Chemical Reference Materials: Setting the Standards for Ocean Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Introduction
Introduction 1 1 Introduction Tetrapyrroles belong to a group of molecules with a common structure. They are synthesized in a branched pathway, in which various end products are formed to different amounts. The most abundant cyclic tetrapyrroles are chlorophyll (Chl) and heme, which are characterized by a chelated magnesium and ferrous ion, respectively. Chlorophyll is involved in light absorption and energy transduction during photosynthesis. Heme is a cofactor of hemoglobin, cytochromes, P450 mixed-function oxygenases, and catalases. Other members of the class of tetrapyrroles include siroheme (the prosthetic group of nitrite and sulphite reductases) and phytochromobilin, the chromophore of phytochrome, which is involved in light perception. Tetrapyrrole biosynthesis has been the subject of numerous studies over several decades. But genetic and biochemical characterization of tetrapyrrole biosynthesis has progressed by using approaches to genetically dissect the tetrapyrrole biosynthetic pathway. Pigment-deficient mutants and antisense technology have proved to be useful for examining the mechanisms of metabolic control or for analyzing biochemically the enzymatic steps which are affected by the mutation or by the antisense RNA expression. Tetrapyrrole intermediates are highly photoreactive. They can easily be excited and transfer the energy or electrons to O2. Then reactive oxygen species (ROS) are produced upon exposure to light and oxygen. Under normal growth conditions the risk of photooxidative damage from intermediates in tetrapyrrole biosynthesis is low. Excessive accumulation of such intermediates is the result of deregulation of tetrapyrrole biosynthesis. Toxic effects of porphyrins are evident in human patients with deficiencies of one of the enzymes of heme biosynthesis. These patients are suffering from metabolic diseases, which are called porphyrias (Moore, 1993). -
Regulation of Photosynthesis by a Potassium Transporter in the Diatom Phaeodactylum Tricornutum Claire Seydoux
Regulation of photosynthesis by a potassium transporter in the diatom Phaeodactylum tricornutum Claire Seydoux To cite this version: Claire Seydoux. Regulation of photosynthesis by a potassium transporter in the diatom Phaeo- dactylum tricornutum. Vegetal Biology. Université Grenoble Alpes [2020-..], 2020. English. NNT : 2020GRALV031. tel-03172222 HAL Id: tel-03172222 https://tel.archives-ouvertes.fr/tel-03172222 Submitted on 17 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES Spécialité : Biologie Végétale Arrêté ministériel : 25 mai 2016 Présentée par Claire SEYDOUX Thèse dirigée par Florence COURTOIS, Maitre de conferences, Université Grenoble Alpes et codirigée par Giovanni FINAZZI, Université Grenoble Alpes préparée au sein du Laboratoire Laboratoire de Physiologie Cellulaire Végétale dans l'École Doctorale Chimie et Sciences du Vivant Régulation de la photosynthèse par un transporteur de potassium chez la diatomée Phaeodactylum tricornutum Regulation of photosynthesis -
TION of BUCKWHEAT. It Has Been Known for a Long Time That Certain
PHOTOSENSITIZATION OF ANIMALS AFTER THE INGES- TION OF BUCKWHEAT. BY CHARLES SHEARD, PH.D., HAROLD D. CAYLOR, M.D., AND CARL SCHLOTTHAUER, D.V.M. (From tke Section on Pkysics and Biophysical Research, tke Section on Surgical Pathology, and the Division of Experimental Palhdogy and Surgery, Mayo Clinic and The Mayo Foundation, Rochester, Minnesota.) (Received for publication,~'March 1, 1928.) It has been known for a long time that certain animals, following the ingestion of various substances, are rendered sensitive to certain types of radiant energy. The present study covers biologic and physical observations on the degree of sensitization, the character of the sensitizing light and the nature of the photodynamic substance of buckwheat. White rabbits, mice, rats, goats, swine, dogs and varicolored guinea pigs were studied. Sunlight, carbon arc lamp (Efka or Hoffman) with Conradty-Norris vacuum carbon electrodes and quartz mercury vapor arcs (Victor X-Ray Corporation), both with and without various filters, were employed for irradiation. All of