ArcMap versions 10.6.1. US Fish & Wildlife Service (USFWS) National Wetlands Inventory (NWI) mapping contractors in Portland, Oregon completed the original aerial photo interpretation and wetland mapping. Primary authors: Nicholas Jones of SWCA Environmental Consulting. 100% Quality Control (QC) during the NWI mapping was provided by Michael Holscher of SWCA Environmental Consulting.
    [Show full text]
  • Eleocharis Rostellata (Torr.) Torr., Is an Obligate Wetland Graminoid Species (Reed 1988)
    United States Department of Agriculture Conservation Assessment Forest Service Rocky of the Beaked Spikerush Mountain Region Black Hills in the Black Hills National National Forest Custer, Forest, South Dakota and South Dakota May 2003 Wyoming Bruce T. Glisson Conservation Assessment of Beaked Spikerush in the Black Hills National Forest, South Dakota and Wyoming Bruce T. Glisson, Ph.D. 315 Matterhorn Drive Park City, UT 84098 Bruce T. Glisson is a botanist and ecologist with over 10 years of consulting experience, located in Park City, Utah. He has earned a B.S. in Biology from Towson State University, an M.S. in Public Health from the University of Utah, and a Ph.D. in Botany from Brigham Young University EXECUTIVE SUMMARY Beaked spikerush, Eleocharis rostellata (Torr.) Torr., is an obligate wetland graminoid species (Reed 1988). Beaked spikerush is widespread in the Americas from across southern Canada to northern Mexico, to the West Indies, the Caribbean, and the Andes of South America (Cronquist et al. 1994; Hitchcock et al. 1994). The species is secure throughout its range with a G5 ranking, but infrequent across most of the U.S., with Region 2 state rankings ranging from S1, critically imperiled; to S2, imperiled; to SR, reported (NatureServe 2001). Beaked spikerush is a “species of special concern” with the South Dakota Natural Heritage Program (Ode pers. comm. 2001). The only currently known population of beaked spikerush in South Dakota is in Fall River County, along Cascade Creek, an area where several other rare plant species occur. The beaked spikerush population is present on lands administered by Black Hills National Forest (BHNF), and on surrounding private lands, including the Whitney Preserve owned and managed by The Nature Conservancy (TNC).
    [Show full text]
  • Tamarix Gallica (French Tamarisk) French Tamarisk Is a Small Tree Known to Be Highly Invasive
    Tamarix gallica (French tamarisk) French tamarisk is a small tree known to be highly invasive. It does very well in desert areas, and compete other plants to become the dominant plant type if the right conditions are found. Tamarisk grows in well drained soil of any type, and needs full sun. This plant is very attractive. It has beautyful pink flowers that are very catchy, especially for insects and butterflies, and a feathery green folliage. Landscape Information French Name: Tamaris des Canaries Pronounciation: TAM-uh-riks GAL-ee-kuh Plant Type: Tree Origin: Southern Europe Heat Zones: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 Hardiness Zones: 5, 6, 7, 8, 9, 10, 11, 12, 13 Uses: Specimen, Wildlife, Erosion control, Cut Flowers / Arrangements Size/Shape Growth Rate: Fast Tree Shape: Spreading Canopy Texture: Fine Plant Image Height at Maturity: 3 to 5 m Spread at Maturity: 3 to 5 meters Tamarix gallica (French tamarisk) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Nearly Invisible Leaf Persistance: Deciduous Leaf Type: Simple Leaf Blade: Less than 5 Leaf Shape: Linear Leaf Margins: Entire Leaf Textures: Coarse Leaf Scent: No Fragance Color(growing season): Green Color(changing season): Green Flower Flower Image Flower Showiness: True Flower Size Range: 3 - 7 Flower Sexuality: Diecious (Monosexual) Flower Scent: No Fragance Flower Color: Purple, Pink Seasons: Spring, Summer Trunk Trunk Susceptibility to Breakage: Generally resists breakage Number of Trunks: Single Trunk Trunk Esthetic Values: Showy,
    [Show full text]
  • Spiranthes Diluvialis) and for Designated Weeds
    2000 Survey of BLM-Managed Public Lands in Southwestern Wyoming for Ute Ladies Tresses (Spiranthes diluvialis) and for Designated Weeds Report Prepared for the BLM Rock Springs Field Office by George P. Jones, Wyoming Natural Diversity Database (University of Wyoming) in partial fulfillment of Cooperative Agreement K910A970018, Task Order TO-13 April 2001 TABLE OF CONTENTS ABSTRACT.........................................................................................................................i BACKGROUND................................................................................................................. 1 METHODS.......................................................................................................................... 