AMS-MAA Special Sessions on History of Mathematics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Edmond Halley and His Recurring Comet
EDMOND HALLEY AND HIS RECURRING COMET “They [the astronomers of the flying island of Laputa] have observed ninety-three different comets and settled their periods with great exactness. If this be true (and they affirm it with great confidence), it is much to be wished that their observations were made public, whereby the theory of comets, which at present is very lame and defective, might be brought into perfection with other parts of astronomy.” — Jonathan Swift, GULLIVER’S TRAVELS, 1726 HDT WHAT? INDEX HALLEY’S COMET EDMOND HALLEY 1656 November 8, Saturday (Old Style): Edmond Halley was born. NEVER READ AHEAD! TO APPRECIATE NOVEMBER 8TH, 1656 AT ALL ONE MUST APPRECIATE IT AS A TODAY (THE FOLLOWING DAY, TOMORROW, IS BUT A PORTION OF THE UNREALIZED FUTURE AND IFFY AT BEST). Edmond Halley “Stack of the Artist of Kouroo” Project HDT WHAT? INDEX HALLEY’S COMET EDMOND HALLEY 1671 February 2, Friday (1671, Old Style): Harvard College was given a “3 foote and a halfe with a concave ey-glasse” reflecting telescope. This would be the instrument with which the Reverends Increase and Cotton Mather would observe a bright comet of the year 1682. ASTRONOMY HALLEY’S COMET HARVARD OBSERVATORY ESSENCE IS BLUR. SPECIFICITY, THE OPPOSITE OF ESSENCE, IS OF THE NATURE OF TRUTH. Edmond Halley “Stack of the Artist of Kouroo” Project HDT WHAT? INDEX HALLEY’S COMET EDMOND HALLEY 1676 Edmond Halley was for six weeks the guest of the British East India Company at their St. Helena colony in the South Atlantic for purposes of observation of the exceedingly rare transit of the planet Venus across the face of the sun. -
I Terremoti E I Maremoti Dello Stretto Di Messina Dal Mondo Antico Alla Fine Del XX Secolo: Descrizioni E Parametri
estratto dal volume: Il terremoto e il maremoto del 28 dicembre 1908: analisi sismologica, impatto, prospettive, a cura di G.Bertolaso, E.Boschi, E.Guidoboni e G.Valensise, DPC–INGV, Roma–Bologna 2008, 813 pp. I terremoti e i maremoti dello Stretto di Messina dal mondo antico alla fine del XX secolo: descrizioni e parametri Alberto Comastri e Dante Mariotti Un excursus storico di oltre duemila anni sintetizza le conoscenze atte- state da fonti scritte. Antiche testimonianze, annotazioni in codici me- dievali, ma anche dettagliate relazioni di epoca moderna e rilevazioni contemporanee consentono di delineare un quadro il più possibile com- pleto della sismicità di quest’area, abitata fin dai tempi più remoti. Emergono diversi terremoti minori, alcuni dei quali quasi dimenticati, che tuttavia confermano un’immagine dell’attività sismica nell’area dello Stretto caratterizzata da eventi frequenti, ma dominata da rari ter- remoti catastrofici. Un’esplorazione nella storia sismica dello Stretto L’abate Giuseppe Mercalli, nel suo classico studio I terremoti della Calabria meri- dionale e del messinese (1897), definì 18 “centri sismici” – oggi diremmo aree sismo- genetiche – da cui si originavano i terremoti che periodicamente colpivano la parte meridionale della Calabria e il messinese. Tra questi, Mercalli non considerò il “cen- tro sismico” dello Stretto di Messina, perché riteneva che le notizie di cui era in pos- sesso, relative a terremoti localizzati a Messina e a Reggio Calabria, fossero effetti lo- cali di terremoti originati in aree adiacenti, soprattutto nella zona della Piana di Gioia Tauro, di cui fossero rimasti ignorati gli effetti nelle aree epicentrali. Dopo il catastrofico terremoto del 28 dicembre 1908, Mercalli (1909) fu costretto a rivedere la sua ipotesi precedente e, al termine dello studio dedicato a quell’evento straordinario, riconobbe l’esistenza del “centro sismico” Reggio–Messina, a cui colle- gò oltre al terremoto del 1908, gli altri eventi di cui aveva notizia. -
Messinesi Insigni Del Sec. Xix Sepolti Al Gran Camposanto