these sources contain infra-red, visible and ultra-violet radiations. I~SLr~ OF LITERATURE. Considerable literature, especially European, has appeared on the subject of diseases in animals and man brought about by optical sensitization. Somewhat detailed accounts of the contributions relative to diseases due to exogenous sensi- tization are to be found in the brochures by Hausmann and by Mayer. Years ago European stockmen found that in certain animals which had ingested buckwheat (plant or seed), erythema, itching, edema and convulsions developed and, in many cases, paralysis and death, on exposure to out-of-door sunshine. However, untoward symptoms did not arise if the animals were kept indoors or in partial darkness and they recovered from the sensitization induced by eating certain plants if they were removed from the light early in the onset of the symp- toms. -
Diverse Biosynthetic Pathways and Protective Functions Against Environmental Stress of Antioxidants in Microalgae
plants Review Diverse Biosynthetic Pathways and Protective Functions against Environmental Stress of Antioxidants in Microalgae Shun Tamaki 1,* , Keiichi Mochida 1,2,3,4 and Kengo Suzuki 1,5 1 Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; [email protected] (K.M.); [email protected] (K.S.) 2 RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan 3 Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan 4 School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan 5 euglena Co., Ltd., Tokyo 108-0014, Japan * Correspondence: [email protected]; Tel.: +81-45-503-9576 Abstract: Eukaryotic microalgae have been classified into several biological divisions and have evo- lutionarily acquired diverse morphologies, metabolisms, and life cycles. They are naturally exposed to environmental stresses that cause oxidative damage due to reactive oxygen species accumulation. To cope with environmental stresses, microalgae contain various antioxidants, including carotenoids, ascorbate (AsA), and glutathione (GSH). Carotenoids are hydrophobic pigments required for light harvesting, photoprotection, and phototaxis. AsA constitutes the AsA-GSH cycle together with GSH and is responsible for photooxidative stress defense. GSH contributes not only to ROS scavenging, but also to heavy metal detoxification and thiol-based redox regulation. The evolutionary diversity of microalgae influences the composition and biosynthetic pathways of these antioxidants. For example, α-carotene and its derivatives are specific to Chlorophyta, whereas diadinoxanthin and fucoxanthin are found in Heterokontophyta, Haptophyta, and Dinophyta. It has been suggested that Citation: Tamaki, S.; Mochida, K.; Suzuki, K. Diverse Biosynthetic AsA is biosynthesized via the plant pathway in Chlorophyta and Rhodophyta and via the Euglena Pathways and Protective Functions pathway in Euglenophyta, Heterokontophyta, and Haptophyta. -
(12) United States Patent (10) Patent No.: US 8,834.855 B2 Johnsen Et Al
USOO8834.855B2 (12) United States Patent (10) Patent No.: US 8,834.855 B2 Johnsen et al. (45) Date of Patent: Sep. 16, 2014 (54) SUNSCREEN COMPOSITIONS COMPRISING (56) References Cited CAROTENOIDS U.S. PATENT DOCUMENTS (75) Inventors: Geir Johnsen, Trondheim (NO); Per Age Lysaa, Oslo (NO); KristinO O Aamodt, 4,699,7815,210,186 A 10/19875/1993 MikalsenGoupil et al. Oslo (NO) 5,308,759 A 5/1994 Gierhart 5,352,793 A 10, 1994 Bird et al. (73) Assignee: Promar AS (NO) 5,382,714 A 1/1995 Khachik 5,648,564 A 7/1997 AuSich et al. (*) Notice: Subject to any disclaimer, the term of this 5,654,488 A 8/1997 Krause et al. patent is extended or adjusted under 35 5,705,146 A 1, 1998 Lindquist U.S.C. 154(b) by 1255 days. (Continued) (21) Appl. No.: 11/795,668 FOREIGN PATENT DOCUMENTS (22) PCT Filed:1-1. Jan. 23, 2006 CA 21777521310969 12/199612/1992 (86). PCT No.: PCT/GB2OO6/OOO220 (Continued) S371 (c)(1), OTHER PUBLICATIONS (2), (4) Date: Apr. 15, 2008 “A UV absorbing compound in HPLC pigment chromatograms (87) PCT Pub. No.: WO2006/077433 obtained from Iceland Basin Phytoplankton'. Liewellyn et al., PCT Pub. Date: Jul.e 27,af f 9 2006 Marine Ecology Progress Series, vol. 158.:283-287, 1997.* (65) Prior Publication Data (Continued)Continued US 2008/O260662 A1 Oct. 23, 2008 Primary Examiner — Ernst V Arnold (30) Foreign Application Priority Data Assistant Examiner — Hong Yu (74) Attorney, Agent, or Firm — Schwegman Lundberg & Jan. 21, 2005 (GB) .................................. -