1 RESULTS............................................................................................................................ 2 SPIRANTHES DILUVALIS .................................................................................. 2 WEEDS ................................................................................................................... 2 DISCUSSION ..................................................................................................................... 2 REFERENCES.................................................................................................................... 3 APPENDIX 1: DESCRIPTIONS OF STREAM SEGMENTS .........................................8 APPENDIX 2: ABUNDANCE OF THE DESIGNATED WEEDS IN EACH STREAM SEGMENT........................................................................................................................18
    [Show full text]
  • Tamarix Chinensis Lour.: Saltcedar Or Five-Stamen Tamarisk
    T&U genera Layout 1/31/08 12:50 PM Page 1087 Tamaricaceae—Tamarix family T Tamarix chinensis Lour. saltcedar or five-stamen tamarisk Wayne D. Shepperd Dr. Shepperd is a research silviculturist at the USDA Forest Service’s Rocky Mountain Research Station, Fort Collins, Colorado Synonym. T. pentrandra Pall. Flowering and fruiting. The pink to white flowers, Growth habit, occurrence, and use. Saltcedar borne in terminal panicles, bloom from March through (Tamarix chinensis (Lour.)) and smallflower tamarisk (T. September. A succession of small capsular fruits ripen and parviflora DC.) hybridize in the Southwest (Baum 1967; split open during the period from late April through October Horton and Campbell 1974) and are deciduous, pentamerous in Arizona (Horton and others 1960). Seeds are minute and tamarisks that are both commonly referred to as saltcedar. have an apical tuft of hairs (figures 1 and 2) that facilitates Saltcedar is a native of Eurasia that has naturalized in the dissemination by wind. Large numbers of small short-lived southwestern United States within the last century. It was seeds are produced that can germinate while floating on introduced into the eastern United States in the 1820s water, or within 24 hours after wetting (Everitt 1980). (Horton 1964) and was once widely cultivated as an orna- Collection, extraction, and storage. Fruits can be mental, chiefly because of its showy flowers and fine, grace- collected by hand in the spring, summer, or early fall. It is ful foliage. However, saltcedar has been an aggressive invad- not practical to extract the seeds from the small fruits. At er of riparian ecosystems in the Southwest (Reynolds and least half of the seeds in a lot still retained their viability Alexander 1974) and is the subject of aggressive eradication after 95 weeks in storage at 4.4 °C, but seeds stored at room campaigns.
    [Show full text]
  • Appendix 6: Invasive Plant Species
    USDA Forest Service Understanding i-Tree – Appendix 6: Invasive Plant Species APPENDIX 6 Invasive Plant Species The following is a list of invasive tree and shrub species by state that are included in i-Tree database (version 6). Each list of invasive species is followed by the reference of the source which were obtained circa 2014. Some of the Web addresses are no longer working; some have been relocated to alternative sites. State-specific invasive species lists will be updated in the future. Alabama Ailanthus altissima Lonicera japonica Poncirus trifoliate Albizia julibrissin Lonicera maackii Pyrus calleryana Ardisia crenata Lonicera morrowii Rosa bracteata Cinnamomum camphora Lonicera x bella Rosa multiflora Elaeagnus pungens Mahonia bealei Triadica sebifera Elaeagnus umbellata Melia azedarach Vernicia fordii Ligustrum japonicum Nandina domestica Wisteria sinensis Ligustrum lucidum Paulownia tomentosa Ligustrum sinense Polygonum cuspidatum Alabama Invasive Plant Council. 2007. 2007 plant list. Athens, GA: Center for Invasive Species and Ecosystem Health, Southeast Exotic Pest Plant Council. http://www.se-eppc.org/ alabama/2007plantlist.pdf Alaska Alnus glutinosa Lonicera tatarica Sorbus aucuparia Caragana arborescens Polygonum cuspidatum Cytisus scoparius Prunus padus Alaska National Heritage Program. 2014. Non-Native plant data. Anchorage, AK: University of Alaska Anchorage. http://aknhp.uaa.alaska.edu/botany/akepic/non-native-plant-species- list/#content Arizona Alhagi maurorum Rhus lancea Tamarix parviflora Elaeagnus angustifolia Tamarix aphylla Tamarix ramosissima Euryops multifidus Tamarix chinensis Ulmus pumila Arizona Wildland Invasive Plant Working Group. 2005. Invasive non-native plants that threaten wildlands in Arizona. Phoenix, AZ: Southwest Vegetation Management Association https:// www.swvma.org/wp-content/uploads/Invasive-Non-Native-Plants-that-Threaten-Wildlands-in- Arizona.pdf (Accessed Sept 3.