GIORGIO ATTARD MESSINESI INSIGNI DEL SEC. XIX SEPOLTI AL GRAN CAMPOSANTO (Epigrafi - Schizzi Biografici) ,. • < in copertina: Messina, Gran Camposanto: Cappella Peirce (ing. V. Vinci) SOCIETÀ MESSINESE DI STORIA PATRIA REPRINT OPUSCOLI l 1. G. ATTARD Messinesi insigni del sec. XIX sepolti al Gran Camposanto (Epigrafi, Schizzi Biografici), 2" ed., a cura di G. Molonia, Messina 19912 (1926) SOCIETÀ MESSINESE DI STORIA PATRIA GIORGIO ATTARD MESSINESI INSIGNI DEL SEC. XIX SEPOLTI AL GRAN CAMPOSANTO (Epigrafi - Schizzi Biografici) Seconda Edizione a cura di GIOVANNI NfOLONIA MESSINA 1991 Vincenzo Giorgio Attard (Messina 1878 - 1956) INTRODUZIONE Nella raccolta di immagini di Messina preterremoto pervenuta attraverso Gaetano La Corte Cailler si trova una vecchia fotografia di Ledru Mauro raffigurante il "Gran Camposanto di Messina: il Famedio". In primo piano, seduto, è un anziano signore con una grande barba bianca con accanto, sdraiata a suo agio sul prato, una esile figura di ragazzo. In basso è la scritta di pugno del La Corte: "Il custode Attard e suo nipote". Giorgio Attard senior fu il primo custode-dirigente del Gran Cam posanto di Messina, di quell'opera cioè - vanto della municipalità peloritana - che, iniziata nel 1865 su progetto dell'architetto Leone Savoja, era statainauguratail6 aprile 1872 conIa solenne tumulazione delle ceneri di Giuseppe La Farina. Di antica e nobile famiglia maltese, Attard si era trasferito a Messina agli inizi dell 'Ottocento. Qui era nato il lO febbraio 1878 il nipote Vincenzo Giorgio Attard da Eugenio, ingegnere delle Ferrovie dello Stato, e da Natalizia Grasso. Rimasto orfano di padre in tenera età, Giorgio junior crebbe e fu educato dal nonno, che gli trasmise l'amore per il Camposanto sentito come "il sacro luogo dove si conservano le memorie della Patria, silenziose e nobili nel verde della ridente collina, sede degna per un sereno riposo". -
Who Invented the Calculus? - and Other 17Th Century Topics Transcript
Who invented the calculus? - and other 17th century topics Transcript Date: Wednesday, 16 November 2005 - 12:00AM Location: Barnard's Inn Hall WHO INVENTED THE CALCULUS? Professor Robin Wilson Introduction We’ve now covered two-thirds of our journey ‘From Caliphs to Cambridge’, and in this lecture I want to try to survey the mathematical achievements of the seventeenth century – a monumental task. I’ve divided my talk into four parts – first, the movement towards the practical sciences, as exemplified by the founding of Gresham College and the Royal Society. Next, we’ll gravitate towards astronomy, from Copernicus to Newton. Thirdly, we visit France and the gradual movement from geometry to algebra (with a brief excursion into some new approaches to pi) – and finally, the development of the calculus. So first, let’s make an excursion to Gresham College. Practical science The Gresham professorships arose from the will of Sir Thomas Gresham, which provided for £50 per year for each of seven professors to read lectures in Divinity, Astronomy, Music, Geometry, Law, Physic and Rhetoric. As the Ballad of Gresham College later described it: If to be rich and to be learn’d Be every Nation’s cheifest glory, How much are English men concern’d, Gresham to celebrate thy story Who built th’Exchange t’enrich the Citty And a Colledge founded for the witty. From its beginning, Gresham College encouraged the practical sciences, rather than the Aristotelian studies still pursued at the ancient universities: Thy Colledg, Gresham, shall hereafter Be the whole world’s Universitie, Oxford and Cambridge are our laughter; Their learning is but Pedantry. -
Archivio Storico Messinese 75
Vol. XIV· Rosario Moscheo SOCIETÀ MESSINESE DI STORIA PATRIA MECENATISMO E SCIENZA NELLA SICILIA DEL '500 I VENTIMIGLIA DI GERACI ED IL MATEMATICO FRANCESCO MAUROLICO cm. 21x13,5 - pp. VIII, 248 - (Analecta, 6), Messina 1990 Vol. XV . Francesca Paolino GIACOMO DEL DUCA. LE OPERE SICILIANE Presentazione di Sandro Benedetti cm. 28,5x21,5 - fase. I, pp. X, 122, fase. Il, tavv. 13 - (Analecta, 5), Messina 1990 ARCHIVIO STORICO Vol. XVI· Gerd Van De Moetter HISTORISCH·BIBLIOGRAPHISCHER ABRIB DER DEUTSCHEN SIZILlENREISENDEN . 1600-1900 MESSINESE BREVE PROFILO STORICO- BIBLIOGRAFICO DEI VIAGGIATORI TEDESCHI IN SICILIA. 1600-1900 Presentazione di Sandro Benedetti cm. 28,5x21,5 - pp. 274 - (Analecta, 6), Messina 1991 75 VoI. XVII· Giuseppe A.M. Arena . POPOLAZIONE E DISTRIBUZIONE DELLA RICCHEZZA A LIPARI NEL 1610 ....:I Analisi, elaborazione statistica e sintesi dei Riveli di Lipari O conservati nell'Archivio di Stato di Palermo > cm. 28 ,5x21,5 . pp. 374· (Testi e Documenti, 7), Messina 1992 ""-I Vol. XVIII· Gianluigi Ciotta V'l LA CULTURA ARCHITETTONICA NORMANNA IN SICILIA ""-I Rassegna delle fonti e degli studi per nuove prospettive di ricerca Z cm . 28,5x21,5 - pp. 456 · (Analecta, 7), Messina 1992 V'l -V'l ""-I VoI. XVIII •. AA.VV. CONTRIBUTI DI STORIA DELLA MEDICINA ~ Atti del XXXIV Congresso Nazionale di Storia della Medicina O Messina 27 - 29 ottobre 1989 u cm. 24x17 · pp. 772· (Acta Fretensia, 3), Messina 1992 -O Vol. XX . Giuseppe Grosso Cacopardo E= OPERE V'l Volume Primo. Scritti Minori (1832-1857) a cura di Giovanni Molonia O cm. 24x16,2 - pp. 592 - (Opera Omnia, 1), Messina 1994 -> Vol. -