Photosynthetic Pigments in Diatoms
Mar. Drugs 2015, 13, 5847-5881; doi:10.3390/md13095847 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Photosynthetic Pigments in Diatoms Paulina Kuczynska 1, Malgorzata Jemiola-Rzeminska 1,2 and Kazimierz Strzalka 1,2,* 1 Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland; E-Mails: [email protected] (P.K.); [email protected] (M.J.-R.) 2 Małopolska Centre of Biotechnology, Gronostajowa 7A, Krakow 30-387, Poland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +48-126-646-509; Fax: +48-126-646-902. Academic Editor: Véronique Martin-Jézéquel Received: 10 July 2015 / Accepted: 7 September 2015 / Published: 16 September 2015 Abstract: Photosynthetic pigments are bioactive compounds of great importance for the food, cosmetic, and pharmaceutical industries. They are not only responsible for capturing solar energy to carry out photosynthesis, but also play a role in photoprotective processes and display antioxidant activity, all of which contribute to effective biomass and oxygen production. Diatoms are organisms of a distinct pigment composition, substantially different from that present in plants. Apart from light-harvesting pigments such as chlorophyll a, chlorophyll c, and fucoxanthin, there is a group of photoprotective carotenoids which includes β-carotene and the xanthophylls, diatoxanthin, diadinoxanthin, violaxanthin, antheraxanthin, and zeaxanthin, which are engaged in the xanthophyll cycle. Additionally, some intermediate products of biosynthetic pathways have been identified in diatoms as well as unusual pigments, e.g., marennine. Marine algae have become widely recognized as a source of unique bioactive compounds for potential industrial, pharmaceutical, and medical applications. -
The Biochromes ) 1.2
FORSCHUNG 45 CHIMIA 49 (1995) Nr. 3 (Miirz) Chim;a 49 (1995) 45-68 quire specific molecules, pigments or dyes © Neue Schweizerische Chemische Gesellschaft (biochromes) or systems containing them, /SSN 0009-4293 to absorb the light energy. Photoprocesses and colors are essential for life on earth, and without these biochromes and the photophysical and photochemical interac- tions, life as we know it would not have The Function of Natural been possible [1][2]. a Colorants: The Biochromes ) 1.2. Notation The terms colorants, dyes, and pig- ments ought to be used in the following way [3]: Colorants are either dyes or pig- Hans-Dieter Martin* ments, the latter being practically insolu- ble in the media in which they are applied. Indiscriminate use of these terms is fre- Abstract. The colors of nature belong undoubtedly to the beautiful part of our quently to be found in literature, but in environment. Colors always fascinated humans and left them wonderstruck. But the many biological systems it is not possible trivial question as to the practical application of natural colorants led soon and at all to make this differentiation. The consequently to coloring and dyeing of objects and humans. Aesthetical, ritual and coloring compounds of organisms have similar aspects prevailed. This function of dyes and pigments is widespread in natl)re. been referred to as biochromes, and this The importance of such visual-effective dyes is obvious: they support communication seems to be a suitable expression for a between organisms with the aid of conspicuous optical signals and they conceal biological colorant, since it circumvents revealing ones, wl,1eninconspicuosness can mean survival. -
Chlorophyll Biosynthesis