    [Show full text]
  • Baja California, Mexico, and a Vegetation Map of Colonet Mesa Alan B
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 29 | Issue 1 Article 4 2011 Plants of the Colonet Region, Baja California, Mexico, and a Vegetation Map of Colonet Mesa Alan B. Harper Terra Peninsular, Coronado, California Sula Vanderplank Rancho Santa Ana Botanic Garden, Claremont, California Mark Dodero Recon Environmental Inc., San Diego, California Sergio Mata Terra Peninsular, Coronado, California Jorge Ochoa Long Beach City College, Long Beach, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Biodiversity Commons, Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Harper, Alan B.; Vanderplank, Sula; Dodero, Mark; Mata, Sergio; and Ochoa, Jorge (2011) "Plants of the Colonet Region, Baja California, Mexico, and a Vegetation Map of Colonet Mesa," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 29: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol29/iss1/4 Aliso, 29(1), pp. 25–42 ’ 2011, Rancho Santa Ana Botanic Garden PLANTS OF THE COLONET REGION, BAJA CALIFORNIA, MEXICO, AND A VEGETATION MAPOF COLONET MESA ALAN B. HARPER,1 SULA VANDERPLANK,2 MARK DODERO,3 SERGIO MATA,1 AND JORGE OCHOA4 1Terra Peninsular, A.C., PMB 189003, Suite 88, Coronado, California 92178, USA ([email protected]); 2Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711, USA; 3Recon Environmental Inc., 1927 Fifth Avenue, San Diego, California 92101, USA; 4Long Beach City College, 1305 East Pacific Coast Highway, Long Beach, California 90806, USA ABSTRACT The Colonet region is located at the southern end of the California Floristic Province, in an area known to have the highest plant diversity in Baja California.
    [Show full text]
  • Conservation of Mojave Desert Springs and Associated Biota: Status, Threats, and Policy Opportunities
    Biodiversity and Conservation https://doi.org/10.1007/s10531-020-02090-7(0123456789().,-volV)(0123456789().,-volV) ORIGINAL PAPER Conservation of Mojave Desert springs and associated biota: status, threats, and policy opportunities 1 2 3 4 Sophie S. Parker • Andy Zdon • William T. Christian • Brian S. Cohen • Maura Palacios Mejia5 • Naomi S. Fraga6 • Emily E. Curd5 • Kiumars Edalati5 • Mark A. Renshaw7 Received: 2 January 2020 / Revised: 29 July 2020 / Accepted: 19 November 2020 Ó The Author(s) 2020 Abstract In arid landscapes where fresh water is a limiting resource, the expression of groundwater in springs sustains important landscape functions, globally-recognized biodiversity hot- spots, and both aquatic endemic and wide-ranging terrestrial species. Desert springs and associated groundwater dependent ecosystems are threatened by unsustainable ground- water pumping, and the Mojave Desert has seen extinctions of species due to the human use and modification of springs. To support changes in policy and management that would address the vulnerabilities of springs to unsustainable groundwater extraction and other threats, a better understanding of current spring condition is needed. Here we present the results of a comprehensive survey of Mojave Desert springs including hydrological and ecological observations, and an eDNA pilot study. Together, these investigations provide information about the present status of Mojave Desert springs, conservation challenges that they face, and needs that must be met to protect them. We also provide an overview of the current state of federal and state policy that could be used to better manage these critical freshwater resources. Keywords Freshwater Á Biodiversity Á Groundwater dependent ecosystems Á Aquifer Á Basin Communicated by Karen E.
    [Show full text]
  • Ajo Peak to Tinajas Altas: a Flora of Southwestern Arizona. Part 20
    Felger, R.S. and S. Rutman. 2016. Ajo Peak to Tinajas Altas: A Flora of Southwestern Arizona. Part 20. Eudicots: Solanaceae to Zygophyllaceae. Phytoneuron 2016-52: 1–66. Published 4 August 2016. ISSN 2153 733X AJO PEAK TO TINAJAS ALTAS: A FLORA OF SOUTHWESTERN ARIZONA PART 20. EUDICOTS: SOLANACEAE TO ZYGOPHYLLACEAE RICHARD STEPHEN FELGER Herbarium, University of Arizona Tucson, Arizona 85721 & International Sonoran Desert Alliance PO Box 687 Ajo, Arizona 85321 *Author for correspondence: [email protected] SUSAN RUTMAN 90 West 10th Street Ajo, Arizona 85321 [email protected] ABSTRACT A floristic account is provided for Solanaceae, Talinaceae, Tamaricaceae, Urticaceae, Verbenaceae, and Zygophyllaceae as part of the vascular plant flora of the contiguous protected areas of Organ Pipe Cactus National Monument, Cabeza Prieta National Wildlife Refuge, and the Tinajas Altas Region in southwestern Arizona—the heart of the Sonoran Desert. This account includes 40 taxa, of which about 10 taxa are represented by fossil specimens from packrat middens. This is the twentieth contribution for this flora, published in Phytoneuron and also posted open access on the website of the University of Arizona Herbarium: <http//cals.arizona.edu/herbarium/content/flora-sw-arizona>. Six eudicot families are included in this contribution (Table 1): Solanaceae (9 genera, 21 species), Talinaceae (1 species), Tamaricaceae (1 genus, 2 species), Urticaceae (2 genera, 2 species), Verbenaceae (4 genera, 7 species), and Zygophyllaceae (4 genera, 7 species). The flora area covers 5141 km 2 (1985 mi 2) of contiguous protected areas in the heart of the Sonoran Desert (Figure 1). The first article in this series includes maps and brief descriptions of the physical, biological, ecological, floristic, and deep history of the flora area (Felger et al.
    [Show full text]