Curriculum Vitae
CURRICULUM VITAE ROSARIO VILARDO, Architetto Indirizzo xxxxxxxxxxxxxxxx Telefono xxxxxxxxxxxxxxxxx E-mail xxxxxxxxxxxxxxxxxx Cittadinanza Data di nascita xxxxxxxxxxxxxxxxx Sesso M Documento d’identità xxxxxxxxxxxxxxxxx Codice fiscale xxxxxxxxxxxxxxxxx Qualifica Dirigente III fascia Ufficio REGIONE SICILIANA - Servizio Museo Interdisciplinare Regionale di Messina E-mail ufficio Telefono ufficio xxxxxxxxxxxxxx – Fax: xxxxxxxxxxxxxxx Incarico attuale Dirigente responsabile Unità Operativa II Manutenzione e restauri: Esperienze professionali INSEGNAMENTO Dal 2000 al 2007 Università degli Studi, Messina, Facoltà di Ingegneria Corso di Laurea in Ingegneria Civile indirizzo edile Corso di Laurea in Ingegneria Edile per il Recupero Docente a contratto di Recupero e conservazione degli edifici, Restauro I e Restauro II: attività continuativa di docenza annuale e semestrale a studenti del III, IV e V anno del corso di studi, relatore o correlatore in oltre quaranta tesi di laurea sui temi del restauro dei monumenti, del recupero, del consolidamento strutturale e antisismico. Attività di docenza frontale e individuale, con l’insegnamento delle metodiche della progettazione del restauro, attraverso lo studio e l’analisi di edifici storici e di study cases, delle tecniche del rilievo per il restauro, dei degradi, delle problematiche strutturali delle murature dissestate, degli interventi di protezione civile, delle metodiche del consolidamento antisismico, della sicurezza nei cantieri di restauro, etc. Tutor in vari cicli di Dottorato di ricerca presso il Dipartimento di scienze per l'ingegneria e per l'architettura dell'Università di Messina arch. Rosario Vilardo 1 Dal 1991 SOPRINTENDENZA PER I BENI CULTURALI E AMBIENTALI Messina Dirigente III fascia Dal 1991 al 1999 Dirigente dell’Ufficio di Zona con compiti di istruzione degli atti relativi alla tutela Paesaggistica e all’alta sorveglianza Architettonica: fino al 1995 per i comuni della zona nebroidea; fino al 1999 per i Comuni della fascia ionica (da Taormina e Castelmola fino a Francavilla e a Scaletta Z.). -
A Survey of the Development of Geometry up to 1870
A Survey of the Development of Geometry up to 1870∗ Eldar Straume Department of mathematical sciences Norwegian University of Science and Technology (NTNU) N-9471 Trondheim, Norway September 4, 2014 Abstract This is an expository treatise on the development of the classical ge- ometries, starting from the origins of Euclidean geometry a few centuries BC up to around 1870. At this time classical differential geometry came to an end, and the Riemannian geometric approach started to be developed. Moreover, the discovery of non-Euclidean geometry, about 40 years earlier, had just been demonstrated to be a ”true” geometry on the same footing as Euclidean geometry. These were radically new ideas, but henceforth the importance of the topic became gradually realized. As a consequence, the conventional attitude to the basic geometric questions, including the possible geometric structure of the physical space, was challenged, and foundational problems became an important issue during the following decades. Such a basic understanding of the status of geometry around 1870 enables one to study the geometric works of Sophus Lie and Felix Klein at the beginning of their career in the appropriate historical perspective. arXiv:1409.1140v1 [math.HO] 3 Sep 2014 Contents 1 Euclideangeometry,thesourceofallgeometries 3 1.1 Earlygeometryandtheroleoftherealnumbers . 4 1.1.1 Geometric algebra, constructivism, and the real numbers 7 1.1.2 Thedownfalloftheancientgeometry . 8 ∗This monograph was written up in 2008-2009, as a preparation to the further study of the early geometrical works of Sophus Lie and Felix Klein at the beginning of their career around 1870. The author apologizes for possible historiographic shortcomings, errors, and perhaps lack of updated information on certain topics from the history of mathematics. -
Halley, Edmond He Was Assistant of the Secretaries of the Royal Soci- Ety, and from 1685 to 1693 He Edited the Philosoph- Born: November 8, 1656, in Haggerton, UK
Principia Mathematica, in 1686. From 1685 to 1696 Halley, Edmond he was assistant of the secretaries of the Royal Soci- ety, and from 1685 to 1693 he edited the Philosoph- Born: November 8, 1656, in Haggerton, UK. ical Transactions of the Royal Society. In 1698 he Died: January 14, 1742, in Greenwich, UK. was the frequent guest of Peter the Great, who was studying British shipbuilding in England. He was the Edmond Halley was a major English astronomer, technical adviser to Queen Anne in the War of Span- mathematician, and physicist, who was also ish Succession, and in 1702 and 1703 she sent him interested in demography, insurance mathematics on diplomatic missions to Europe to advise on the (see Actuarial Methods), geology, oceanography, fortification of seaports. geography, and navigation. Moreover, he was Between 1687 and 1720 Halley published papers considered an engineer and a social statistician whose on mathematics, ranging from geometry to the com- life was filled with the thrill of discovery. In 1705, putation of logarithms and trigonometric functions. he reasoned that the periodic comet – now known He also published papers on the computation of as Halley’s comet – that appeared in 1456, 1531, the focal length of thick lenses and on the calcu- 1607, and 1682, was the same comet that appears lation of trajectories in gunnery. In 1684 he studied every 76 years, and accurately predicted that it would tidal phenomena, and in 1686 he wrote an important appear again in December 1758. His most notable paper in geophysics about the trade winds and mon- achievements were his discoveries of the motion of soons. -
An Overview of Definitions and Their Relationships
INTERNATIONAL JOURNAL OF GEOMETRY Vol. 10 (2021), No. 2, 50 - 66 A SURVEY ON CONICS IN HISTORICAL CONTEXT: an overview of definitions and their relationships. DIRK KEPPENS and NELE KEPPENS1 Abstract. Conics are undoubtedly one of the most studied objects in ge- ometry. Throughout history different definitions have been given, depending on the context in which a conic is seen. Indeed, conics can be defined in many ways: as conic sections in three-dimensional space, as loci of points in the euclidean plane, as algebraic curves of the second degree, as geometrical configurations in (desarguesian or non-desarguesian) projective planes, ::: In this paper we give an overview of all these definitions and their interre- lationships (without proofs), starting with conic sections in ancient Greece and ending with ovals in modern times. 1. Introduction There is a vast amount of literature on conic sections, the majority of which is referring to the groundbreaking work of Apollonius. Some influen- tial books were e.g. [49], [13], [51], [6], [55], [59] and [26]. This paper is an attempt to bring together the variety of existing definitions for the notion of a conic and to give a comparative overview of all known results concerning their connections, scattered in the literature. The proofs of the relationships can be found in the references and are not repeated in this article. In the first section we consider the oldest definition for a conic, due to Apollonius, as the section of a plane with a cone. Thereafter we look at conics as loci of points in the euclidean plane and as algebraic curves of the second degree going back to Descartes and some of his contemporaries. -
Steiner's Theorems on the Complete Quadrilateral
Forum Geometricorum b Volume 4 (2004) 35–52. bbb FORUM GEOM ISSN 1534-1178 Steiner’s Theorems on the Complete Quadrilateral Jean-Pierre Ehrmann Abstract. We give a translation of Jacob Steiner’s 1828 note on the complete quadrilateral, with complete proofs and annotations in barycentric coordinates. 1. Steiner’s note on the complete quadrilateral In 1828, Jakob Steiner published in Gergonne’s Annales a very short note [9] listing ten interesting and important theorems on the complete quadrilateral. The purpose of this paper is to provide a translation of the note, to prove these theorems, along with annotations in barycentric coordinates. We begin with a translation of Steiner’s note. Suppose four lines intersect two by two at six points. (1) These four lines, taken three by three, form four triangles whose circum- circles pass through the same point F . (2) The centers of the four circles (and the point F ) lie on the same circle. (3) The perpendicular feet from F to the four lines lie on the same line R, and F is the only point with this property. (4) The orthocenters of the four triangles lie on the same line R. (5) The lines R and R are parallel, and the line R passes through the midpoint of the segment joining F to its perpendicular foot on R. (6) The midpoints of the diagonals of the complete quadrilateral formed by the four given lines lie on the same line R (Newton). (7) The line R is a common perpendicular to the lines R and R. (8) Each of the four triangles in (1) has an incircle and three excircles. -
The Rise of Projective Geometry II
The Rise of Projective Geometry II The Renaissance Artists Although isolated results from earlier periods are now considered as belonging to the subject of projective geometry, the fundamental ideas that form the core of this area stem from the work of artists during the Renaissance. Earlier art appears to us as being very stylized and flat. The Renaissance Artists Towards the end of the 13th century, early Renaissance artists began to attempt to portray situations in a more realistic way. One early technique is known as terraced perspective, where people in a group scene that are further in the back are drawn higher up than those in the front. Simone Martini: Majesty The Renaissance Artists As artists attempted to find better techniques to improve the realism of their work, the idea of vertical perspective was developed by the Italian school of artists (for example Duccio (1255-1318) and Giotto (1266-1337)). To create the sense of depth, parallel lines in the scene are represented by lines that meet in the centerline of the picture. Duccio's Last Supper The Renaissance Artists The modern system of focused perspective was discovered around 1425 by the sculptor and architect Brunelleschi (1377-1446), and formulated in a treatise a few years later by the painter and architect Leone Battista Alberti (1404-1472). The method was perfected by Leonardo da Vinci (1452 – 1519). The German artist Albrecht Dürer (1471 – 1528) introduced the term perspective (from the Latin verb meaning “to see through”) to describe this technique and illustrated it by a series of well- known woodcuts in his book Underweysung der Messung mit dem Zyrkel und Rychtsscheyed [Instruction on measuring with compass and straight edge] in 1525. -
Jemma Lorenat Pitzer College [email protected]
Jemma Lorenat Pitzer College [email protected] www.jemmalorenat.com EDUCATION PhD, Mathematics (2010 – 2015) Simon Fraser University (Canada) and Université Pierre et Marie Curie (France) Doctoral programs in mathematics at the Department of Mathematics at SFU and at the Institut de mathématiques de Jussieu, Paris Rive Gauche at UPMC Thesis: “Die Freude an der Gestalt: Methods, Figures, and Practices in Early Nineteenth Century Geometry.” Advisors: Prof. Thomas Archibald and Prof. Catherine Goldstein MA, Liberal Studies (2008 – May 2010) City University of New York Graduate Center Thesis: “The development and reception of Leopold Kronecker’s philosophy of mathematics” BA (Summa Cum Laude), Mathematics (2005 – May 2007) San Francisco State University Undergraduate Studies (2004 – 2005) University of St Andrews, St Andrews, Scotland EMPLOYMENT 2015 – Present, Pitzer College (Claremont, CA), Assistant Professor of Mathematics 2013 – 2015, Pratt Institute (Brooklyn), Visiting Instructor 2013 – 2015, St Joseph’s College (Brooklyn), Visiting Instructor 2010 – 2012, Simon Fraser University, Teaching Assistant 2009 – 2010, College Now, Hunter College (New York), Instructor 2007 – 2010, Middle Grades Initiative, City University of New York PUBLISHED RESEARCH “Certain modern ideas and methods: “geometric reality” in the mathematics of Charlotte Angas Scott” Review of Symbolic Logic (forthcoming). “Actual accomplishments in this world: the other students of Charlotte Angas Scott” Mathematical Intelligencer (forthcoming). “Je ne point ambitionée d'être neuf: modern geometry in early nineteenth-century French textbooks” Interfaces between mathematical practices and mathematical eduation ed. Gert Schubring. Springer, 2019, pp. 69–122. “Radical, ideal and equal powers: naming objects in nineteenth century geometry” Revue d’histoire des mathématiques 23 (1), 2017, pp.