Chlorophyll Biosynthesis: Various Chlorophyllides as Exogenous Substrates for Chlorophyll Synthetase Jürgen Benz and Wolfhart Rüdiger Botanisches Institut, Universität München, Menziger Str. 67, D-8000 München 19 Z. Naturforsch. 36 c, 51 -5 7 (1981); received October 10, 1980 Dedicated to Professor Dr. H. Merxmüller on the Occasion of His 60th Birthday Chlorophyllides a and b, Protochlorophyllide, Bacteriochlorophyllide a, 3-Acetyl-3-devinylchlo- rophyllide a, Pyrochlorophyllide a, Pheophorbide a The esterification of various chlorophyllides with geranylgeranyl diphosphate was investigated as catalyzed by the enzyme chlorophyll synthetase. The enzyme source was an etioplast membrane fraction from etiolated oat seedlings ( Avena sativa L.). The following chlorophyllides were prepared from the corresponding chlorophylls by the chlorophyllase reaction: chlorophyllide a (2) and b (4), bacteriochlorophyllide a (5), 3-acetyl-3-devinylchlorophyllide a (6), and pyro chlorophyllide a (7). The substrates were solubilized with cholate which reproducibly reduced the activity of chlorophyll synthetase by 40-50%. It was found that the following compounds were good substrates for chlorophyll synthetase: chlorophyllide a and b, 3-acetyl-3-devinylchloro- phyllide a, and pyrochlorophyllide a. Only a poor or no reaction was found with protochloro phyllide, pheophorbide a, and bacteriochlorophyllide. This difference of reactivity was not due to distribution differences of the substrates between solution and pelletable membrane fraction. Furthermore, no interference between good and poor substrate was detected. Structural features necessary for chlorophyll synthetase substrates were discussed. Introduction Therefore no exogenous 2 was applied. The only substrate was 2 formed by photoconversion of endo The last steps of chlorophyll a (Chi a) biosynthe genous Protochlide (1) in the etioplast membrane. -
Algal Pigments As Biomarkers Linking Fish and Benthic Organisms with Type E Botulism
Algal pigments in benthic organisms and fish: development of biomarkers to trace food-web relationships Katherine T. Alben, Maxime Bridoux, Monika Sobiechowska Wadsworth Center, New York State Department of Health Dept. Environmental Health Sciences, SUNY-Albany National Water Quality Monitoring Conference May 9, 2006 San Jose, CA U at ALBANY From R. Ruffin, with permission Type E botulism: what are the food-web pathways? loon grebe gull Hypothesis: algal scud pigments goby yellow orange red can be used to trace food-web connections http://www.combat-fishing.com/lakepondbalance.htm#coldwaterlglake http://www.dnr.state.mn.us/exotics/aquaticanimals/roundgoby/index.html http://www.vancouverisland.com/021wildl&cons/wildlife/birds/cw/cw_herringgull.html http://www.admiraltyaudubon.org/ [email protected] U at ALBANY Algal carotenoids found in the food web diatoms & fucoxanthin C42H60O6 55 chrysophytes diatoxanthin C40H54O2 55 cryptophytes alloxanthin C40H52O2 55 chlorophytes lutein C40H56O2 (5) 55 5 cyanobacteria zeaxanthin C40H56O2 55 5 5 cantha- C40H52O2 55 β-crypto- C40H56O 55 echinenone C40H54O 555 euglenophytes neoxanthin C40H56O4 5 dinoflagellates peridinin C39H52O7 NF NF NF NF crustacean astaxanthin C40H52O4 55 5 5 metabolism U at ALBANY Method Development Standards – high resolution separations Quantitation – NIST, reference materials, MDLs Sample prep – microanalytical procedures, SPE, enzymatic hydrolysis Applications – Phytoplankton Gastropods Dreissenids Fish – round gobies, drum, perch, bass Standards - chlorophyll & carotenoids -
A Review on Biosynthesis, Health Benefits and Extraction Methods of Fucoxanthin, Particular Marine Carotenoids in Algae
Journal of Medicinal Plants A Review on Biosynthesis, Health Benefits and Extraction Methods of Fucoxanthin, Particular Marine Carotenoids in Algae Irvani N (M.Sc.)1, Hajiaghaee R (Ph.D.)2, Zarekarizi A.R (M.Sc.)2* 1- Faculty of Biological Science and Technology, Shahid Beheshti University, Tehran, Iran 2- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran * Corresponding author: Institute of Medicinal Plants, ACECR, Karaj, Iran P.O.BOX (Mehr Vila): 31375-369 Tel: +98 - 26 – 34764010-18, Fax: +98 – 26- 34764021 E-mail: [email protected] Received: 28 June 2017 Accepted: 18 July 2018 Abstract Fucoxanthin, an allenic carotenoid, is abundant in macro and microalgae as a component of the light-harvesting complex for photosynthesis and photo protection. This carotenoid has shown important pharmaceutical bioactivity, exerting antioxidant, anti-cancer, anti-diabetic, anti- obesity, anti-photoaging, anti-angiogenic, and anti-metastatic effects on a variety of biological models. This carotenoid has been proven to be safe for animal consumption, opening up the opportunity of using this bioactive compound in the treatment of different pathologies. In this paper, an updated account of the research progress in biosynthetic pathway and health benefits of fucoxanthin is presented. Meanwhile, a review on the various methods of extraction of fucoxanthin in macro and microalgae is also revisited. According to these studies providing important background knowledge, fucoxanthin can be utilized into drugs and nutritional products. Keywords: Fucoxanthin, Carotenoids, Biosynthesis pathway, Extraction methods 6 Volume 17, No. 67, Summer 2018 … A Review on Biosynthesis Introduction million species [5]. Microalgae are important Consumer awareness of the importance of a primary producers in marine environments and healthy diet, protection of the environment, play a significant role in supporting aquatic resource sustainability and using all natural animals [6]. -
Surprising Roles for Bilins in a Green Alga Jean-David Rochaix1 Departments of Molecular Biology and Plant Biology, University of Geneva,1211 Geneva, Switzerland
COMMENTARY COMMENTARY Surprising roles for bilins in a green alga Jean-David Rochaix1 Departments of Molecular Biology and Plant Biology, University of Geneva,1211 Geneva, Switzerland It is well established that the origin of plastids which serves as chromophore of phyto- can be traced to an endosymbiotic event in chromes (Fig. 1). An intriguing feature of which a free-living photosynthetic prokaryote all sequenced chlorophyte genomes is that, invaded a eukaryotic cell more than 1 billion although they lack phytochromes, their years ago. Most genes from the intruder genomes encode two HMOXs, HMOX1 were gradually transferred to the host nu- andHMOX2,andPCYA.InPNAS,Duanmu cleus whereas a small number of these genes et al. (6) investigate the role of these genes in were maintained in the plastid and gave the green alga Chlamydomonas reinhardtii rise to the plastid genome with its associated and made unexpected findings. protein synthesizing system. The products of Duanmu et al. first show that HMOX1, many of the genes transferred to the nucleus HMOX2, and PCYA are catalytically active were then retargeted to the plastid to keep it and produce bilins in vitro (6). They also functional. Altogether, approximately 3,000 demonstrate in a very elegant way that these nuclear genes in plants and algae encode proteins are functional in vivo by expressing plastid proteins, whereas chloroplast ge- a cyanobacteriochrome in the chloroplast Fig. 1. Tetrapyrrole biosynthetic pathways. The heme nomes contain between 100 and 120 genes of C. reinhardtii, where, remarkably, the and chlorophyll biosynthetic pathways diverge at pro- (1). A major challenge for eukaryotic pho- photoreceptor is assembled with bound toporphyrin IX (ProtoIX). -
Rodríguez-Concepción, M. Et Al. a Global Perspective on Carotenoids
This is the accepted version of the following article: Rodríguez-Concepción, M. et al. A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health in Progress in lipid research (Ed. Elsevier), vol. 70 (April 2018), p. 62-93 Which has been published in final form at DOI 10.1016/j-plipres.2018.04.004 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Manuel RODRIGUEZ CONCEPCIONa,*, Javier AVALOSb, M. Luisa BONETc, Albert BORONATa,d, Lourdes GOMEZ-GOMEZe, Damaso HORNERO-MENDEZf, M. Carmen LIMONb, Antonio J. MELÉNDEZ-MARTÍNEZg, Begoña OLMEDILLA-ALONSOh, Andreu PALOUc, Joan RIBOTc, Maria J. RODRIGOi, Lorenzo ZACARIASi, Changfu ZHUj a, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain. b, Department of Genetics, Universidad de Sevilla, 41012 Seville, Spain. c, Laboratory of Molecular Biology, Nutrition and Biotechnology, Universitat de les Illes Balears; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); and Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma de Mallorca, Spain. d, Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain e, Instituto Botánico, Universidad de Castilla-La Mancha, 02071 Albacete, Spain. f, Department of Food Phytochemistry, Instituto de la Grasa (IG-CSIC), 41013 Seville, Spain. g, Food Color & Quality Laboratory, Area of Nutrition & Food Science, Universidad de Sevilla, 41012 Seville, Spain. h, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28040 Madrid, Spain. i, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain.